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Abstract. For a non-empty ground set X , finite or infinite, the set-valuation or set-labeling of a given graph G

is an injective function f : V (G)→P(X), where P(X) is the power set of the set X . A set-indexer of a graph

G is an injective set-valued function f : V (G)→P(X) such that the function f ∗ : E(G)→P(X)−{ /0} defined

by f ∗(uv) = f (u)∗ f (v) for every uv∈E(G) is also injective, where ∗ is a binary operation on sets. Let N0 be the

set of all non-negative integers and P(N0) is its power set. An integer additive set-labeling (IASL) of a graph

G is an injective function f : V (G)→P(N0) such that the induced function f+ : E(G)→P(N0) is defined by

f+(uv) = f (u)+ f (v), where f (u)+ f (v) is the sumset of the sets f (u) and f (v). An IASL f of a graph G is

said to be an integer additive set-indexer (IASI) of G if the induced function f+ is also injective. In this paper,

we critically and creatively review the concepts and properties of a particular type integer additive set-valuation,

called arithmetic integer additive set-valuation of graphs.
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1. INTRODUCTION

For all terms and definitions, not defined specifically in this paper, we refer to [6, 10, 18, 36].

For more about graph classes, we further refer to [7] and [13]. Unless otherwise mentioned, all

graphs considered here are simple, finite and have no isolated vertices.

1.1. Set-Valued Graphs. The researches on graph labeling problems commenced with the

introduction of the concept of number valuations of graphs in [25]. Since then, the studies on

graph labeling have contributed significantly to the researches in graph theory and associated

fields. Graph labeling problems have numerous theoretical and practical applications. Many

types of graph labeling are surveyed and listed in [13].

The notion of set-valuation of graphs has been introduced in [1], motivated by social inter-

actions and social networks problems. For a non-empty ground set X , finite or infinite, the

set-valuation or set-labeling of a given graph G is an injective function f : V (G)→P(X),

where P(X) is the power set of the set X .

Also, a set-indexer of a graph G is defined, in [1], as an injective set-valued function f :

V (G)→P(X) such that the function f ∗ : E(G)→P(X)−{ /0} defined by f ∗(uv) = f (u)∗ f (v)

for every uv∈E(G) is also injective, where P(X) is the set of all subsets of X and ∗ is a binary

operation on sets.

Taking the symmetric difference of two sets as the operation between two set-labels of the

vertices of G, the following theorem was proved in [1].

Theorem 1.1. [1] Every graph has a set-indexer.

1.2. Integer Additive Set-Valued Graphs. If A and B are two non-empty sets, then their

sumset is the set A + B defined by A + B = {a + b : a ∈ A,b ∈ B}. Using the concepts of

sumsets, the notion of integer additive set-labeling of a given graph is introduced as follows.

Definition 1.2. [26] Let N0 denote the set of all non-negative integers and P(N0) be its power

set. An integer additive set-labeling (IASL, in short) of a graph G is defined as an injective

function f : V (G)→P(N0) which induces a function f+ : E(G)→P(N0) such that f+(uv) =

f (u)+ f (v), uv∈ E(G). A graph which admits an IASL is called an integer additive set-labeled

graph (IASL-graph).
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The notion of an integer additive set-indexers of graphs has been introduced in [14] as fol-

lows.

Definition 1.3. [14] An integer additive set-labeling f : V (G)→P(N0) of a graph G is said to

be an integer additive set-indexer (IASI) if the induced function f+ : E(G)→P(N0) defined

by f+(uv) = f (u)+ f (v) is also injective. A graph which admits an IASI is called an integer

additive set-indexed graph (IASI-graph).

Certain studies about integer additive set-indexed graphs have been done in [2, 15, 27] and

[26].

Analogous to Theorem 1.1, the following theorem established the existence of integer additive

set-labeling for graphs, in general.

Theorem 1.4. [26] Every graph has an integer additive set-labeling (or an integer additive

set-indexer).

The properties of the set labels of the elements of integer additive set-labeled graphs have

been studied in [26, 15, 27] and the important notions and facts in this area are as follows:

If either f (u) or f (v) is countably infinite, then f (u)+ f (v) is also countably infinite and

hence the study about the cardinality of f (u)+ f (v) becomes trivial. Hence, we restrict our

discussion to finite sets of non-negative integers. We denote the cardinality of a set A by |A|.

The cardinality of the set-label of an element (vertex or edge) of a graph G is called the set-

indexing number of that element. If the set-labels of all vertices of G have the same cardinality,

then the vertex set V (G) is said to be uniformly set-indexed.

An IASL (or IASI) is said to be k-uniform if | f+(e)|= k for all e∈E(G). That is, a connected

graph G is said to have a k-uniform IASL (or IASI) if all of its edges have the same set-indexing

number k. If G is a graph which admits a k-uniform IASI and V (G) is l-uniformly set-indexed,

then G is said to have a (k, l)-completely uniform IASI or simply a completely uniform IASI.

Let f be an IASI defined on a graph G and let u,v be any two adjacent vertices in G. Two

ordered pairs (a,b) and (c,d) in f (u)× f (v) are said to be compatible if a+b = c+d. If (a,b)

and (c,d) are compatible, then we write (a,b)∼ (c,d). Clearly, ∼ is an equivalence relation.
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A compatibility class of an ordered pair (a,b) in f (u)× f (v) with respect to the integer k =

a+b is the subset of f (u)× f (v) defined by {(c,d)∈ f (u)× f (v) : (a,b)∼ (c,d)} and is denoted

by Ck. Since f (u) and f (v) are finite sets, then each compatibility class Ck in f (u)× f (v)

contains finite number of elements.

It is to be noted that no compatibility class in f (u)× f (v) can be non-empty. If a compatibility

class Ck contains only one element, then it is called a trivial class. A compatibility class Ck that

contains maximum number of elements are called a maximal compatibility class.

Lemma 1.5. [26] For a compatibility class Ck in f (u) × f (v), we have 1 ≤ |Ck| ≤

min(| f (u)|, | f (v)|).

A compatibility class which contain the largest possible number of elements is called a satu-

rated class. Hence, the cardinality of a saturated class in f (u)× f (v) is min(| f (u)|, | f (v)|).

It is to be noted that all saturated classes in f (u)× f (v) are maximal compatible classes, but

a maximal compatible class need not be a saturated class of f (u)× f (v). That is, the existence

of a saturated class depends on the nature of elements in the set-labels f (u) and f (v).

Based on the relation between the set-indexing numbers of an edge and its end vertices in G,

the following notion is introduced in [27].

A weak IASI is an IASI f such that | f+(uv)| = max(| f (u)|, | f (v)|) for all uv ∈ E(G). A

graph which admits a weak IASI may be called a weak IASI-graph (see [15]).

