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Abstract: Exact fractional differential equations are considered in this paper. The efforts were aimed to find, discuss 

and prove different cases of integrating factors that reduce a non-exact conformable fractional differential equation 

to exact conformable fractional differential one. Examples were explained to clarify some cases of integrating 

factors. What is worth saying is existence of some expressions in the differential equation may change the path of 

the solution, so the integrating factor can be found in different way. This was supported and illustrated by some 

examples in the paper. 
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1. INTRODUCTION 

  Fractional calculus has taken a central place in many areas such as science, economic and 

engineering due to its potential in describing and modeling many phenomena in real world 

systems. [16, 10, 15]. 
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There are many definitions of fractional derivative [14]. But the most used of these 

definitions are Riemann-Liouville and Caputo derivative. They were defined as follows: 

(i) Riemann - Liouville Definition. For 𝛼 ∈ [n-1, n), the α derivative of 𝑓 is:  

𝐷𝑎
𝛼𝑓(𝑡) =

1

Γ(n − α)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝑥)

(𝑡 − 𝑥)𝛼−𝑛+1

𝑡

𝑎

𝑑𝑥 

(ii) Caputo Definition. For 𝛼 ∈ [n-1, n), the α derivative of 𝑓 is: 

𝐷𝑎
𝛼𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
∫

𝑓(𝑛)(𝑥)

(𝑡 − 𝑥)𝛼−𝑛+1

𝑡

𝑎

𝑑𝑥  

Properties for these definitions can be found in [12, 13]. 

    Recently, authors in [9] presented a new definition for Fractional derivatives called 

conformable fractional derivative. Since then researchers pay attention to this new definition and 

use it to solve many equations. For example: the solutions of time and space fractional heat 

differential equations by conformable fractional derivative were found [6], as well as exact 

solutions to some conformable time fractional equations in Benjamin-Bona-Mohany family [11]. 

The solution of space-time fractional Fornberg–Whitham equation in series form was established 

[7]. Abel's formula and wronskian for conformable fractional differential equations were 

proposed [1]. Conformable fractional heat differential equation was solved [2]. Exact solutions of 

conformable fractional Harry Dym equation were found [4].  New Technique called 

conformable fractional reduced differential transform method (CFRDTM) and some of its 

Applications were given [3]. By this new defined conformable derivative, Total fractional 

differentials with applications to exact fractional differential equations was proposed [5]. In this 

paper the work has done in the sense of conformable derivative. 

   The paper is organized as follows: a brief review of some basic definitions and properties that 

used is in section 2; in section 3 we proposed main results about integrating factors with 

conformable sense; in section 4 examples are discussed; closing remarks and some examples are 

in section 5. 
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2. PRELIMINARIES 

  In this section basic properties of the conformable fractional derivative and 𝛼  − 

Exact equation will be summarized.  

Definition 2.1 [9]: Given a function  𝑓: [0, ∞) → ℝ, and for all 𝑡 > 0, 𝛼 ∈ (0,1), then the 

conformable fractional derivative of order α is defined as: 

𝑇𝛼 (𝑓)(𝑡) = lim
𝜖→0

𝑓(𝑡+𝜖𝑡1−𝛼)−𝑓(𝑡)

𝜖
, 

𝑇𝛼  is called the conformable fractional derivative of  𝑓 of order 𝛼 .  

Let 𝑓𝛼(𝑡) stands for  𝑇𝛼 (𝑓)(𝑡) =
𝑑𝛼𝑓

𝑑𝑡𝛼   .  

If 𝑓 is α-differentiable in some (0, 𝑏), 𝑏 > 0, and lim
𝑡→0+

𝑓𝛼(𝑡)  exists, then by definition: 

𝑓(𝛼)(0) = lim
𝑡→0+

𝑓(𝛼)(𝑡).     

Theorem 2.1 [9]: Let 𝛼 ∈ (0,1) and 𝑓, 𝑔 be α-differentiable at a point 𝑡 > 0. Then 

    1. 𝑇𝛼 (𝑎𝑓 + 𝑏𝑔) = 𝑎 𝑇𝛼 (𝑓) + 𝑏 𝑇𝛼 (𝑔), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  ℝ. 

    2. 𝑇𝛼 (𝑡𝑝) = 𝑝𝑡𝑝−𝛼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 ∈  ℝ. 

    3.  𝑇𝛼 (𝜆) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑓(𝑡) = 𝜆. 

    4. 𝑇𝛼 (𝑓𝑔) = 𝑓 𝑇𝛼 (𝑔) + 𝑔 𝑇𝛼 (𝑓).  

    5.  𝑇𝛼 (
𝑓

𝑔
) =

𝑔 𝑇𝛼 (𝑓)−𝑓 𝑇𝛼 (𝑔)

𝑔2   . 

    6. If, in addition, 𝑓 is differentiable, then 𝑇𝛼 (𝑓)(𝑡) = 𝑡1−𝛼 𝑑𝑓

𝑑𝑡
. 

Theorem 2.2 [11]: let 𝑓 be differentiable and α-differentiable function in the conformable sense. 

Suppose that 𝑔 is also differentiable and defined in the range of 𝑓. Then 

𝑇𝛼 (𝑓𝜊𝑔) (𝑡) = 𝑡1−𝛼 𝑔′(𝑡)𝑓′(𝑔(𝑡)) = 𝑔(𝛼)(𝑡)𝑓′(𝑔(𝑡)). 

More properties, definitions and theorems as Roll’s Theorem and Mean Value Theorem 

for conformable fractional derivative can be found [9].  

