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Abstract: In this paper, the peristaltic flow of a Carreau fluid in an asymmetric channel under the long wavelength 

assumption is discussed in the presence of Hall. The flow is examined in a wave frame of reference moving with 

velocity of the wave. A regular perturbation technique is employed to solve the present problem and solutions are 

expanded in a power of small Weissenberg number. Expressions for the velocity, axial pressure gradient and pressure 

rise over a one wavelength are obtained. The effects of various emerging parameters on axial pressure gradient and 

pumping characteristics are discussed in detail. 
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1. INTRODUCTION 

The mechanics of peristaltic has been examined by a number of investigators. Latham [10] 

discussed for the first time about peristalsis in his thesis. Later, Shapiro et al. [18] worked on 

very similar lines. Lew et al. [11] suggested chyme in the small intestine as a non-Newtonian 

fluid. Shukla et al. [19] investigated the effects of peripheral - layer viscosity on peristaltic 

transport of a bio-fluid in a uniform tube and used the long wave length approximation as in 

Shapiro et al [18]. Bohme and Friedrich [4] discussed the peristaltic flow of a viscoelastic liquid 
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assuming that the relevant Reynolds number to be small enough to neglect inertia forces and 

ratio of the wave length and channel hight to be large which implies that the pressure is constant 

over the cross-section. Pozrikids [13] considered peristaltic flow under the assumption of 

creeping motion and used boundary integral method for Stokes flow. Srivastava and Srivastava 

[21, 22] showed the effects of power-law fluid in uniform and non-uniform tubes and in a 

channel under zero Reynolds number and long wavelength approximations. Siddiqui and 

Schwarz [20] illustrated the peristaltic flow of a second order fluid in tubes and used a 

perturbation method to second order in dimensionless wave number. Provost and Schwartz [14] 

have studied viscous effects in peristaltic pumping and assumed that the flow is free of inertial 

effects and that non-Newtonian normal stresses are negligible. El Misery et al. [5] have studied 

peristaltic transport of Carreau fluid through a uniform channel, under zero Reynolds number 

and long wave length approximations. Elshahawey et al. [6] have investigated peristaltic 

transport of Carreau fluid through non-uniform channel, under zero Reynolds number and long 

wave length approximations. Elshehaway et al. [7] have analyzed peristaltic pumping of Carreau 

fluid through a porous medium in a channel.  

The Hall effect is important when the Hall parameter which is the ratio between the 

electron-cyclotron frequency and the electron-atom-collision frequency is high; this can occur if 

the collision frequency is low or when the magnetic field is high. This is a current trend in 

magnetohydrodynamics because of its important influence of the electromagnetic force. Hayat et 

al. [8] studied the Hall effects on peristaltic flow of a Maxwell fluid in a porous medium. 

Abo-Eldahab et al. [1] have investigated the effects of Hall and ion-slip currents on 

magnetohydrodynamic peristaltic transport and couple stress fluid. Subba Narasimhudu and 

Subba Reddy [24] have studied the Hall effects on the peristaltic flow of a Hyperbolic tangent 

fluid in a channel. Shalini and Rajasekhar [17] have investigated the effect of Hall on peristaltic 

flow of a Newtonian fluid through a porous medium in a two-dimensional channel. 

Much attention had been confined to symmetric channels or tubes, but there exist also 

flows which may not be symmetric. Mishra and Ramachandra Rao [12] studied the peristaltic 

flow of a Newtonian fluid in an asymmetric channel in a recent research. In another attempt, 

Ramachandra Rao and Mishra [15] discussed the non-linear and curvature effects on peristaltic 

flow of a Newtonian fluid in an asymmetric channel when the ratio of channel width to the wave 

length is small. Subba Reddy et al. [25] have studied the peristaltic motion of a power - law fluid 

in an asymmetric channel under lubrication approach. Peristaltic flow of a Carreau fluid in an 

asymmetric channel has been studied by Ali and Hayat [2]. Hayat et al. [9] have studied the 
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peristaltic transport of Johnson-Segalman fluid in an asymmetric channel. Effect of variable 

viscosity on the peristaltic flow of a Newtonian fluid in an asymmetric channel under the effect 

of a magnetic field has been investigated by Reddappa et al. [16]. 