Theorem 1.6. [15] An IASI f of a graph G is a weak IASL (or weak IASI) if and only if the

set-indexing number of at least one end vertex of every edge of G is 1.

A strong IASI is an IASI f such that | f+(uv)| = | f (u)| | f (v)| for all u,v ∈ V (G). A graph

which admits a strong IASI may be called a strong IASI-graph (see [27]).

It is to be noted that if f is a weak IASI (or a strong IASI) of G then all compatible classes in

f (u)× f (v) are trivial classes, where uv ∈ E(G).
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2. ARITHMETIC IASI OF GRAPHS

2.1. Introduction. In this article, we review the studies made on the characteristics of certain

graphs, the elements of whose set-labels are in arithmetic progressions. By the term, an arith-

metically progressive set, (AP-set, in short), we mean a set whose elements are in arithmetic

progression. We call the common difference of the set-label of an element of a given graph

G, the deterministic index of that element. The deterministic ratio of an edge of G is the ratio

k ≥ 1, of the deterministic indices of its end vertices. Now, we have the following notions.

Definition 2.1. [28] Let f : V (G)→P(N0) be an IASI on G. For any vertex v of G, if f (v) is

an AP-set, then f is called a vertex-arithmetic IASI of G.

Definition 2.2. [28] For an IASI f of G, if f+(e) is an AP-set, for all e ∈ E(G), then f is called

an edge-arithmetic IASI of G.

A graph that admits vertex-arithmetic IASI (respectively, an edge-arithmetic IASI) is called

a vertex-arithmetic IASI-graph (respectively, an edge-arithmetic IASI-graph).

Definition 2.3. [28] An IASI is said to be an arithmetic integer additive set-indexer if it is both

vertex-arithmetic and edge-arithmetic.

In other words, an arithmetic IASI is an IASI f , under which the set-labels of all elements

(vertices and edges) of a given graph G are AP-sets. A graph that admits an arithmetic IASI is

called an arithmetic IASI-graph.

Since the set-labels of elements of a graph G we consider, are in AP-sets, the set-labels must

consists of at least three elements. Therefore, we note by Theorem 1.6, that an arithmetic IASI

of a graph G can never be a weak IASI.

Also, note that the sumset A+B of two sets A and B is an AP-set need not imply A and B are

AP-sets. Moreover, the sumset of two AP-sets need not be an AP-set. In view of this fact, we

introduced the following notion.

Definition 2.4. [28] An IASI of a graph G with respect to which the set-labels of all vertices

of a graph G are AP-sets and the set-labels of edges are not AP-sets, is called a semi-arithmetic

IASI.
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Hence, we note that the existence of vertex arithmetic IASIs and edge arithmetic IASIs for

any given graph G do not imply each other, in general. In this context, the conditions required

for two set-labels (which are AP-sets) of the adjacent vertices of G to have an AP-set as their

sumset arouse much interest. The following theorem has provided a necessary and sufficient

condition for an IASI of G to be an arithmetic IASI of G.

Theorem 2.5. [28] A graph G admits an arithmetic IASI f if and only if f is a vertex arithmetic

IASI and the deterministic ratio of any edge of G is a positive integer k, which is less than or

equal to the set-indexing number of its end vertex having smaller deterministic index.

In other words, if vi and v j are two adjacent vertices of a given graph G with deterministic

indices di and d j respectively with respect to an IASI f of G, where di ≤ d j, then f is an

arithmetic IASI if and only if d j = k di, where k is a positive integer such that 1≤ k ≤ | f (vi)|.

It is to noted that the deterministic index of an edge e of an arithmetic IASI-graph G, is always

equal to the deterministic index of its end vertex having smaller deterministic index. That is,

if du and dv are the deterministic indices of two end vertices u and v respectively, of an edge

e = uv in G such that k = dv
du

is a positive integer such that 1≤ k≤ | f (v)|, then the deterministic

index of the edge e is equal to the deterministic index of the vertex u itself.

Let G be an arithmetic IASI-graph. Then, the set-indexing number of an edge of G, in terms

of the set-indexing numbers of its end vertices, is established in the following theorem.

Theorem 2.6. [28] Let G be a graph which admits an arithmetic IASI, say f and let di and d j

be the deterministic indices of two adjacent vertices vi and v j in G. If | f (vi)| ≥ | f (v j)|, then

for some positive integer 1 ≤ k ≤ | f (vi)| , the edge viv j has the set-indexing number | f (vi)|+

k(| f (v j)|−1).

2.2. Different Types of Arithmetic IASIs. In view of Theorem 2.5, we can categorise an

arithmetic IASI into different types, according to the nature of the deterministic ratio k of the

edges of G. In this section, we discuss the about the different types of arithmetic IASIs.

The first type arithmetic IASI is the one, called an isoarithmetic IASI, defined as follows.
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Definition 2.7. [29] Let f be an arithmetic IASI defined on a given graph G. If all the elements

of G have the same deterministic index with respect to f , then f is said to be an isoarithmetic

IASI of G. A graph which admits an isoarithmetic IASI is called an isoarithmetic IASI-graph.

That is, an isoarithmetic IASI of a graph G is an arithmetic IASI, with respect to which, all

the elements of G have the same deterministic indices and hence the deterministic ratio of every

edge of G is 1.

The next type arithmetic IASI is an IASI with respect to which the deterministic ratios of the

edges of a given graph G are greater than 1.

Definition 2.8. [29] A biarithmetic IASI of a graph G is an arithmetic IASI f ofG, with respect

to which the deterministic ratio of each edge of G is a positive integer greater than 1 and less

than or equal to the set-indexing number of the end vertex of e having smaller deterministic

index.

In other words, a biarithmetic IASI of a graph G is an arithmetic IASI f of G, for which

the deterministic indices of any two adjacent vertices vi and v j in G, denoted by di and d j

respectively such that di < d j, holds the condition d j = kdi where k is a positive integer such

that 1 < k ≤ | f (vi)|.

One can immediately notice that, all edges of G may not have the same deterministic ratio

with respect to a given arithmetic IASI. Keeping this fact in mind, we have introduced the

following notion of a particular type of biarithmetic IASI in [29] as follows.

Definition 2.9. [29] Let f be a biarithmetic IASI defined on a graph G. If the deterministic

ratio of every edge of G is the same, say k, then f is called an identical biarithmetic IASI of G

and G is called an identical biarithmetic IASI-graph.

Definition 2.10. [29] A prime arithmetic integer additive set-indexer of a graph G is an arith-

metic IASI f : V (G)→P(N0), with respect to which the deterministic ratio of every edge of

G is a prime integer.