Definition 2.2 [5]: Let 0 <  𝛼 < 1. 𝑊ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑔 is 𝛼-differentiable, let 𝑑𝛼𝑔 = 𝑔(𝛼)(𝑡)𝑑𝑡. We 

call 𝑑𝛼𝑔  the fractional differential of  𝑔 . If 𝑔  is differentiable on (0 , ∞),  then 𝑑𝛼𝑔 =

𝑡1−𝛼𝑔′(𝑡)𝑑𝑡. 
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And the fractional integral 𝐼𝛼
𝑎(𝑔)(𝑡) = ∫

𝑔(𝑥)

𝑥1−𝛼

𝑡

𝑎
𝑑𝑥. 

Definition 2.3 [5]: Let 𝑓 be a function of two variables. We say 𝑓 is 𝛼-differentiable at (𝑥, 𝑦), 

if the α- increment of: 

∆𝛼𝑓 = 𝑓(𝑥 + 𝑥1−𝛼∆𝑥, 𝑦 + 𝑦1−𝛼∆𝑦) − 𝑓(𝑥, 𝑦) 

=
𝜕𝛼𝑓

𝜕𝑥𝛼
(𝑥, 𝑦)∆𝑥 +

𝜕𝛼𝑓

𝜕𝑦𝛼
(𝑥, 𝑦)∆𝑦 +∈1 ∆𝑥 +∈2 ∆𝑦 

with (∈1, ∈2) → (0,0) if (∆𝑥, ∆𝑦) →  (0,0). 

The limit of ∆𝛼𝑓  as (∆𝑥, ∆𝑦) →  (0,0), will be called the 𝛼-differentiable of 𝑓, and 

will be denoted by 𝑑𝛼𝑓 . 

For instance, 𝑑
1

2(𝑥𝑦) = 𝑦√𝑥 𝑑𝑥 + 𝑥√𝑦 𝑑𝑦. Also one can notice that 𝑑𝛼𝑓 = 0  if and only if 

𝑓(𝑥, 𝑦) is constant. 

Definition 2.4 [8] Let 𝑓(𝑥, 𝑦)  =  𝑐 be an equation that represents some curve in the 𝑥𝑦 −plane 

with 𝑥 >  0. The Equation 

𝑦𝛼 − 𝑦0
𝛼

𝑥𝛼 − 𝑥0
𝛼

=
𝑦0

𝛼−1

𝑥0
𝛼−1

 𝑦(𝛼)(𝑥0) 

 represents a curve passing through the point (𝑥0, 𝑦0). Such a curve will be called fractional cord 

of the curve 𝑓(𝑥, 𝑦)  =  𝑐 at the point(𝑥0, 𝑦0). 

Remark 2.1[8]. If 𝛼 = 1, then the fractional cord equation is  
𝑦−𝑦0

𝑥−𝑥0
= 𝑦′(𝑥0), which is exactly 

the tangent line to the curve at (𝑥0, 𝑦0). 

      Thus fractional cords represent deviation curves from the tangent line, in the sense 

lim
𝛼→1

𝑦𝛼−𝑦0
𝛼

𝑥𝛼−𝑥0
𝛼

= lim
𝑦0

𝛼−1

𝑥0
𝛼−1

 𝑦(𝛼)(𝑥0)

𝛼→1

, which means 
𝑦−𝑦0

𝑥−𝑥0
= 𝑦′(𝑥0). 

What is more interesting is, geometrical meaning of the conformable fractional derivative. 

Theorem 2.3[8]. The conformable fractional derivative 𝑦(𝛼)(𝑥0) of the function 𝑦(𝑥) in the 

equation 𝑓(𝑥, 𝑦) =  𝑐, is the slope of the tangent line to the fractional cords associated with the 

curve 𝑓(𝑥, 𝑦)  =  𝑐 at (𝑥0, 𝑦0). 

Definition 2.5 [5]: A first order differential equation of the form 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 is called 𝛼 

−Exact if there exists a function 𝜙 such that 
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𝜕𝛼𝜙

𝜕𝑥𝛼 = 𝑀, 𝑎𝑛𝑑
𝜕𝛼𝜙

𝜕𝑦𝛼 = 𝑁  . 

 Consequently, 

 𝑑𝛼𝜙 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0. 

 From the properties of the conformable fractional derivative, we get 𝜙 is a constant function. 

Proposition 2.1 [5]: Let all the first partial derivatives of 𝑀  and 𝑁 exist and continuous. 

Then  𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 is α-exact if and only if  

𝜕𝛼𝑁

𝜕𝑥𝛼 =
𝜕𝛼𝑀

𝜕𝑦𝛼 . 

 

3. MAIN RESULTS 

Consider the equation: 

                                        M (𝑥, 𝑦)𝑑𝑥 +  𝑁(𝑥, 𝑦)𝑑𝑦 =  0               (*) 

As in the case of classical differential equations, the previous equation may not be an 𝛼 −exact 

equation. Now the question is:  Can one reduce the non  𝛼 −exact fractional differential 

equation to an 𝛼 -exact equation? The answer is yes using what is called integrating factors.In 

this paper we will consider some cases for the integrating factors for equation (*). 