However, the study of the Hall effects on peristaltic flow of a Carreau fluid in an 

asymmetric channel has received little attention. Hence, an attempt is made to model the Hall 

effects on peristaltic flow of a Carreau fluid in an asymmetric channel under the long wavelength 

assumption. The flow is examined in a wave frame of reference moving with velocity of the 

wave. A regular perturbation technique is employed to solve the present problem and solutions 

are expanded in a power of small Weissenberg number. Expressions for the velocity, axial 

pressure gradient and pressure rise over a one wavelength are obtained. The effects of various 

emerging parameters on axial pressure gradient and pumping characteristics are discussed in 

detail. 

2. MATHEMATICAL FORMULATION  

A two-dimensional flow of an incompressible electrically conducting Carreau fluid in an 

asymmetric channel induced by sinusoidal wave trains propagating with constant speed along the 

channel walls is considered. A uniform magnetic field 0B  applied in the transverse direction to 

the flow. Fig. 1 represents the physical model of the flow field.  

The channel walls are given by  

( ) ( )1 1

2
, cosY H x t d b X ct





 
= = + − 

 
        (2.1a) 

( ) ( )2 2

2
, cosY H X t d b X ct






 
= = − − − + 

 
      (2.1b) 

where 1 2,b b  are the amplitudes of the upper and lower waves,   is the wavelength,   is the 

phase difference which varies in the range 0     and t  is the time and ( ),X Y  are the 

Cartesian co-ordinates in a fixed frame.  
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Fig. 1 Schematic diagram of the asymmetric channel 

We introduce a wave frame of reference ( , )x y  moving with the velocity c in which the 

motion becomes independent of time when the channel length is an integral multiple of the wave 

length and the pressure difference at the ends of the channel is a constant (Shapiro et al., 1969).  

The transformation from the fixed frame of reference ( ),X Y to the wave frame of 

reference ( , )x y is given by  

 ,   ,   ,   ,   ( ) ( , )x X ct y Y u U c v V p x P X t= − = = − = = .     (2.2) 

where ( , )u v  and ( , )U V  are the velocity components, p  and P  are the pressures in the 

wave and fixed frames of reference respectively. 

 The constitute equation for a Carreau fluid (following Bird et al. [3]) is 

 ( ) ( )( )
1

2 2

0 1

n

     

−

 

 
= − + − +  

  

         (2.3) 

where   is the extra stress tensor,   is the infinite shear rate viscosity, 0  is the zero shear 

rate viscosity,   is the time constant, n is the dimensionless power-law index and   is defined 

as  
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1 1

2 2
ij ji

i j

   = =            (2.4) 

where   is the second invariant of strain-rate tensor. We consider in the constitutive Equation 

(2.3) the case for which 0 =  and so we can write  

 ( )( )
1

2 2

0 1

n

   

−

= − +              (2.5) 

The above model reduces to a Newtonian model for 1n =  (or) 0 = . 

 The equations governing the flow field, in the wave frame of reference are 

 0
u v

x y

 
+ =

 
               (2.6) 

 ( )( )
2

0

21

yxxx Bu u p
u v mv u c

x y x x y m

 


    
+ = − − − + − + 

     + 
    (2.7) 

 ( )( )
2

0

21

xy yy Bv v p
u v m u c v

x y y x y m

  


    
+ = − − − − + + 

     + 
    (2.8) 

where   is the density,   is the electrical conductivity,  0B  is constant transverse magnetic 

field and m is the Hall parameter.   