In other words, a prime arithmetic IASI of a graph G is an arithmetic IASI such that for any

two adjacent vertices in G, the deterministic index of one vertex is a prime integer multiple
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of the deterministic index of the other, where this prime integer is less than or equal to the

set-indexing number of the its end vertex having smaller deterministic index.

In view of Theorem 2.5, we understand that a vertex arithmetic IASI is not an arithmetic IASI

because of two reasons. One of them is that the deterministic ratio of the edges of G are not

positive integers and the other reason is that the deterministic ratio of an edge of G is greater

than the set-indexing number of its end vertex having smaller deterministic index. Hence, we

have two types of semi-arithmetic IASIs which are

Definition 2.11. [33] A vertex-arithmetic IASI f of a graph G, under which the differences di

and d j of the set-labels f (vi) and f (v j) respectively for two adjacent vertices vi and v j of G,

holds the conditions d j = kdi and k is a non-negative integer greater than | f (vi)| is called the

semi-arithmetic IASI of the first kind.

Definition 2.12. [32] A vertex-arithmetic IASI f of a graph G, under which the differences di

and d j of the set-labels f (vi) and f (v j) respectively for two adjacent vertices vi and v j of G are

not multiples of each other, is called the semi-arithmetic IASI of the second kind.

Now that we have come across the different types of arithmetic IASIs and semi-arithmetic

IASIs, we can now proceed to check the characteristics of the graphs which admit these IASIs

and conditions for their existence.

3. CHARACTERISATION OF ARITHMETIC IASIS

The existence of an arithmetic IASI for a given graph G depends upon the relation between

cardinality of set-labels of vertices of G and the adjacency between these vertices of G. The

following result establishes the admissibility of different types of arithmetic IASI by a given

graph.

Proposition 3.1. [28, 29] Every graph G admits an arithmetic (or isoarithmetic or biarithmetic)

IASI.

The above theorem can be proved by choosing the set-labels of vertices with sufficiently

large in such a way that the deterministic ratio of adjacent edges can be chosen properly. The
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following theorem provides the set-indexing number of an edge of an isoarithmetic IASI-graph,

in terms of the set-indexing numbers of its end vertices.

Theorem 3.2. [29] Let G be a graph with an arithmetic IASI f defined on it. Then, f is an

isoarithmetic IASI on G if and only if the set-indexing number of every edge of G is one less

than the sum of the set-indexing numbers of its end vertices.

Proof of the above theorem is immediate from Theorem 2.6 with k = 1. The following

theorem is an immediate consequence of Theorem 3.2.

Theorem 3.3. [29] Let f be an arithmetic IASI defined on a given graph G such that V (G) is

l-uniformly set-indexed. Then, f is an isoarithmetic IASI of G if and only if G is a (2l− 1)-

uniform IASI-graph.

The following theorem has established the necessary and sufficient condition for a complete

graph to admit an arithmetic IASI.

Theorem 3.4. [28] A complete graph admits an arithmetic IASI if and only if the deterministic

indices of any vertex of Kn is either an integral multiple or divisor of the deterministic indices of

all other vertex of Kn such that the deterministic ratio of every edge of Kn is less than or equal

to the set-indexing number of its end vertex having smaller deterministic index.

The following result addresses the question whether an isoarithmetic IASI could be a strong

IASI.

Proposition 3.5. [29] No isoarithmetic IASI defined on a given graph G can be a strong IASI

of G.

As the set-indexing number of any edge of an isoarithmetic IASI-graph G is m+ n− 1 and

that of any edge of a strong IASI-graph G is mn, where m and n are the set-indexing numbers of

its end vertices, the proof of the above theorem follows from the fact that for any two positive

integers m,n≥ 3, m+n−1 6= mn.

In view of Proposition 3.5, for any two adjacent vertices vi,v j ∈ V (G), it can be seen that

under an isoarithmetic IASI f on G, some compatibility classes in f (vi)× f (v j), contain more



ARITHMETIC INTEGER ADDITIVE SET-VALUED GRAPHS 1029

than one element. Then, the question about the number of elements in various compatibility

classes arises much interest. The following theorem discusses the number of elements in the

compatibility classes of f (vi)× f (v j) in G.

Theorem 3.6. [29] Let G be a graph which admits an isoarithmetic IASI, say f . Then, the

number of saturated classes in the Cartesian product of the set-labels of any two adjacent

vertices in G is one greater than the difference between cardinality of the set-labels of these

vertices. Moreover, exactly two compatibility classes, other than the saturated classes, have the

same cardinality in the Cartesian product of the set-labels of these vertices.

Therefore, we also have

Corollary 3.7. [29] Let f be an isoarithmetic IASI defined on a graph G, under which V (G) is

l-uniformly set-indexed. Then, there is exactly one saturated class in the Cartesian product of

the set-labels of any two adjacent vertices in G.

Invoking the above facts, we have proposed a necessary and sufficient condition for an

isoarithmetic IASI of a given graph G to be a uniform IASI of G.

Theorem 3.8. [29] An isoarithmetic IASI of a G is a uniform IASI if and only if V (G) is uni-

formly set-indexed or G is bipartite.

We have already seen that no isoarithmetic IASI of a graph G can be a strong IASI of G,

it is natural to ask whether a biarithmetic IASI of G can be a strong IASI of it. The following

theorem provides a necessary and sufficient condition for a biarithmetic IASI of G to be a strong

IASI.

Theorem 3.9. [29] Let G be a graph which admits a biarithmetic IASI, say f . Then, f is a strong

IASI of G if and only if the deterministic ratio of every edge of G is equal to the set-indexing

number of its end vertex having smaller deterministic index.

Invoking Theorem 3.9, the analogous condition for an identical biarithmetic IASI to be a

strong IASI is established in the following theorem.
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Theorem 3.10. [29] An identical biarithmetic IASI of a graph G is a strong IASI of G if and

only if one partition of V (G) is k-uniformly set-indexed, where k is the deterministic ratio of the

edges of G.

The existence of saturated classes and the number of elements in each compatibility class in

the cross product of the set-labels of any two adjacent vertices of a biarithmetic IASI-graph have

been studied in [29] and has been established in [29] that there exists no saturated class in the

cross product of the set-labels of any two adjacent vertices of a biarithmetic IASI-graph. The

number of maximal compatibility classes and their cardinalities are provided in the following

result.

Theorem 3.11. [29] Let G be a graph that admits a biarithmetic IASI, say f . Let vi and v2 be

two adjacent vertices of G, where vi has the smaller deterministic index and k ≤ | f (vi)|, be the

deterministic ratio of the edge viv j. If | f (vi)| = pk+ q, where p,q are non-negative integers

such that p≤ (| f (v j)|−1) and q < k, then

(i) if q = 0, then (| f (v j)|− p+1)k compatibility classes are maximal compatibility classes

and contain p elements.

