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Abstract. In this paper we investigate the existence and uniqueness results for Summation-Difference type equa-
tions in cone metric spaces. The results are obtained by using some extensions of Banach’s contraction principle

in complete cone metric space.
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1. INTRODUCTION

Existence and uniqueness of solutions of the differential equations, integral equations and
Integro-differential equations have been studied by many authors using different techniques.
Some fixed point theorems in cone metric spaces have been studied in [1,7, 8, 9, 10, 11].
K.L. Bondar etal[3,4, 5, 6], studied existence and uniqueness of some difference equations and
summation equations.
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The aim of this paper is to study the existence and uniqueness of solutions for the summation
and Summation-Difference type equations of the form:

t—1 b—1

x(t) = f(t)+ Zz)k(t,s,x(s)) + th(t,s,x(s)), teJ=10,b] (1.1)
and
t—1 b—1
Ax(t)=f(t)+ ;)k(t,s,x(s))-i- ;)h(t,s,x(s)), teJ=][0,Db] (1.2)
x(0) = xo. (1.3)

Where f:J — Z,k,h:J xJxZ— Z are function and the given xy is element of Z, Z is a Banach
space with ||. |
In section 2, we present the preliminaries and the statement of our results.Section 3 deals with

main results. Finally in Section 4, we give example to illustrate the application of our results.

2. PRELIMINARIES

Let us recall the concepts of the cone metric space and we refer the reader to [1, 8, 9, 11]

for the more details.
Definition 2.1. Let £ be a real Banach space and P is a subset of E. Then P is called a cone if
and only if,
1.P is closed, nonempty and P # 0.
2.a,beR,a,b>0,x,ye P=ax+bycP.
3xePand —x€ P=x=0.
For a given cone P € E, we define a partial ordering relation < with respect to P by x <y if and
only if y —x € P.We shall write x < y to indicate that x < y but x # y, while x < y will stand
for y —x € intP. Where int P denotes the interior of P. The cone P is called normal if there is
a number K > 0 such that < x <y implies ||x|| < k||y||, for every x,y € E. The least positive
number satisfying above is called the normal constant of P.

In the following way, we always suppose E is a real Banach space, P is cone in E with int

P # ¢, and < is partial ordering with respect to P.
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Definition 2.2. Let X a nonempty set. Suppose that the mapping d : X x X — E satisfies:

(d1) 0 <d(x,y) forall x,y € X and d(x,y) =0if and only if x =y

(do) d(x,y) =d(y,x), for all x,y € X;

(d3) d(x,y) <d(x,z)+d(z,y), forall x,y € X.

Then d is called a cone metric on X and (X,d) is called a cone metric space. The concept of
cone metric space is more general than that of metric space. The following example is a cone
metric space, see [11].

Example 2.1. Let E=R? p={(x,y) €E :x,y > 0},x =R, and d : X x X — E such that

d(x,y) = (Jx—yl|,a|x—y|), where o > 0 is a constat and then (X, d) is cone metric space.
Definition 2.3. Let X be an ordered space. A function ® : X — X is said to a comparison
function if every x,y € X,x <y, implies that ®(x) < ®(y), P(x) < x and lim, . ||P"(x)|| = O,
for every x € X.

Example 2.2. Let E = R? p = {(x,y) € E : x,y > 0}, it is easy to check that ® : E — E
with ®(x,y) = (ax,ay), for some a € (0,1) is a comparison function. also if ®;,P, are two
comparison function over R. then

D(x,y) = (P (x),D2(y)) is also a comparison function over E.

Let B=¢([0,b],Z) be the Banach space of all continuous function from [0, 5] into Z endowed

with supremum norm
Xl = sup{[lx(z)]| : € [0,b]}
Let P = (x,y) : x,y > 0 C E = R?, and define

d(f,8) = (If —gllw, [ f — gll)

for every f,g € B, then it is easily seen that (B,d) is a cone metric space.