 The boundary conditions for the velocity are 

 u c= −   at 1 2,y H H=            (2.9) 

 In order to write the governing equations and the boundary conditions in dimensionless form, 

the following non-dimensional quantities are introduced. 

 

2

1
1

0

2
2

0 0 0

1 2

0

,   ,   ,   ,   , ,   ,  

,  ,   , ,   ,   

Re , ,   ,   , ,

xx xy yyxx xy yy

Hx y u v d pa
x y u v p h

d c c c d

H ct d d
h t

d c c c

b bdc c d q
We q a b

d c dc d d


    


     

   

 




= = = = = = =

= = = = =


= = = = = =

   (2.10) 

where Re  is the Reynolds number, We  - Weissenberg number and - the wave number.  

In view of Equation (2.10), the Equations (2.6) - (2.8), after dropping bars, reduce to 
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0
u v

x y

 
+ =

 
                (2.11) 

( )( )
2

2

2
Re 1

1

yxxxu u p M
u v m v u

x y x x y m


  

    
+ = − − − + − + 

     + 
   (2.12) 

( )( )
2

3 2

2
Re 1

1

xy yyv v p M
u v m u v

x y y x y m

  
   

    
+ = − − − − + + 

     + 
   (2.13) 

where 
2 21

2 1
2

xx

n u
We

x
 

 −   
= − +      

,  

2 2 21
1

2
xy

n u v
We

y x
  

  −    
= − + +         

,  

2 21
2 1

2
yy

n u
We

y
  

 −   
= − +      

,  

1
22 2

2 2 22 2
u u v v

x y x y
   

        
= + − +     

         

. 

and  0

0

eM a B





=  is the Hartman number.  

Under lubrication approach, neglecting the terms of order   and Re in the Eqs. (2.12) 

and (2.13), we get 

 

2 2
2

2

1
1 ( 1)

2 1

p n u u M
We u

x y y y m

    −   
= + − +   

    +    

      (2.14) 

 0
p

y


=


.                (2.15).   

  The corresponding dimensionless boundary conditions in wave frame of reference are 

given by 

 1u = −     at  
1 2,y h h= ,           (2.16) 

where 1 1 cos2h a x= +  and ( )2 1 cos 2h b x = − − + .    

Equation (2.20) implies that ( )p p y . Therefore Equation (2.19) can be rewritten as 
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2 2
2

2

1
1 ( 1)

2 1

dp n u u M
We u

dx y y y m

    −    
= + − +    
   +      

,     (2.17)  

The volume flow rate q in a wave frame of reference is given by 

  
1

2

h

h
q udy=  .              (2.18) 

 The instantaneous flux ( , )Q X t  in a fixed frame is 

  
1 1

2 2
1 2( , ) ( 1)

h h

h h
Q X t UdY u dy q h h= = + = + −  .      (2.19) 

 The time average flux Q  over one period ( )/T c=  of the peristaltic wave is 

  
1

1 2

0 0

1
( ) 1

T

Q Qdt q h h dx q d
T

= = + − = + +  .       (2.20) 

 

3. PERTURBATION SOLUTION 

The Equation (2.17) is non-linear and its closed form solution is not possible. Hence, we 

linearize this equations in terms of 
2We , since We  is small for the type of flow under 

consideration. So, we expand ,u p and q  as  

  2 4

0 1 ( )u u We u O We= + +       

  2 40 1 ( )
dp dpdp

We O We
dx dx dx

= + +           (3.1) 

  2 4

0 1 ( )q q We q O We= + +       

 Substituting (3.1) in the Equation (2.17) and in the boundary conditions (2.16) and (2.18) 

and equating the coefficients of like powers of 
2We  and neglecting the terms of 

4We  and 

higher order, we get the following equations: 

3.1 Equation of order 0We  

 
2 2

0 0
02 2

( 1)
1

dp u M
u

dx y m


= − +
 +

.                   (3.2) 

and the respective boundary conditions are 
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0 1u = −   at  
1 2,y h h= .           (3.3) 