(ii) if q > 0, then (| f (v j)|− p−1)k+q compatibility classes are compatibility classes and

contain (p+1) elements.

All given graphs may not have an identical biarithmetic IASI. Hence, the conditions required

for a given graph to admit an identical biarithmetic IASI gain much importance. A necessary

and sufficient condition for the existence of an identical biarithmetic IASI for a given graph.

Theorem 3.12. [29] A graph G admits an identical biarithmetic IASI if and only if it is bipartite.

The following theorem have established a necessary and sufficient condition for a given graph

G to have a prime arithmetic IASI.

Theorem 3.13. [31] A graph G admits a prime arithmetic IASI if and only if it is bipartite.

In view of Theorem 3.13, the paths, trees, even cycles and all acyclic graphs admit prime

arithmetic IASIs.

Invoking Theorem 3.13 and 3.12, we can easily establish the following theorem.
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Theorem 3.14. The existence of an identical biarithmetic IASI for a given graph G implies the

existence of a prime arithmetic IASI for G and vice versa.

Proof. If G admits a prime arithmetic IASI, then by Theorem 3.13, G is bipartite. Then by

Theorem 3.12 G admits an identical arithmetic IASI. Conversely, if G admits an identical arith-

metic IASI, then by Theorem 3.12, G is bipartite. Then, by Theorem 3.13, G admits a prime

arithmetic IASI. �

4. ARITHMETIC IASIS OF GRAPH OPERATIONS

In this section, we go through the results regarding the admissibility of induced arithmetic

IASI by the union and join of two arithmetic IASI-graphs.

The union of two given graphs G1(V1,E1) and G2(V2,E2), denoted by G1∪G2, is the graph

whose vertex set is V1∪V2 and the edge set is E1∪E2. The existence of an (induced) arithmetic

IASI for the union of two arithmetic IASI-graphs has been established in following result.

Proposition 4.1. [32] The union of two arithmetic IASI-graphs admits an induced arithmetic

IASI-graph.

If f1 and f2 are the arithmetic IASIs of the graphs G1 and G2 then an induced IASI of G1∪G2

is the function f such that f = f1 for all vertices of G1 and f = f2 for all vertices in G2. It is to

be noted that if G1 and G2 have a common vertex, say v, then we have f1(v) = f2(v).

The corresponding theorem on the union of two isoarithmetic IASI-graphs is the following.

Theorem 4.2. [32] The union of two isoarithmetic IASI-graphs admits an induced isoarithmetic

IASI-graph if and only if all the vertices in both G1 and G2 have the same deterministic index.

The admissibility of biarithmetic IASI by the union of two biarithmetic IASI-graphs is a

particular case of Proposition 4.1. We also observe that the admissibility of a prime arithmetic

IASI of a given graph is also a special case of Proposition 4.1.

As all possible cases regarding the graph union of two arithmetic IASI-graphs have been

covered, let us consider the join of two graphs as the next operation for our study. The join

of two graphs G1(V1,E1) and G2(V2,E2), denoted by G1 +G2, is the graph whose vertex set is

V1∪V2 and edge set is E1∪E2∪Ei j, where Ei j = {uiv j : ui ∈ G1,v j ∈ G2}.
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Note that, in G1 +G2, every vertex of G1 is adjacent to all vertices of G2 (and vice versa).

Hence, all arithmetic IASIs of G1 and G2 need not constitute arithmetic IASIs for their join

G1 +G2. The existence of an (induced) arithmetic IASI for the join of two arithmetic IASI-

graphs is established in the following theorem.

Theorem 4.3. [32] The join of two arithmetic IASI-graphs admits an arithmetic IASI if and only

if the deterministic index of every vertex of one graph is an integral multiple or divisor of the

deterministic index of every vertex of the other graph, where this integer is less than or equal to

the set-indexing number of the vertex having smaller deterministic index.

The join of two arithmetic IASI-graphs is an arithmetic IASI if and only if the deterministic

ratio of every edge in the induced sub graph graph 〈Ei j〉 of G1 +G2 is a positive integer which

lies between 1 and the set-indexing number of its end vertex having minimum deterministic

index. Hence, we have

Theorem 4.4. [32] The join G of two arithmetic IASI-graphs G1 and G2 admits an arithmetic

IASI if and only if the induced subgraph 〈Ei j〉 of G admits an (induced) arithmetic IASI, where

Ei j = {uiv j : ui ∈ G1,v j ∈ G2}.

The following result establishes the admissibility of arithmetic IASIs by the join of two

isoarithmetic IASI-graphs.

Theorem 4.5. [32] The join of two isoarithmetic IASI-graphs is an arithmetic IASI-graph if

and only if the deterministic index of the elements of one graph is a positive integral multiple

of the deterministic index of the elements of the other, where this integer is less than or equal to

the minimum of the set-indexing numbers of the elements of the graph whose vertices have the

smaller deterministic index.

The following result provides the necessary and sufficient condition required for the join of

two isoarithmetic IASI-graphs to have an induced isoarithmetic IASI.

Proposition 4.6. [32] The join of two isoarithmetic IASI-graphs admits an isoarithmetic IASI

if and only if all the vertices in both G1 and G2 have the same deterministic index.
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Invoking Theorem 4.5 and Proposition 4.6, we have

Theorem 4.7. [32] The join G of two isoarithmetic IASI-graphs admits an arithmetic IASI, that

is not an isoarithmetic IASI, if and only if the induced IASI of the induced subgraph 〈Ei j〉 of G

is an identical biarithmetic IASI of 〈Ei j〉.

The admissibility of an induced biarithmetic IASI by the join of two biarithmetic IASI-graphs

is a particular case of Theorem 4.3. It can also be observed that the join of two isoarithmetic

IASI-graphs will never haves an induced biarithmetic IASI. Let us now consider the existence

of identical biarithmetic IASI for the join of two identical biarithmetic IASI-graphs. Hence, we

have

Proposition 4.8. [32] The join of two identical arithmetic IASI-graphs will never admit an

identical arithmetic IASI.

The proof of the above theorem is obvious from the fact that the join of two bipartite graph

is not a bipartite graph.

Let us now discuss the admissibility of arithmetic IASI by certain graph products. The Carte-

sian product of two graphs G1(V1,E1) and G2(V2,E2), denoted by G12G2, is the graph with

vertex set V1×V2 defined as follows. Let u = (u1,u2) and v = (v1,v2) be two points in V1×V2.

Then, u and v are adjacent in G12G2 whenever [u1 = v1 and u2 is adjacent to v2] or [u2 = v2

and u1 is adjacent to v1].

The following theorem establishes the admissibility of arithmetic IASI by the Cartesian prod-

uct of two arithmetic IASI-graphs.