Theorem 3.1:  If  𝑀 = 𝑦𝛼𝑓(𝑥𝑦)𝛼 𝑎𝑛𝑑 𝑁 = 𝑥𝛼𝑔(𝑥𝑦)𝛼, for some functions 𝑓 and 𝑔, where 

𝑓 ≠ 𝑔, then the integrating factor is: 

  𝜇 =
1

(𝑥𝑦)𝛼(𝑓−𝑔)
 

Proof:  Let 𝑣 = (𝑥𝑦)𝛼  

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) =

1

𝑥𝛼

𝜕𝛼

𝜕𝑦𝛼
(

𝑓(𝑣)

𝑓(𝑣) − 𝑔(𝑣)
) =

1

𝑥𝛼
[

𝑑

𝑑𝑣
(

𝑓(𝑣)

𝑓(𝑣) − 𝑔(𝑣)
)] [

𝜕𝑣

𝜕𝑦
] 𝑦1−𝛼 =  𝛼(

𝑓𝑔′ − 𝑔𝑓 ′

(𝑓 − 𝑔)2
) 

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) =

1

𝑦𝛼

𝜕𝛼

𝜕𝑦𝛼
(

𝑔(𝑣)

𝑓(𝑣) − 𝑔(𝑣)
) =

1

𝑦𝛼
[

𝑑

𝑑𝑣
(

𝑔(𝑣)

𝑓(𝑣) − 𝑔(𝑣)
)] [

𝜕𝑣

𝜕𝑥
] 𝑥1−𝛼 =  𝛼(

𝑓𝑔′ − 𝑔𝑓 ′

(𝑓 − 𝑔)2
) 

Now 

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) −

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) =  𝛼 (

𝑓𝑔′ − 𝑔𝑓 ′

(𝑓 − 𝑔)2
) −  𝛼(

𝑓𝑔′ − 𝑔𝑓 ′

(𝑓 − 𝑔)2
) = 0 
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Hence the equation  𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 is 𝛼 −exact and  𝜇 =
1

(𝑥𝑦)𝛼(𝑓−𝑔)
 is an integrating 

factor. 

Theorem 3.2:  If  𝑀 = 𝑓(𝑦 𝑥⁄ )𝛼 𝑎𝑛𝑑 𝑁 = 𝑔(𝑦 𝑥⁄ )𝛼 , for some functions 𝑓 and 𝑔, then the 

integrating factor is: 

𝜇 =
1

𝑥𝛼𝑀 + 𝑦𝛼𝑁
 

Proof: Let 𝑣 = (𝑦 𝑥⁄ )𝛼  

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) = 𝜇𝑀𝑦

𝛼 + 𝑀𝜇𝑦
𝛼 

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) = 𝜇𝑁𝑥

𝛼 + 𝑁𝜇𝑥
𝛼 

Now 

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) −

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) = 𝜇(𝑀𝑦

𝛼 − 𝑁𝑥
𝛼) −  𝑁𝜇𝑥

𝛼 + 𝑀𝜇𝑦
𝛼 

                 = 𝜇(𝑀𝑦
𝛼 − 𝑁𝑥

𝛼) + 𝑁 (
𝛼𝑀 + 𝑥𝛼𝑀𝑥

𝛼 + 𝑦𝛼𝑁𝑥
𝛼

(𝑥𝛼𝑀 + 𝑦𝛼𝑁)2
) − 𝑀 (

𝛼𝑁 + 𝑥𝛼𝑀𝑦
𝛼 + 𝑦𝛼𝑁𝑦

𝛼

(𝑥𝛼𝑀 + 𝑦𝛼𝑁)2
) 

              =   
𝛼𝑓′

𝑥𝛼 +
𝛼𝑦𝛼𝑔′

𝑥2𝛼

𝑥𝛼𝑓+𝑦𝛼𝑔
− 𝛼 (

𝑦𝛼𝑔𝑓′

𝑥𝛼 +
𝑦2𝛼𝑔𝑔′

𝑥2𝛼 +𝑓𝑓′+
𝑦𝛼𝑓𝑔′

𝑥𝛼

(𝑥𝛼𝑓+𝑦𝛼𝑔)2 ) 

=
𝛼

𝑥2𝛼
(

𝑥𝛼𝑓′ + 𝑦𝛼𝑔′

𝑥𝛼𝑓 + 𝑦𝛼𝑔
) −  𝛼 (

𝑓′ (𝑓 +
𝑦𝛼

𝑥𝛼 𝑔) +
𝑦𝛼𝑔′

𝑥𝛼 (𝑓 +
𝑦𝛼

𝑥𝛼 𝑔)

(𝑥𝛼𝑓 + 𝑦𝛼𝑔)2
) 

               =
𝛼

𝑥2𝛼 (
𝑥𝛼𝑓′+𝑦𝛼𝑔′

𝑥𝛼𝑓+𝑦𝛼𝑔
) −  𝛼 (

𝑓′

𝑥𝛼(𝑥𝛼𝒇+𝑦𝛼𝑔)+
𝑦𝛼𝑔′

𝑥2𝛼 (𝑥𝛼𝒇+𝑦𝛼𝑔)

(𝑥𝛼𝑓+𝑦𝛼𝑔)2 ) 

                               =  
𝛼

𝑥2𝛼 (
𝑥𝛼𝑓′+𝑦𝛼𝑔′

𝑥𝛼𝑓+𝑦𝛼𝑔
) − 𝛼 (

𝑓′

𝑥𝛼+
𝑦𝛼𝑔′

𝑥2𝛼

𝑥𝛼𝑓+𝑦𝛼𝑔
) 

              =  
𝛼

𝑥2𝛼 (
𝑥𝛼𝑓′+𝑦𝛼𝑔′

𝑥𝛼𝑓+𝑦𝛼𝑔
) −  

𝛼

𝑥2𝛼 (
𝑥𝛼𝑓′+𝑦𝛼𝑔′

𝑥𝛼𝑓+𝑦𝛼𝑔
) = 0 

Hence the equation  𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 is an 𝛼 −exact and  𝜇 =
1

𝑥𝛼𝑀+𝑦𝛼𝑁
 is an integrating 

factor. 