Definition 2.4. The x € B given by

t—1 t—1 s—1 b—1
x(1) =xo+ ;)f(S) + ;) [;)k(s,T,X(T)) + ;)h(s, 7,x(7))]

is called the solution of the initial value problem (1.2) — (1.3)
We need the following theorem for further discussion:
Lemma 2.1. Let (X, d) be a complete cone metric space,where P is a normal cone with normal

constant K. Let f : X — X be a function such that there exists a comparison function ® : P — P
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such that
d(f(x),f(y)) < ®(d(x,y))

for very x,y € X. Then f has unique fixed point.

We list the following hypothesis for our convenience:

(H1) There exist continuous function p; - ps : J x J — R and a comparison

function ® : R? — R? such that
(I (e, s,u) —k(z,5,v) ||, ctllk(z,s,u) = k(z,5,v)|) < pi(t,5)P(d(u,v)),
and
(a2, s,u) = h(t,s,v)l], 0l (2, 5,u) = h(2,s,v)[]) < pat,s)P(d(u,v)),

forevery t,s€Jand u,v € Z

b—1

(H:) sup 31 [ (1.5) + pa(t.5)] =
red =0
b—1b—1

(H3) Y. Y [pi(t,s)+pa(t,s)] <1
t=0 s=0

3. MAIN RESULTS

Following are the main results in this work:
Theorem 3.1 Assume that hypotheses (H;) — (H>) hold.Then the Summation equation (1.1)
has a unique solution x on J
Proof: The operartor F : B — B is defined by

Fx(t) = f(1)+ Y k(t,5,x(s)) + i h(t,s,x(s)), t€J (3.1)

t—1 b—1
s=0 s=0

By using the hypothesis (H;) — (H), We have

(I1Fx(e) = Fy(@)l], el [Fx(z) = Fy()]])

r—1 b—1 t—1 b—1
< (II ;)k(t,s,x(s)) + ;)h(ns,x(s)) - Zok(t,s,y(s)) - Zoh(t,s,y(sw,

t—1 b—1

i—1 b1
ol ;)k(t,&X(S)) + Z,Oh(nsax(S)) — Y k(t,5,5(5) = ) h(t,s,y(S)H)

s=0 s=0
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t—1
< (X It ,4(0) ~kte.305) H+Zuhrsx )~ h(e,s,(s)]l

t—1 _
a;)llk(hs»X(S))—k(t’s,y(S))ll+06Z 1A(z,5,x(s)) — h(t,s,y(s ))H)

s=0

t—1
s(gouka,s,x(s k(1,5,¥(s) |a2||kzsx —k(t,5,¥(5))Il)

b—1
(L I(r5.x(9) ~ htr.506) ||a2||hrsx — h(t,5,y(5))
b—1
<2P1ts (1 = Ylles @l = Ylle) + X Po(t,5) 8= ], 5 = ¥]])
s=0
b—1 b—1
< Y P D= Yy @l = lle) + X Po(t, )P =yl @l = y]]c)
s=0 s=0
bfl
PL(1,8) + Pa(t,)]D( = ¥y 2l )
s:O
b—1
< (x| @t = ylw) ¥ [P (1,5) + Po(t, )]
s=0
< &(|fx =y, 2l ) (3.2)

for every x,y € B. This implies that d(Fx,Fy) < ®(d(x,y)), for every x,y € B. Now an

application of Lemma 2.1, the operator has a unique point in B. Thus equation (1.1) has unique

solution.

Theorem 3.2 Assume that hypotheses (H;) — (H3) hold. Then the initial value problem (1.2) —
(1.3) has a unique solution x on J

Proof: The operartor F : B — B is defined by

t—1 t—1 s—1 b—1
Gx(t) = xo+ ;)f(s) ZO Y k(s,7.x( ;)h(s,r,x(’c))], tel (3.3)