3.2 Equation of order 2We  

 

32 2

01 1
12 2

1

2 1

udp u n M
u

dx y y y m

   −  
= + −   
   +     

,       (3.4) 

and the respective boundary conditions are 

1 0u =    at   1 2,y h h=          (3.5) 

3.3 Solution of order 0We  

Solving the Equation (3.2) by using the boundary conditions (3.3) , we get 

( )0
0 1 22

1
cosh sinh 1 1

dp
u c y c y

dx
 


= + − −                 (3.6) 

where 
2/ (1 )M m = + , 

( )
2 1

1

2 1

sinh sinh

sinh

h h
c

h h

 



−
=

−
 

and 
( )

1 2
2

2 1

cosh cosh

sinh

h h
c

h h

 



−
=

−
.   

and the volume flow rate 0q  is given by    

1

2

0
0 0 1 1 23

1h

h

dp
q u dy A h h

dx
= = − +                   (3.7) 

( ) ( ) ( )1 1 1 2 2 1 2 1 2sinh sinh cosh coshA c h h c h h h h    = − + − − − .  

From Equation (3.9), we get 

30 0 1 2

1

( )dp q h h

dx A


+ −
= .                   (3.8) 

3.4 Solution of order 2We  

 Solving the Equation (3.4) by using the Equation (3.6) and the boundary conditions (3.7), we 

get 

( ) ( )
3

01
1 1 22 5

1 3 1
cosh sinh 1

16

dpdp n
u c y c y B y

dx dx
 

 

−   
= + − +   

  
            (3.9)     

where 
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 ( ) ( ) ( )9 5 10 6 3 44 cosh 4 sinh sinh3 cosh3B y c c y y c c y y c y c y     = − + − − − , 

2 3

1 2 2
3

3

4

c c c
c

+
= , 

2 3

1 2 1
4

3

4

c c c
c

+
= , 

3 2

2 1 2
5

4

c c c
c

−
= , 

2 3

1 2 1
6

4

c c c
c

−
= , 

  7 3 1 4 1 1 5 1 1 6 1sinh3 cosh3 4 cosh 4 sinhc c h c h hc h hc h     = + + + , 

 8 3 2 4 2 2 5 2 2 6 2sinh3 cosh3 4 cosh 4 sinhc c h c h h c h h c h     = + + + , 

( )
7 2 8 1

9

2 1

sinh sinh

sinh

c h c h
c

h h

 



−
=

−
 and 

( )
8 1 7 2

10

2 1

cosh cosh

sinh

c h c h
c

h h

 



−
=

−
.   

and the volume flow rate 1q  is given by 

3

01
1 1 1 23 5

0

1 3 1

16

h
dpdp n

q u dy A A
dx dx 

−   
= = +   

  
         (3.10) 

where 

( ) ( )

( ) ( )

( ) ( )

9 6 10 5
1 2 1 2

3 4
2 1 2 1 2

5 1 1 2 2 6 1 1 2 2

4 4
sinh sinh cosh cosh

cosh 3 cosh 3 sinh 3 sinh 3
3 3

4 sinh sinh 4 cosh cosh

c c c c
h h h h

c c
A h h h h

c h h h h c h h h h

   
 

   
 

   

 + +    
− + −    

    
 

= − − − − 
 
− − − − 
 
 

 .  

From Eq. (3.10), we have 

3 3

01
1 25

1

3 1

16

dpdp n
q A

dx dx A





 −   
= −       

            (3.11) 

Substituting Equations (3.9) and (3.11) into the Equation (3.1) and using the relation

2

0 1q q We q= −  and neglecting terms greater than ( )2O We , we get 

 

 

( ) ( )
3

32 4

1 2 1 2 23

1 1

3 1

16

dp n
q h h We q h h A

dx A A




  −
= + − − + −   

  
.                (3.12) 

 The dimensionless pressure rise per one wavelength in the wave frame is defined as 

 
1

0

dp
p dx

dx
 =                (3.13) 

Note that, as 0 →  our results coincide with the results of Subba Narasimhudu [23].  
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4. MAIN RESULTS 

 In order to get a the physical insight of the problem, axial  pressure gradient and pressure 

rise per one wavelength are computed numerically for different values of the emerging 

parameters, viz., Weissenberg number We , power-law index n , Hall parameter m ,  Hartmann 

number M , phase shift  ,   amplitude ratios a  and b   and are presented in figures 2-13. 