Theorem 3.3 : Assume 𝜔 = 𝑥𝛼 − 𝑦𝛼    and    
𝑀𝑦

𝛼−𝑁𝑥
𝛼

𝛼(𝑁+𝑀)
= 𝜑(𝑥𝛼 − 𝑦𝛼)= 𝜑(𝜔). 
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Then the integrating factor is: 

𝜇 = 𝑒𝐼𝛼
𝜔(𝜑) = 𝑒∫(𝜑(𝜔) 𝜔1−𝛼⁄ )𝑑𝜔 

And 

 𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 

Is an 𝛼 −exact equation. 

Proof: 
𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) =

𝜕𝛼

𝜕𝑦𝛼 (𝑒𝐼𝛼
𝜔(𝜑)𝑀) = 𝑒𝐼𝛼

𝜔(𝜑)𝑀𝑦
𝛼 −  𝛼𝑀𝜑(𝜔) 𝑒𝐼𝛼

𝜔(𝜑) 

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) =

𝜕𝛼

𝜕𝑥𝛼
(𝑒𝐼𝛼

𝜔(𝜑)𝑁) = 𝑒𝐼𝛼
𝜔(𝜑)𝑁𝑥

𝛼 + 𝛼𝑁 𝜑(𝜔)𝑒𝐼𝛼
𝜔(𝜑) 

Now 

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) −

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) = 𝑒𝐼𝛼

𝜔(𝜑)[𝑀𝑦
𝛼 − 𝑁𝑥

𝛼] − 𝛼 𝜑(𝜔)𝑒𝐼𝛼
𝜔(𝜑)[𝑀 + 𝑁] 

 = 𝑒𝐼𝛼
𝜔(𝜑)𝛼 𝜑(𝜔)[𝑀 + 𝑁] −  𝛼 𝜑(𝜔)𝑒𝐼𝛼

𝜔(𝜑)[𝑀 + 𝑁] = 0 

Hence the equation  𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0  is 𝛼 −exact and  𝜇 = 𝑒𝐼𝛼
𝜔(𝜑)  is an integrating 

factor. 

Theorem 3.4: Let  𝜔 = 𝑥𝛼 + 𝑦𝛼 and   
𝑀𝑦

𝛼−𝑁𝑥
𝛼

𝛼(𝑁−𝑀)
= 𝜑(𝑥𝛼 + 𝑦𝛼)= 𝜑(𝜔). 

Then the integrating factor is: 

𝜇 = 𝑒𝐼𝛼
𝜔(𝜑) = 𝑒∫(𝜑(𝜔) 𝜔1−𝛼⁄ )𝑑𝜔 

Proof: Similar to the proof in Theorem 3.3. 

Theorem 3.5:  Assume  𝜔 = 𝑥2𝛼 + 𝑦2𝛼 and    
𝑀𝑦

𝛼−𝑁𝑥
𝛼

2𝛼(𝑥𝛼𝑁−𝑦𝛼𝑀)
= 𝜑(𝑥2𝛼 + 𝑦2𝛼)= 𝜑(𝜔) 

Then the integrating factor is  

  𝜇 = 𝑒𝐼𝛼
𝜔(𝜑) = 𝑒∫(𝜑(𝜔) 𝜔1−𝛼⁄ )𝑑𝜔 

and 

𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 

is an 𝛼 −exact equation.  

Proof: 

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) =

𝜕𝛼

𝜕𝑦𝛼
(𝑒𝐼𝛼

𝜔(𝜑)𝑀) = 𝑒𝐼𝛼
𝜔(𝜑)𝑀𝑦

𝛼 + 2𝛼𝑦𝛼𝑀 𝜑(𝜔) 𝑒𝐼𝛼
𝜔(𝜑) 
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𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) =

𝜕𝛼

𝜕𝑥𝛼
(𝑒𝐼𝛼

𝜔(𝜑)𝑁) = 𝑒𝐼𝛼
𝜔(𝜑)𝑁𝑥

𝛼 + 2𝛼𝑥𝛼𝑁 𝜑(𝜔)𝑒𝐼𝛼
𝜔(𝜑) 

Now 

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) −

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) = 𝑒𝐼𝛼

𝜔(𝜑)[𝑀𝑦
𝛼 − 𝑁𝑥

𝛼] − 2𝛼 𝜑(𝜔)𝑒𝐼𝛼
𝜔(𝜑)[𝑥𝛼𝑁 − 𝑦𝛼𝑀] 

                                      = 2𝛼 𝜑(𝜔)[𝑥𝛼𝑁 − 𝑦𝛼𝑀]𝑒𝐼𝛼
𝜔(𝜑) −

 2𝛼 𝜑(𝜔)𝑒𝐼𝛼
𝜔(𝜑)[𝑥𝛼𝑁 − 𝑦𝛼𝑀] = 0 

Hence the equation  𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 is 𝛼 −exact and  𝜇 = 𝑒𝐼𝛼
𝜔(𝜑) is an integrating 

factor. 