Theorem 4.9. [32] The Cartesian product of two arithmetic IASI-graphs G1 and G2 admits

an arithmetic IASI if and only if the deterministic ratio of every edge between corresponding

vertices of any two adjacent copies of G1 (or G2) in G12G2, is a positive integer which lies be-

tween 1 and l, where l is the set-indexing number of its end vertex having smaller deterministic

index.

Invoking Proposition 4.9, we have established the following result.
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Corollary 4.10. [32] The Cartesian product of two isoarithmetic IASI-graphs admits an

isoarithmetic IASI if and only if all vertices in both G1 and G2 have the same deterministic

index.

The admissibility of biarithmetic IASI by the Cartesian product of two biarithmetic IASI-

graphs is a particular case of Theorem 4.9. The admissibility of an identical biarithmetic IASI

by the Cartesian product of two identical biarithmetic IASI-graphs has been established in the

result given below.

Proposition 4.11. [32] The Cartesian product of two identical biarithmetic IASI-graphs admits

an identical biarithmetic IASI.

The proof of above result immediately follows from the fact that the Cartesian product of two

bipartite graphs is also a bipartite graph.

Another significant product of two graphs G1 and G2 is their corona, denoted by G1 ◦G2, is

the graph obtained taking one copy of G1 (which has p1 vertices) and p1 copies of G2 and then

joining the i-th point of G1 to every point in the i-th copy of G2. The admissibility of arithmetic

IASI by the corona of two graphs follows from the following result.

Theorem 4.12. [32] Let G1 and G2 are an arithmetic IASI-graphs. Then, the corona G1 ◦G2

admits an arithmetic IASI if and only if the deterministic index of every vertex of one graph is an

integral multiple or a divisor of the deterministic index of every vertex of the other, where this in-

teger is less than or equal to the set-indexing number of the vertex having smaller deterministic

index.

In view of Proposition 4.9, we now establish the following results.

Proposition 4.13. [32] The corona of two isoarithmetic IASI-graphs admits an isoarithmetic

IASI if and only if all vertices in both G1 and G2 have the same deterministic index.

Proposition 4.14. [32] The corona of two identical biarithmetic IASI-graphs does not admit an

identical biarithmetic IASI.
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The fact that the corona of any two graphs will never be a bipartite graph. Hence the above

theorem follows form the Theorem 3.12.

Let us review the results regarding the admissibility of arithmetic IASI by the complements

of given arithmetic IASI-graphs. Note that the vertices of a graph G and its complements have

the same set-labels and hence the same deterministic indices.

Theorem 4.15. [32] The complement of an arithmetic IASI-graph G admits an arithmetic IASI

f if and only if the deterministic index of any vertex of G is an integral multiple or divisor of the

deterministic index of every other vertex of G, where this integer lies between 1 and min | f (vi)|

for all vi ∈V (G).

The following theorem is an immediate consequence of the fact that the set-labels of the

vertices of an isoarithmetic IASI-graph are AP-sets with the same common difference.

Proposition 4.16. [32] The complement of an isoarithmetic IASI-graph admits an (induced)

isoarithmetic IASI.

The remaining case in this context is the verification of the existence of an identical biarith-

metic IASI by the complement of an identical biarithmetic IASI. Hence, we have

Proposition 4.17. [32] The complement of an identical biarithmetic IASI-graph never admits

an identical biarithmetic IASI.

The proof of the above proposition is a immediate consequence of the fact that the comple-

ment of a bipartite graph is not a bipartite graph.

Analogous to the above theorem, we can verify whether the complement of a prime arithmetic

IASI-graph admits a prime arithmetic IASI as follows.

Proposition 4.18. [32] The complement of a prime arithmetic IASI-graph does not admits a

prime arithmetic IASI.

5. DISPENSING NUMBER OF CERTAIN GRAPH CLASSES

By Theorem 3.13, a non-bipartite graph does not admit a prime AIASI. That is, some edges of

a non-bipartite graph have non-prime deterministic ratio. Then, we define the following notion.
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Definition 5.1. [31] The minimum possible number of edges in a graph G that do not have a

prime deterministic ratio is called the dispensing number of G and is denoted by ϑ(G).

In other words, the dispensing number of a graph G is the minimum number of edges to be

removed from G so that it admits a prime arithmetic IASI. Hence, we have

Theorem 5.2. [31] If b(G) is the number of edges in a maximal bipartite subgraph of a graph

G, then ϑ(G) = |E(G)|−b(G).

Invoking Theorem 5.2, we investigate the sparing number about the dispensing number of

certain graph classes.

Proposition 5.3. [31] The dispensing number of an odd cycle is 1.

Theorem 5.4. [31] The dispensing number of a complete graph Kn is

ϑ(Kn) =


1
4n(n−2) if n is even

1
4(n−1)2 if n is odd.

Invoking Theorem 5.4, we estimate the dispensing number of a split graph and complete split

graph in the following theorem.

Theorem 5.5. [31] Let G be a split graph with a block Kr and an independent set S, where

Kr∪〈S〉. Then,

ϑ(G) =


1
4r(r−2) if r is even

1
4(r−1)2 if r is odd.

Next, we proceed to determine the dispensing number of the union of two graphs.

Theorem 5.6. [31] Let G1 and G2 be two given IASI-graphs. Then, ϑ(G1 ∪G2) = ϑ(G1)+

ϑ(G2)−ϑ(G1 ∩G2). In particular, if G1 and G2 are two edge-disjoint graphs, then ϑ(G1 ∪

G2) = ϑ(G1)+ϑ(G2).

The following theorem provided a closed formula for finding the dispensing number of the

join of two arbitrary graphs.
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Theorem 5.7. [31] Let G1(V1,E1) and G2(V2,E2) be two non-empty graphs. The dispensing

number of G1 +G2 is ϑ(G1 +G2) = min{|E1|+ϑ(G2), |E2|+ϑ(G1)}.

The dispensing number of certain standard graph products have also been determined in [31].

They are as follows.

Theorem 5.8. [31] Let G1(V1,E1) and G2(V2,E2) be two non-empty graphs. The dispensing

number of their Cartesian product G12G2 is ϑ(G12G2) = |V1|ϑ(G2)+ |V2|ϑ(G1).

Theorem 5.9. [31] Let G1(V1,E1) and G2(V2,E2) be two non-empty graphs. The dispensing

number of their corona product G1�G2 is ϑ(G1�G2) = ϑ(G1)+ |V1||E2|.

In view of the above theorems, dispensing number of some standard graph classes has also

been determined in [31]. Invoking Theorem 5.6, we establish the following theorem on the

dispensing number of Eulerian graphs.

Theorem 5.10. [31] The dispensing number of an Eulerian graph G is the number of odd cycles

in G.