By using the hypothesis (H;) — (Hz), We have

(IGx(2) = Gy() |, e[| Gx(2) = Gy(1)]])

t—1 s—1 b—1 t—1 s—1

(||ZO[stm ))+;)h(s,f,x ZOstry +Zhsry NI,
t—1 s—1 b—1 t—1 s—1 b—1

et LY ks7x(n) + X b5, 7ox()] = R LY ks, 7(8) + L s 3w )

s=0 1= =0 s=0 =0 =0
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t—1s—1 t—1b—1

< (L X ks 2a(0) = ks 2x(@)l| + X 1 [ 7x(8)) = (s, 20
s=071= s=071=
t—1s—1 t—1b—1
@ 1, ¥, (s, 2.x(0) = k(s wy(2)) |+ @ B B s, w,x(5) = (s, 7.5(0) )
s=071= s=071=
t—1s—1 t—1s—1
< (X X I wx(®) = (s, 7o) B X [1(s.2:5(2) = s 73(5) )
s=071= s=071=
t—1b—1 t—1b—1
(Zznhsm s 2@l o X X s, () )= (s, 7. (2)))
s=071= s=01=
<ZZP1rs (= ¥llor e2llx = ¥ +ZZPzts (= Yllor exllx = )
s=071= s=071=
—1b—-1 —1b-1
<22P1rs (o = ¥llor e2llx = ¥ +22Pzrs (o = Yllor exllx = y]e)
s=01= s=01=
b—1b—1
<@([x =y, &lx—3llw)- ¥ Y [PL(2,5) 4+ Pi(1,5)
s=071=0
< ®(|lx— ¥, tlfx ]| (3.4)

for every x,y € B. This implies that d(Fx,Fy) < ®(d(x,y)), for every x,y € B. Now an
application of Lemma 1, the operator has a unique point in B. Thus equation (1.2) — (1.3) has

a unique solution x on J.

4. APPLICATION

In this section we give an exampleas an application of main results

Example 4.1: In equations (1.1) and (1.2)-(1.3), we define

2

t
h(t,5,%) = (t5)? + 22

k(t,S,X):tS—F)E, ?’

> s,t €10,2], x€eC(]0,2],R)
and consider metric d(x,y) = (||x — ||, ¢||x — y||) o0 C([0,2],R) and ¢ > 0.
Then clearly C([0,2],R) is a complete cone metric space.
Now we have
(Ik(z,5,x(s)) = k(2,5,y(s))[, 0l k(z, 5,x(s)) — k(2 5,y(5))])

= (lts+§ — (s +5)] oles+7§ — (1s+5)1)

= (ts+ % —ts—%|,ats+ £ —ts— %))
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A

< (gl =yl aglc—yl)
= g ([[x = ylleo, atf[x = y]|e0)
= Pi D] (llx = ¥lleo, 0tflx = ¥[|oo),
where pj(t,s) = 5,which is function of [0,2] x [0,2] into RT and a comparison function
@7 : R? — R? such that &7 (x,y) = (x y).Also we have,
(1h(t,5,x(s)) = h(t,5,5(s))|, ct| Az, 5,x(s)) = h(z,5,5(s))|)
(1152 + 5 = (1) + 55, @ (1) + 58 = (1) + 55 )

(1(1)% + 52 — (1)% — 52| 1] (15)2 4+ 52 — (15)2 — B2

= (1%~ ol )
= (22— 2], &l —y?))
< G2 =l tll? = 32]l)
< 8=yl tllx—y)

= P ([lx =y, tllx = yll),

where p;(t,s) = 5, which is function of [0,2] x [0,2] into R™.

Moreover
! “ “ L5 ts 1
Z[pl(t,s)-i—pz(t,s)] - Z[_+_] - _(1+t)
s=0 s=0 3 3 3
1
sup =(1+1)=1
1€[0,2]
Also.

Zthwwws Zzs ﬂ—zﬁHﬂJl

t=0s= tOsO tO

Thus with these choices of functions, all requirements of Theorem 3.1 and Theorem 3.2 are

satisfied hence the existence and uniqueness are verified

5. CONCLUSION

In this paper, the existence and uniqueness of solutions for Summation-Difference type equa-

tions in cone metric spaces have been studied. Moreover an application is given.
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