Theorem 3.6:  Assume  𝜔 = (𝑥𝑦)𝛼 and    
𝑀𝑦

𝛼−𝑁𝑥
𝛼

𝛼(𝑦𝛼𝑁−𝑥𝛼𝑀)
= 𝜑(𝑥𝑦)𝛼= 𝜑(𝜔) 

Then the integrating factor is : 

𝜇 = 𝑒𝐼𝛼
𝜔(𝜑) = 𝑒∫(𝜑(𝜔) 𝜔1−𝛼⁄ )𝑑𝜔 

and 

𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 

is an 𝛼 −exact equation. 

Proof: 

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) =

𝜕𝛼

𝜕𝑦𝛼
(𝑒𝐼𝛼

𝜔(𝜑)𝑀) = 𝑒𝐼𝛼
𝜔(𝜑)𝑀𝑦

𝛼 + 𝛼𝑥𝛼𝑀 𝜑(𝜔) 𝑒𝐼𝛼
𝜔(𝜑) 

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) =

𝜕𝛼

𝜕𝑥𝛼
(𝑒𝐼𝛼

𝜔(𝜑)𝑁) = 𝑒𝐼𝛼
𝜔(𝜑)𝑁𝑥

𝛼 + 𝛼𝑦𝛼𝑁 𝜑(𝜔)𝑒𝐼𝛼
𝜔(𝜑) 

Now 

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) −

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) = 𝑒𝐼𝛼

𝜔(𝜑)[𝑀𝑦
𝛼 − 𝑁𝑥

𝛼] − 2𝛼 𝜑(𝜔)𝑒𝐼𝛼
𝜔(𝜑)[𝑥𝛼𝑁 − 𝑦𝛼𝑀] 

                           = 𝛼 𝜑(𝜔)[𝑦𝛼𝑁 − 𝑥𝛼𝑀]𝑒𝐼𝛼
𝜔(𝜑) −  𝛼 𝜑(𝜔)𝑒𝐼𝛼

𝜔(𝜑)[𝑦𝛼𝑁 − 𝑥𝛼𝑀] 

                                                     = 0   

Hence the equation  𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0  is 𝛼 −exact and  𝜇 = 𝑒𝐼𝛼
𝜔(𝜑)  is an integrating 

factor. 

Theorem 3.7:  Assume 𝜔 = (𝑥 𝑦⁄ )𝛼 and   
(𝑀𝑦

𝛼−𝑁𝑥
𝛼)𝑦2𝛼

𝛼(𝑦𝛼𝑁+𝑥𝛼𝑀)
= 𝜑(𝑥 𝑦⁄ )𝛼= 𝜑(𝜔). 
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Then the integrating factor is: 

  𝜇 = 𝑒𝐼𝛼
𝜔(𝜑) = 𝑒∫(𝜑(𝜔) 𝜔1−𝛼⁄ )𝑑𝜔 

and 

𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 

is an  𝛼 −exact equation.  

Proof: 

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) =

𝜕𝛼

𝜕𝑦𝛼
(𝑒𝐼𝛼

𝜔(𝜑)𝑀) = 𝑒𝐼𝛼
𝜔(𝜑)𝑀𝑦

𝛼 − 𝛼𝑥𝛼𝑦−2𝛼𝑀 𝜑(𝜔) 𝑒𝐼𝛼
𝜔(𝜑) 

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) =

𝜕𝛼

𝜕𝑥𝛼
(𝑒𝐼𝛼

𝜔(𝜑)𝑁) = 𝑒𝐼𝛼
𝜔(𝜑)𝑁𝑥

𝛼 + 𝛼𝑦−𝛼𝑁 𝜑(𝜔)𝑒𝐼𝛼
𝜔(𝜑) 

Now 

𝜕𝛼

𝜕𝑦𝛼
(𝜇𝑀) −

𝜕𝛼

𝜕𝑥𝛼
(𝜇𝑁) = 𝑒𝐼𝛼

𝜔(𝜑)[𝑀𝑦
𝛼 − 𝑁𝑥

𝛼] − 𝛼 𝜑(𝜔)𝑒𝐼𝛼
𝜔(𝜑)[𝑥𝛼𝑦−2𝛼𝑀 + 𝑦−𝛼𝑁] 

                         = 𝛼 𝜑(𝜔) [
𝑥𝛼𝑀+𝑦𝛼𝑁

𝑦2𝛼 ] 𝑒𝐼𝛼
𝜔(𝜑) −  𝛼 𝜑(𝜔)𝑒𝐼𝛼

𝜔(𝜑) [
𝑥𝛼𝑀+𝑦𝛼𝑁

𝑦2𝛼 ] = 0 

Hence the equation  𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 is an 𝛼 −exact and  𝜇 = 𝑒𝐼𝛼
𝜔(𝜑) is an integrating 

factor. 

Theorem 3.8:  Let  𝜔 = (𝑦 𝑥⁄ )𝛼   and   
(𝑁𝑥

𝛼−𝑀𝑦
𝛼)𝑥2𝛼

𝛼(𝑦𝛼𝑁+𝑥𝛼𝑀)
= 𝜑(𝑦 𝑥⁄ )𝛼= 𝜑(𝜔). 

 Then the integrating factor is : 

  𝜇 = 𝑒𝐼𝛼
𝜔(𝜑) = 𝑒∫(𝜑(𝜔) 𝜔1−𝛼⁄ )𝑑𝜔 

and 

𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 

is an 𝛼 −exact equation. 

Proof: Similar to the proof in Theorem 3.7. 