 Fig. 2 depicts the variation of the axial pressure gradient 
dp

dx
 with We  for 0.398n = , 

0.2m = , 1M = , 
4


 = , 0.5a = , 0.7b =  and 1Q = − . It is found that, the axial pressure 

gradient 
dp

dx
decreases with increasing the Weissenberg number We .  

The variation of the axial pressure gradient 
dp

dx
 with n  for 0.01We = , 0.2m = , 

1M = , 
4


 = , 0.5a = , 0.7b =  and 1Q = −  is depicted in Fig. 3. It is observed that, the axial 

pressure gradient 
dp

dx  
increases with increasing the power-law parameter n .  

Fig. 4 illustrates the variation of the axial pressure gradient 
dp

dx
 with m  for 

0.398n = , 0.01We = ,  1M = , 
4


 = , 0.5a = , 0.7b =  and 1Q = − . It is found that, the 

axial pressure gradient 
dp

dx
decreases with an increase in the Hall parameter m .      

The variation of the axial pressure gradient 
dp

dx
 with M  for 0.398n = , 0.2m = , 

0.01We = , 
4


 = , 0.5a = , 0.7b =  and 1Q = −  is illustrated in Fig. 5. It is observed that, 
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the axial pressure gradient 
dp

dx
increases with increasing Hartmann number M . 

Fig. 6 shows the variation of the axial pressure gradient 
dp

dx
 with   for 0.398n = , 

0.2m = , 0.5a = , 0.7b = , 1M = , 0.01We =  and 1Q = − . It is noted that, the axial pressure 

gradient 
dp

dx
decreases with increasing phase shift  .     

The variation of the axial pressure gradient 
dp

dx
 with a  and b  for 0.398n = , 

0.2m = , 
4


 = ,  1M = , 0.01We =  and 1Q = −  is shown in Fig. 7. It is observed that, the 

axial pressure gradient 
dp

dx
is increases with increasing a  and b .       

Fig. 8 depicts the variation of pressure rise p with time averaged flux Q  for different 

values of Weissenberg number We  with 0.398n = , 0.2m = , 
4


 = , 0.5a = , 0.7b =  

and 1M =   is shown in Fig. 7. It is observed that, in both the pumping ( 0p  ) and free 

pumping regions the time averaged flux Q  decreases with an increase in We , whereas in the 

co-pumping ( 0p  ) region Q  increases with an increase in We . 

  The variation of p  with Q  for different values of n with 0.1We = , 0.2m = , 

4


 = , 0.5a = , 0.7b =  and 1M =  is depicted in Fig. 9. It is observed that, the time 

averaged flux Q  increases with an increase in n in the pumping and free-pumping regions, 

whereas in the co-pumping region the Q  decreases with an increase in n. Further, the pumping 

is more for Newtonian fluid ( 1n = ) than that of a Carreau fluid ( 0 1n  ). 
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Fig. 10 illustrates the variation of p as a function of Q  for different values of Hall 

parameter m  with 0.398n = , 1M = , 0.1We = , 
4


 = , 0.5a = and 0.7b = . It is found 

that, any of two pumping curves intersect at a point in the first quadrant and to the left of this 

point time averaged flux Q  decreases with increasing m  and to the right of this point Q  

increases with an increase in m . 