A cactus G is a connected graph in which any two simple cycles have at most one vertex in

common. That is, every edge in a cactus belongs to at most one simple cycle. The cycles in a

cactus are edge disjoint. Hence, we have

Theorem 5.11. [31] The dispensing number of a cactus G is the number of odd cycles in G.

Another graph class similar to cactus graphs is a block graph (or a clique tree) which is

defined as an undirected graph in which every biconnected component (block) is a clique. The

following theorem estimates the dispensing number of a block graph.

Theorem 5.12. [31] The dispensing number of a block graph G is the sum of the dispensing

numbers of the cliques in G.

In view of Theorem 5.7, the dispensing number of wheel graphs, defined by Wn+1 =Cn+K1,

has been determined [31] as follows.

Proposition 5.13. [31] The dispensing number of a wheel graph Wn+1 is given by dn
2e.
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A split graph is a graph whose vertex has two partitions of which one is an independent set,

say S and the subgraph induced by the other is a block, say Kr. A split graph is said to be a

complete split graph if every vertex of the independent set S is adjacent to all vertices of the

block Kr. The dispensing number of a split graph has been determined as follows.

Theorem 5.14. Let G be a split graph with a block Kr and an independent set S, where Kr∪〈S〉.

Then,

ϑ(G) =


1
4r(r−2) if r is even

1
4(r−1)2 if r is odd.

6. ARITHMETIC IASIS OF ASSOCIATED GRAPHS

If an IASI defined over a graph G can be extended or restricted by using certain rules to some

graphs associated to the given graph, then these associated graphs are said to have induced

IASIs ( an IASI induced by the given IASI). The elements of an associated graph H of a given

graph G which are common to the graph G preserve the set-labels, with respect to the induced

IASI of H. If we replace an element of a given graph G by a vertex or an edge, which is not

present in G, to form an associated graph H, then with respect to an induced IASI of H, it is

customary to assign the same set-label of the removed element of G to the newly introduced

element of H.

In the following discussions, we review certain results proposed in [33] regarding admis-

sibility of induced arithmetic IASIs of different types by certain graphs associated to a given

arithmetic IASI-graph. Let us first state the hereditary nature of the existence of arithmetic

IASI.

Proposition 6.1. [33] Let G be an arithmetic (or isoarithmetic or biarithmetic) IASI-graph.

Then, any non-trivial subgraph of G is also an arithmetic (or isoarithmetic or biarithmetic)

IASI Graph.

Let f be an arithmetic IASI on G and let H ⊂ G. The proof follows from the fact that the

restriction f |H of f to the subgraph H is an induced arithmetic IASI on H.
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By edge contraction operation in G, we mean an edge, say e, is removed and its two incident

vertices, u and v, are merged into a new vertex w, where the edges incident to w each correspond

to an edge incident on either u or v.

We establish the following theorem for the graphs obtained by contracting the edges of a

given graph G. The following theorem verifies the admissibility of arithmetic IASIs by the

graphs obtained by contracting the edges of a given arithmetic IASI-graph G.

Theorem 6.2. [33] Let G be an arithmetic (or isoarithmetic) IASI-graph and let e be an edge

of G. Then, G◦ e admits an arithmetic (or isoarithmetic) IASI.

A relevant question in this context is whether the graph obtained by contracting the edges of a

biarithmetic IASI-graph admits an induced biarithmetic IASI. The following theorem provides

a solution to this question.

Theorem 6.3. Let G be a biarithmetic IASI-graph and e be an edge of G with a deterministic

index de. Then, the graph G◦ e admits a biarithmetic IASI if and only if the deterministic index

of every vertex vi in G that is adjacent to the end vertices of e in G is an integral multiple (or a

divisor) of the deterministic index of the end vertex of e, where this integer is less than or equal

to the set-indexing number of the vertex among these having smaller deterministic index.

Proof. Let G be a biarithmetic IASI-graph and let e = uv be an edge of G. Note that the

deterministic index de of the edge e is min(du,dv), where du,dv are the deterministic indices of

the vertices u and v respectively. Without loss of generality, let the vertex u has the minimum

deterministic index. Let G′ = G ◦ e be the graph obtained by contracting the edge e and w be

the new vertex in G′ obtained by identifying the vertices u and v.

Assume, without loss of generality, that the deterministic index of a vertex vi, which is adja-

cent either to u or to v, is an integral multiple of the deterministic index of u, where this integer

is less than or equal to set-indexing number of the vertex, among u and vi, having the smaller

deterministic index. Then, the deterministic index of w in G′ is the deterministic index of e (and

hence that of u) in G and since every other edge of G′ is also an edge in G, every edge in G′ has

a positive integral deterministic ratio, which is less than or equal to the set-indexing number of

its end vertex having smaller deterministic index.
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Assume, conversely, that G′ = G ◦ e admits an induced biarithmetic IASI. Then, the deter-

ministic index of w is the deterministic index of the edge e (and hence that of u) in G. Also, the

vertex w is adjacent to all the vertices in G′ corresponding to the vertices in G that are adjacent

either to u or to v in G. If vi is a vertex of G that is adjacent to either u or v in G, then vi is also

adjacent to w in G′ and hence the deterministic index of vi is n integral multiple (or a divisor)

of the deterministic index of w, this integer being less than or equal to the set-indexing number

of the vertex among vi and w having smaller deterministic index. Therefore, the vertex vi is an

integral multiple (or divisor) of the deterministic index of the vertex u in G, where this integer

is less than or equal to the set-indexing number of the vertex among u and vi having smaller

deterministic index. �

In view of the above theorem, we propose the following result.

Proposition 6.4. A graph obtained by contracting an edge of an identical biarithmetic IASI-

graph G does not admit an identical biarithmetic IASI.

Proof. Let G be an identical biarithmetic IASI-graph. Then, every edge of G has a unique

deterministic ratio, say k. Consider any edge e = uv of G such that the deterministic indices

of e,u,v are de,du,dv respectively. Then, de = min(du,dv). Without loss of generality, take

de = du. Now, let G′ = G◦ e and w be the new vertex in G′ obtained by identifying the vertices

u and v of G. If vi is a vertex in G that is adjacent to v, then dvi = kr du = kr dw, where r = {0,2}.

Therefore, G′ does not admit an induced identical biarithmetic IASI. �

Let G be a connected graph and let v be a vertex of G with d(v) = 2. Then, v is adjacent to

two vertices u and w in G. If u and w are non-adjacent vertices in G, then delete v from G and

add the edge uw to G−{v}. This operation is known as an elementary topological reduction on

G. If H is a graph obtained by applying a finite number of elementary topological reductions

on a given graph G, then H is said to be homeomorphic to G.

Theorem 6.5. Let G be a graph which admits an isoarithmetic IASI. Then, any graph G′, that

is homeomorphic to G, also admits an isoarithmetic IASI.