In [5] Authors proved the existence of two cases of integrating factors: 

(i) If   
𝑀𝑦

𝛼−𝑁𝑥
𝛼

𝑁
= 𝜙(𝑥)  then  𝜇 = 𝑒𝐼𝛼

𝑥(𝜙) = 𝑒∫(𝜙(𝑥) 𝑥1−𝛼⁄ )𝑑𝑥 is an integrating factor for (*). 

That is  

𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 
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is an 𝛼 −exact equation. 

(ii) If   
𝑀𝑦

𝛼−𝑁𝑥
𝛼

𝑀
= 𝜓(𝑦) then  𝜇 = 𝑒−𝐼𝛼

𝑦(𝜓) = 𝑒− ∫(𝜓(𝑦) 𝑦1−𝛼⁄ )𝑑𝑦 is an integrating factor for (*).  

That is  

𝜇𝑀𝑑𝑥 +   𝜇𝑁𝑑𝑦 = 0 

is an 𝛼 −exact equation. 

 

4. EXAMPLES 

In this section we present some examples to illustrate how to find some integrating factors. 

Example 4.1: Consider 

(𝑥
1

2 𝑦
3

2 + 2𝑥𝑦 − 𝑦) 𝑑𝑦 + (𝑥𝑦 + 2𝑥
3

2 𝑦
1

2 − 2𝑥) 𝑑𝑥 = 0. 

Let 𝛼 =
1

2
 . This is equation not 𝛼- exact nor separable. But    

𝑀𝑦

1

2 =
3

2
𝑦√𝑥 + 2𝑥√𝑦 − √𝑦  ,              𝑁𝑥

1

2 = 𝑦√𝑥 + 3𝑥√𝑦 − 2√𝑥, 

So    𝑀𝑦

1

2 − 𝑁𝑥

1

2 =
1

2
𝑦√𝑥 − 𝑥√𝑦 − √𝑦 +2√𝑥 

and     𝑦
1

2 𝑁 − 𝑥
1

2 𝑀 = √𝑥 √𝑦  (−2√𝑥 + √𝑦) 

Now 
𝑀𝑦

1
2−𝑁𝑥

1
2

1

2
(𝑦

1
2𝑁−𝑥

1
2𝑀)

= 1 −
2

√𝑥𝑦
= 𝜑(𝑥𝑦)

1

2 =  𝜑(𝜔) =  1 −
2

√𝜔
 

and   𝜇 = 𝑒𝐼1 2⁄
𝜔 (𝜑) = 𝑒∫(𝜑(𝜔) √𝜔⁄ )𝑑𝜔 = 𝑒

∫(𝜔
−1
2 −2𝜔

−3
2 )𝑑𝜔

= 𝑒
(2√𝜔+

4

√𝜔
)
 

Then the integrating factor is: 

𝜇 = 𝑒2√𝑥𝑦𝑒
4

√𝑥𝑦. 

Example 4.2: Consider 

(𝑥𝛼 + 𝑥4𝛼 + 2𝑥2𝛼𝑦2𝛼 + 𝑦4𝛼)𝑑𝑥 + 𝑦𝛼𝑑𝑦 = 0 

This is equation not 𝛼 - exact nor separable. But    

𝑀𝑦
𝛼 = 4𝛼𝑥2𝛼𝑦𝛼 + 4𝛼𝑦3𝛼    , 𝑁𝑥

𝛼 = 0 

𝑀𝑦
𝛼 − 𝑁𝑥

𝛼=4𝛼𝑥2𝛼𝑦𝛼 + 4𝛼𝑦3𝛼, 𝑥𝛼𝑁 − 𝑦𝛼𝑀 = −𝑦𝛼(𝑥4𝛼 + 2𝑥2𝛼𝑦2𝛼 + 𝑦4𝛼) = −𝑦𝛼(𝑥2𝛼 + 𝑦2𝛼)2 
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𝑀𝑦
𝛼 − 𝑁𝑥

𝛼

2𝛼(𝑥𝛼𝑁 − 𝑦𝛼𝑀)
=

−2

(𝑥2𝛼 + 𝑦2𝛼)
= 𝜑(𝑥2𝛼 + 𝑦2𝛼)  

 Let   𝜑(𝑥2𝛼 + 𝑦2𝛼)= 𝜑(𝜔) =
−2

𝜔
 

The integrating factor is: 

𝜇 = 𝑒𝐼𝛼
𝜔(𝜑) = 𝑒∫(−2 𝜔2−𝛼⁄ )𝑑𝜔 = 𝑒

−2

𝛼−1
𝜔𝛼−1

=𝑒
−2

𝛼−1
(𝑥2𝛼+𝑦2𝛼) 𝛼−1

 

Example 4.3: Consider 

(3𝑥
1

3 𝑦
1

3 + 𝑦
2

3) 𝑑𝑦 − (3𝑥
1

3 𝑦
1

3 + 𝑥
2

3) 𝑑𝑥 = 0. 

This is equation not  
1

3
− exact nor separable. But   

𝑀𝑦

1

3 = 𝑥
1

3 +
2

3
𝑦

1

3    , 𝑁𝑥

1

3 = −𝑦
1

3 −
2

3
𝑥

1

3 

3 [
𝑀𝑦

1
3−𝑁𝑥

1
3

(𝑁+𝑀)
] =

−5

𝑥
1
3−𝑦

1
3

= 𝜑(𝑥
1

3 − 𝑦
1

3)= 𝜑(𝜔) =
−5

𝜔
 

The integrating factor is: 

𝜇 = 𝑒
𝐼1
3

𝜔(𝜑)

= 𝑒
∫(𝜑(𝜔) 𝜔

1−
1
3⁄ )𝑑𝜔

= 𝑒
∫(−5𝜔

−5
3 )𝑑𝜔

= 𝑒7.5𝜔
−2
3  

Example 4.4: Consider 

(3𝑥𝛼  𝑦𝛼 + 𝑦2𝛼)𝑑𝑦 + (3𝑥𝛼  𝑦𝛼 + 𝑥2𝛼)𝑑𝑥 = 0. 