  The variation of p as a function of Q  for different values of Hartmann number M

with 0.398n = , 0.2m = , 0.1We = , 
4


 = , 0.5a = and 0.7b =  is Fig. 11. It is found that, 

any of two pumping curves intersect at a point in the first quadrant and to the left of this point 

time averaged flux Q  increases with increasing M  and to the right of this point Q  

decreases with an increase in M . 

  Fig. 12 shows the variation of p  with Q  for different values of  with 0.398n = , 

0.2m = , 0.5a = , 0.7b = , 1M =  and 0.1We = . It is found that, the Q  decreases with an 

increase in   in both pumping and free pumping regions. But, in the co-pumping region, the 

Q  increases with an increase in   for appropriately chosen p (<0). 

  The variation of p as a function of Q  for different values of amplitude ratios a and 

b  with 0.398n = , 0.2m = , 0.1We = , 
4


 =  and 1M =  is Fig. 13. It is found that, in 

both the pumping and free-pumping regions, the time averaged flux Q   increases with 

increasing a  or b , while Q  decreases with increasing  a  or b . Further it is observed that, 

the pumping is more for unequal amplitudes than that of equal amplitudes. 
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Fig. 2 The variation of the axial pressure gradient 
dp

dx
 with We  for 0.398n = , 0.2m = , 

1M = , 0.5a = , 0.7b = , 
4


 =   and 1Q = − . 

 

5. CONCLUSIONS 

 In this paper, the peristaltic flow of a conducting Carreau fluid in an asymmetric channel 

under the effect of Hall using long wavelength approach is investigated. It is found that the 

pumping is more for Newtonian fluid 1n  than that of Carreau fluid 0 1n . The 

magnitudes of pressure gradient and pressure rise increase with increasing M ,  a  or b   

whereas, the magnitudes of pressure gradient and pressure rise decrease with increasing  We  , 

m  or  .   
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Fig. 3 The variation of the axial pressure gradient 
dp

dx
 with n  for 0.01We = , 0.2m = , 

1M = , 0.5a = , 0.7b = , 
4


 =  and 1Q = − .     

 

Fig. 4 The variation of the axial pressure gradient 
dp

dx
 with m  for 0.398n = , 0.01We = , 

1M = , 0.5a = , 0.7b = , 
4


 =  and 1Q = − .     
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Fig. 5 The variation of the axial pressure gradient 
dp

dx
 with M  for 0.398n = , 0.2m = , 

0.01We = , 0.5a = , 0.7b = , 
4


 =  and 1Q = − .    

 

Fig. 6 The variation of the axial pressure gradient 
dp

dx
 with   for 0.398n = , 0.2m = , 

0.01We = , 0.5a = , 0.7b = , 1M =  and 1Q = − .     
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Fig. 7 The variation of the axial pressure gradient 
dp

dx
 with a  and b  for 0.398n = ,  

0.2m = , 1M = , 
4


 = , 0.01We =  and 1Q = − .     

 

Fig. 7 The variation of the pressure rise p  with Q  for different values of We  with 

0.398n = , 0.2m = , 1M =  0.5a = , 0.7b =  and 
4


 = .     
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Fig. 8 The variation of the pressure rise p  with Q  for different values of n  with  

0.1We = , 0.2m = , 1M =  0.5a = , 0.7b =  and 
4


 = .   

 

Fig. 9 The variation of the pressure rise p  with Q  for different values of m  with 

0.398n = , 0.1We = , 1M =  0.5a = , 0.7b =  and 
4


 = . 
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Fig. 10 The variation of the pressure rise p  with Q  for different values of M  with 

0.398n = , 0.2m = , 0.1We =  0.5a = , 0.7b =  and 
4


 = .    

 

Fig. 11 The variation of the pressure rise p  with Q  for different values of   with 

0.398n = , 0.2m = , 1M =  0.5a = , 0.7b = and 0.1We = . 
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Fig. 11 The variation of the pressure rise p  with Q  for different values of   with 

0.398n = , 0.2m = , 1M =  and 0.2We = . 
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