A graph obtained by finite number of topological reduction on a biarithmetic IASI-graph G

need not be a biarithmetic IASI-graph. Then, it is interesting to enquire the conditions for a
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graph that is homeomorphic to a given biarithmetic IASI-graph to admit a biarithmetic IASI.

We propose the required condition for the same as given below.

Proposition 6.6. Let G be a biarithmetic IASI-graph and v be a vertex of G, not in any triangle

of G, such that d(v) = 2. Then, the graph obtained by an elementary topological reduction on G

with respect to the vertex v, admits a biarithmetic IASI if the deterministic index of one adjacent

vertex of v in G is an integral multiple of the deterministic index of the other adjacent vertex of

v where this integer is less than or equal to the set-indexing number of the vertex among these

two having smaller deterministic index.

Proof. Let the graph G admits a biarithmetic IASI f . Let v be a vertex of degree 2 in G having

deterministic index dv. Let u and w be the two non-adjacent vertices in G that are adjacent to v

in G, having the deterministic indices du and dw respectively. Also, let G′ be the graph obtained

by removing the vertex v from G and and joining the vertices u and w.

Without loss of generality, let du = l dw, where l ≤ | f (w)| is a positive integer. Then, the

deterministic ratio of the edge uw is l. Since uw is the only edge of G′ that is not in the

biarithmetic IASI-graph G, all edges in G′ have positive integral deterministic ratios. That is,

G′ admits an induced biarithmetic IASI. �

Proposition 6.7. A graph obtained from an identical biarithmetic IASI-graph by applying an

elementary topological reduction on G, is not an identical biarithmetic IASI-graph.

Proof. Let the graph G admits an identical biarithmetic IASI f . Let v be a vertex of degree

2 in G having deterministic index dv. Let u and w be the two non-adjacent vertices in G that

are adjacent to v in G, having the deterministic indices du and dw respectively. Since G admits

an identical biarithmetic IASI, the deterministic ratios of both edges uv and vw are k. Then,

Therefore, we have du = r dv, where r = ks : r ∈ {−1,1}. Similarly, du = l dv, where l = kt :

t ∈ {−1,1}. Let G′ be the graph obtained by removing the vertex v from G and and joining the

vertices u and w. Then, the deterministic ratio of the edge uv is either 1 or k2. Therefore, G′

does not admit an identical biarithmetic IASI. �

Another associated graph of a given graph G is its graph subdivision. A subdivision of a

graph G is the graph obtained by adding vertices of degree two into some or all of its edges.
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Theorem 6.8. [33] The graph subdivision G∗ of an arithmetic (or isoarithmetic) IASI-graph G

also admits an induced arithmetic (or isoarithmetic) IASI.

Let us now recall the following definition of line graph of a graph. For a given graph G, its

line graph L(G) is a graph in which each vertex of L(G) corresponds to an edge of G (that is,

there exists a one to one correspondence between V (L(G)) and E(G)) and two vertices of L(G)

are adjacent if and only if their corresponding edges in G are incident on a common vertex in

G.

The following theorem addresses the question whether the line graph of an arithmetic (or an

isoarithmetic) IASI-graph admits an arithmetic (or isoarithmetic) IASI.

Theorem 6.9. [33] If G is an arithmetic (or isoarithmetic) IASI-graph, then its line graph L(G)

is also an arithmetic (or isoarithmetic) IASI-graph.

The above theorem is an obvious consequence of the fact that the deterministic index of edges

of an isoarithmetic IASI-graph are the same.

The following results provide the characteristics of the line graph of a biarithmetic IASI-

graph.

Theorem 6.10. [33] Let G be a biarithmetic IASI-graph. Then, its line graph L(G) admits an

isoarithmetic IASI if and only if G is bipartite.

Proof. If G is bipartite with a bipartition (X ,Y ), then label the vertices in X by the AP-sets

having common difference d and label the vertices in Y by distinct AP-sets having common

difference k d, where d is a positive integer greater than 1 and k is a positive integer such that

1 < k ≤ min | f (vi)|; vi ∈ X . Then, all edges of Gand hence all the vertices of L(G) have the

unique deterministic index d. Therefore, L(G) admits an isoarithmetic IASI.

Conversely, if L(G) admits an isoarithmetic IASI, then all vertices of L(G) and all edges of

G have the unique deterministic index, say d, where d is a positive integer greater than 1. Then,

the deterministic index of one end vertex of every edge of G is d and that of the other end vertex

is an integral multiple of d. Let X be the set of vertices of G having the deterministic index d

and Y =V (G)−X . Then, (X ,Y ) will be a bipartition of G. �
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A necessary condition for the line graph of a biarithmetic IASI-graph G admits a biarithmetic

IASI has been established in [33] as follows.

Theorem 6.11. [33] If the line graph L(G) of a biarithmetic IASI-graph G admits a biarithmetic

IASI, then G is acyclic.

The converse of the theorem need not be true. All acyclic graphs need not admit an induced

biarithmetic IASI. For example, the graph K1,n admits a biarithmetic IASI and is acyclic with

all its edges, but its line graph L(K1,n) = Kn does not admit an induced biarithmetic IASI.

Then, finding a necessary and sufficient condition for the line graph of a biarithmetic IASI-

graph to admit an induced biarithmetic IASI.The following theorem establishes the necessary

and sufficient condition for a biarithmetic IASI-graph so that its line graph is a biarithmetic

IASI-graph.

Theorem 6.12. [33] The line graph of a biarithmetic IASI-graph admits a biarithmetic IASI if

and only if G is a path.

Another graph associated to a given graph G is its total graph which is defined as follows.

The total graph of a graph G, denoted by T (G), is the graph having the property that a one-to

one correspondence can be defined between its points and the elements (vertices and edges) of

G such that two points of T (G) are adjacent if and only if the corresponding elements of G are

adjacent (if both elements are edges or if both elements are vertices) or they are incident (if one

element is an edge and the other is a vertex). Hence, it can be noted that both G and L(G) are

the subgraphs of T (G).

The following result is about the admissibility of an induced arithmetic IASI by the total

graph of a given arithmetic IASI-graph.

Theorem 6.13. [33] If G is an arithmetic (or isoarithmetic) IASI-graph, then its total graph

T (G) is also an arithmetic (or isoarithmetic) IASI-graph.

The non-existence of an induced biarithmetic IASI for the total graph of a given biarithmetic

IASI-graph G has been established in [33] as
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Theorem 6.14. [33] The total graph of a biarithmetic IASI-graph is an arithmetic IASI-graph,

but not a biarithmetic IASI-graph.

Another popular graph associated with a given graph G is a subdivision graph which is de-

fined as the graph obtained from G by introducing a new vertex to some or all of its edges.