This is equation not 𝛼 −exact  nor separable, 0 < 𝛼 < 1. But    

𝑀𝑦
𝛼 = 3𝛼𝑥𝛼 + 2𝛼𝑦𝛼     , 𝑁𝑥

𝛼 = 3𝛼𝑦𝛼 + 2𝛼𝑥𝛼 

𝑀𝑦
𝛼−𝑁𝑥

𝛼

𝛼(𝑁−𝑀)
=

1

𝑥𝛼+𝑦𝛼 = 𝜑(𝑥𝛼 + 𝑦𝛼)= 𝜑(𝜔) =
1

𝜔
 

The integrating factor is : 

𝜇 = 𝑒∫ 𝜔2−𝛼𝑑𝜔 = 𝑒
−2

𝛼−1
𝜔𝛼−1

=𝑒((𝑥𝛼+𝑦𝛼) 1−𝛼 1−𝛼)⁄  

Example 4.5: Consider 

𝑦𝛼(𝑥𝛼𝑦𝛼 + 1)𝑑𝑥 − 𝑥𝛼(𝑥𝛼𝑦𝛼 − 1)𝑑𝑦 = 0 

You can note that: 

𝑀 = 𝑦𝛼𝑓(𝑥𝑦)𝛼 = 𝑦𝛼(𝑥𝛼𝑦𝛼 + 1) 𝑎𝑛𝑑 𝑁 = 𝑥𝛼𝑔(𝑥𝑦)𝛼 = 𝑥𝛼(𝑥𝛼𝑦𝛼 − 1) 

the integrating factor is: 
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𝜇 =
1

(𝑥𝑦)𝛼(𝑓 − 𝑔)
=

1

𝑥𝛼𝑦𝛼((𝑥𝛼𝑦𝛼 + 1) − (𝑥𝛼𝑦𝛼 − 1))
=

1

2𝑥𝛼𝑦𝛼
 

 

To solve this equation: 

1

2𝑥𝛼𝑦𝛼
[𝑦𝛼(𝑥𝛼𝑦𝛼 + 1)𝑑𝑥 − 𝑥𝛼(𝑥𝛼𝑦𝛼 − 1)𝑑𝑦 = 0] 

1

𝑥𝛼𝑦𝛼
[

1

2𝑥𝛼
(𝑥𝛼𝑦𝛼 + 1)𝑑𝑥 −

1

2𝑦𝛼
(𝑥𝛼𝑦𝛼 − 1)𝑑𝑦 = 0] 

𝑦𝛼𝑑𝑥 − 𝑥𝛼𝑑𝑦

2𝑥𝛼𝑦𝛼
+

𝑦𝛼𝑑𝑥 + 𝑥𝛼𝑑𝑦

2(𝑥𝛼𝑦𝛼)2
= 0 

1

2𝛼
𝑑𝛼 ln (

𝑥𝛼

𝑦𝛼
) −

1

2𝛼
𝑑𝛼 (

1

𝑥𝛼𝑦𝛼
) = 0 

Now take 𝛼 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 to get the general solution: 

1

2𝛼
ln (

𝑥𝛼

𝑦𝛼
) −

1

2𝛼
(

1

𝑥𝛼𝑦𝛼
) = 𝑐 

where c is an arbitrary constant. 

If 𝛼 = 0.9 , the  general solution is given by:  𝑢(𝑥0.9, 𝑦0.9) =
1

1.8
ln (

𝑥0.9

𝑦0.9) −
1

2𝛼
(

1

𝑥0.9𝑦0.9) = 𝑐 

If 𝛼 = 0.7 , the  general solution is given by:  𝑢(𝑥0.7, 𝑦0.7) =
1

1.4
ln (

𝑥0.7

𝑦0.7) −
1

1.4.
(

1

𝑥0.7𝑦0.7) = 𝑐 

The solutions are completely different, see figures 1 and 2. 

 

 

 

 

 

 

Fig. 1 The graph of the solution  𝑢(𝑥𝛼, 𝑦𝛼) =
1

2𝛼
ln (

𝑥𝛼

𝑦𝛼) − 1

2𝛼
(

1

𝑥𝛼𝑦
𝛼) versus 𝑥 when 𝑦 = 1   

at  𝛼 =  0.9, 0.7  𝑎𝑛𝑑 0.5 for example 4.5. 
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5. CLOSING REMARKS 

1-If the equation contains the expression:  𝑦𝛼𝑑𝑥 + 𝑥𝛼𝑑𝑦  then multiplying the equation by 

the function 𝑢(𝑥𝛼 , 𝑦𝛼) =
1

𝑥𝛼𝑦𝛼    transforms 𝑦𝛼𝑑𝑥 + 𝑥𝛼𝑑𝑦 to:   

𝑦𝛼𝑑𝑥 + 𝑥𝛼𝑑𝑦

𝑥𝛼𝑦𝛼
=

1

𝛼
𝑑𝛼(ln(𝑥𝛼𝑦𝛼)) 