The existence of induced arithmetic IASIs for the subdivision graphs of given arithmetic IASI-

graphs has been established in the following result.

Theorem 6.15. A graph subdivision G∗ of a given arithmetic (isoarithmetic) IASI-graph G also

admits arithmetic (isoarithmetic) IASI.

The following result established the non-existence of an induced biarithmetic IASI for a

subdivision of a biarithmetic IASI.

Theorem 6.16. The graph subdivision G∗ of a given biarithmetic IASI-graph G does not admit

a biarithmetic IASI.

The above theorem is proved as a consequence of the fact explained below. Let e = uv be an

edge of a given biarithmetic IASI G. If we introduce a new vertex w to the edge e then, the edge

e is deleted and two new edges uw and wv will be formed. If du < dv, where du and dv are the

deterministic indices of u and v respectively, then dw = de = du. Therefore, the deterministic

ratio of the edge uw is 1. Hence the induced IASI is not a biarithmetic IASI.

Due to the above theorem, it is obvious that the subdivisions of an identical biarithmetic

graph do not admit an induced identical biarithmetic IASIs.

In the following section, we review the results established on the semi-arithmetic IASIs in

[32] and [33].

7. ON SEMI-ARITHMETIC IASI GRAPHS

We have already mentioned about the two types of semi-arithmetic IASIs. If the deterministic

ratio of every edge of G is greater than the set-indexing number of its end vertex having smaller

deterministic index, then we can see that in the sumset S of the set-labels of these vertices,

first m elements have the deterministic d, but the difference between the m-th element and the
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(m + 1)-th element is not d. The next m elements, from (m + 1)-th element to 2m + 1)-th

element, have the deterministic index d and the difference between the (2m+1)-th element and

the (2m+2)-th element is not d. This pattern can be seen till the final element of the sumset S.

Hence, we have

Theorem 7.1. [33] Every semi-arithmetic IASI of the first kind of a graph G is a strong IASI of

G.

As a result of the above theorem, we notice that no compatibility classes in the cross product

of the set-labels of adjacent vertices, contain more than 1 element. Hence,

Corollary 7.2. [33] Let f be a semi-arithmetic IASI of first kind of a graph G and let vi and

v j be two adjacent vertices in G. Then, all the compatibility classes in f (vi)× f (v j) are trivial

classes.

An interesting question that arises in this context is about the existence of uniform semi-

arithmetic IASIs. The following theorem establishes the necessary and sufficient condition for

a semi-arithmetic IASI to be uniform.

Proposition 7.3. [33] If f is a semi-arithmetic IASI of first kind of a given graph G, then no

edge of G has a prime set-indexing number.

The following theorem discusses the condition for a semi-arithmetic IASI of a graph G to be

a uniform IASI.

Theorem 7.4. [33] A semi-arithmetic IASI of first kind of a graph G is a uniform IASI if and

only if either G is bipartite or V (G) is uniformly set-indexed.

What are the conditions required for a semi-arithmetic IASI of the second kind to be a strong

IASI? The following theorem has provided an answer to this question.

Theorem 7.5. [33] Let f be an semi-arithmetic IASI defined on G. Also, let | f (v j)|= q.| f (vi)|+

r,0 < r < | f (vi)|. Then, f is a strong IASI if and only if q > | f (vi)| or the differencesdi and d j

of two set labels f (vi) and f (v j) respectively, are relatively prime.



1046 N.K. SUDEV, K.P. CHITHRA, K.A. GERMINA

We note that an arithmetic IASI with arbitrary differences need not have saturated classes.

In the following discussion, we find the number of maximal compatible classes for a semi-

arithmetic IASIs of second kind in the following theorem.

Theorem 7.6. [33] Let f be an arithmetic IASI with arbitrary common differences on a graph G.

Let | f (v j)|= q.| f (vi)|+r. Also, let q1 and q2 be the positive integers such that q1.| f (v j) = q2.r.

Then, the number of elements in a maximal compatible class of f (vi)× f (v j) is b | f (v j)|
q1
c.

The following is an analogous result of Proposition 6.1 to semi-arithmetic IASI-graph.

Proposition 7.7. [33] Any subgraph of a semi-arithmetic IASI-graph is also a semi-arithmetic

IASI-graph.

That is, the existence of semi-arithmetic IASIs is also a hereditary property.

The following theorem discusses the admissibility of semi-arithmetic IASI by certain graphs

that are homeomorphic to a given semi arithmetic IASI-graph G.

Proposition 7.8. [33] Let G be a semi-arithmetic IASI-graph and let v be an arbitrary vertex

of G with d(v) = 2 not contained in any triangle of G. Let G′ = (G− v)∪{uw}, where u and

w are adjacent vertices of v in G. Then, G′ admits a semi-arithmetic IASI if and only if the

deterministic indices of one of u or w is a positive integer multiple of the deterministic index of

the other, where this integer is greater than the cardinality of the latter.

The following result established the non-existence of an induced arithmetic IASI for the

graph obtained from a given semi-arithmetic IASI-graph by contracting one of its edges.

Proposition 7.9. [33] A graph obtained by contracting an edge of a semi-arithmetic IASI-graph

G does not admit a semi-arithmetic IASI.

The result follows from the fact that the newly introduced vertex, say w, in the graph obtained

by contacting an edge of a semi-arithmetic IASI-graph G assumes the set-label of the deleted

edge e, which is not an AP-set. The following result is also a consequence of this fact.

Proposition 7.10. [33] A subdivision of a semi-arithmetic graph G is not an semi-arithmetic

IASI-graph.
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The non-existence of an induced semi arithmetic IASI by the line graphs of given semi-

arithmetic IASI-graphs has been proposed in the following proposition.

Proposition 7.11. [33] The line graph L(G) of a semi-arithmetic graph never admits a semi-

arithmetic IASI.

The above result follows from the fact that the edges of a semi-arithmetic IASI-graphs does

not have AP-sets as their set-labels. The following result is also an immediate consequence of

this fact.

Proposition 7.12. [33] The total graph T (G) of a semi-arithmetic graph never admits a semi-

arithmetic IASI.

8. CONCLUSION

So far, we have reviewed the studies about different types of arithmetic integer additive set-

indexers of certain graphs and their characteristics. We have also proposed some new results

in this article. Certain problems regarding the admissibility of different types of arithmetic

IASIs by various other graph classes, graph operations and graph products and finding their

corresponding dispensing numbers are still open. Characterisation of edge arithmetic IASI-

graphs are also open.

More properties and characteristics of different types of IASIs, both uniform and non-

uniform, are yet to be investigated. There are some more open problems regarding the necessary

and sufficient conditions for various graphs and graph classes to admit certain IASIs.
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