2-If the equation contains the expression: 𝑥𝛼𝑑𝑥 + 𝑦𝛼𝑑𝑦  then multiplying the equation by 

the function 𝑢(𝑥𝛼, 𝑦𝛼) =
1

𝑥2𝛼+𝑦2𝛼       transforms 𝑥𝛼𝑑𝑥 + 𝑦𝛼𝑑𝑦  to: 

𝑥𝛼𝑑𝑥 + 𝑦𝛼𝑑𝑦

𝑥2𝛼 + 𝑦2𝛼
=

1

2𝛼
𝑑𝛼(ln(𝑥2𝛼 + 𝑦2𝛼)) 

3-If the equation contains the expression:  𝑦𝛼𝑑𝑥 − 𝑥𝛼𝑑𝑦  then multiplying the equation by 

the function 𝑢(𝑥𝛼, 𝑦𝛼) =
1

𝑦2𝛼   transforms 𝑦𝛼𝑑𝑥 − 𝑥𝛼𝑑𝑦  to: 

𝑦𝛼𝑑𝑥 − 𝑥𝛼𝑑𝑦

𝑦2𝛼
=

1

𝛼
𝑑𝛼 (

𝑥𝛼

𝑦𝛼
) 

  Note that in remark 3 there are other choices for the function 𝑢(𝑥𝛼 , 𝑦𝛼):  

i. 𝑢(𝑥𝛼 , 𝑦𝛼) =
1

𝑥2𝛼
   to get   

𝑦𝛼𝑑𝑥−𝑥𝛼𝑑𝑦

𝑥2𝛼
= −

1

𝛼
𝑑𝛼 (

𝑦𝛼

𝑥𝛼
). 

ii. 𝑢(𝑥𝛼 , 𝑦𝛼) =
1

𝑥𝛼𝑦𝛼   to get  
𝑦𝛼𝑑𝑥−𝑥𝛼𝑑𝑦

𝑥𝛼𝑦𝛼 = 
1

𝛼
𝑑𝛼(ln (

𝑥𝛼

𝑦𝛼)) . 

iii. 𝑢(𝑥𝛼 , 𝑦𝛼) =
1

𝑥2𝛼+𝑦2𝛼
   to get 

𝑦𝛼𝑑𝑥−𝑥𝛼𝑑𝑦

𝑥2𝛼+𝑦2𝛼
= 

1

𝛼
𝑑𝛼(𝑡𝑎𝑛−1(

𝑥𝛼

𝑦𝛼
)) 

Example 5.1: Solve  𝑥𝛼𝑑𝑦 − 𝑦𝛼𝑑𝑥 − (1 − 𝑥2𝛼)𝑑𝑥 = 0 

Fig. 2 The graph of 𝑢(𝑥𝛼, 𝑦𝛼) =
1

2𝛼
ln (

𝑥𝛼

𝑦𝛼) − 1

2𝛼
(

1

𝑥𝛼𝑦
𝛼)   at  𝛼 = 0.9  for example 4.5. 
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Solution: The equation contains the expression 𝑦𝛼𝑑𝑥 − 𝑥𝛼𝑑𝑦 . According to the third remark the 

function 𝑢(𝑥𝛼 , 𝑦𝛼) =
1

𝑥2𝛼
   is suitable. Now multiply the equation by it to get: 

1

 𝑥2𝛼
[𝑥𝛼𝑑𝑦 − 𝑦𝛼𝑑𝑥 − (1 − 𝑥2𝛼)𝑑𝑥 = 0] 

 𝑦𝛼𝑑𝑥 − 𝑥𝛼𝑑𝑦

𝑥2𝛼
+

1 − 𝑥2𝛼

𝑥2𝛼
𝑑𝑥 = 0 

−
1

𝛼
𝑑𝛼 (

𝑦𝛼

𝑥𝛼
) + 𝑥−2𝛼𝑑𝑥 − 𝑑𝑥 = 0 

−
1

𝛼
𝑑𝛼 (

𝑦𝛼

𝑥𝛼
) −

1

𝛼
𝑑𝛼𝑥−𝛼 −

1

𝛼
𝑑𝛼𝑥𝛼 = 0 

Now take 𝛼 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 to get the general solution: 

1

𝛼
(

𝑦𝛼

𝑥𝛼
) +

1

𝛼
𝑥−𝛼 +

1

𝛼
𝑥𝛼 = 𝑐 

where c is an arbitrary constant. 

Example 5.2: Solve (𝑥𝛼 − 𝑦𝛼(𝑥2𝛼 + 𝑦2𝛼))𝑑𝑥 + (𝑦𝛼 + 𝑥𝛼(𝑥2𝛼 + 𝑦2𝛼))𝑑𝑦 = 0 

Solution: The equation contains the expression  𝑥𝛼𝑑𝑥 + 𝑦𝛼𝑑𝑦 . According to the second 

remark the function 𝑢(𝑥𝛼 , 𝑦𝛼) =
1

𝑥2𝛼+𝑦2𝛼   is suitable. Now multiply the equation by it to get: 

  
1

(𝑥2𝛼+𝑦2𝛼)
[(𝑥𝛼 − 𝑦𝛼(𝑥2𝛼 + 𝑦2𝛼))𝑑𝑥 + (𝑦𝛼 + 𝑥𝛼(𝑥2𝛼 + 𝑦2𝛼))𝑑𝑦 = 0] 

1

2𝛼
𝑑𝛼(ln(𝑥2𝛼 + 𝑦2𝛼)) − (𝑦𝛼𝑑𝑥 − 𝑥𝛼𝑑𝑦  ) = 0 

This equation contains: 𝑦𝛼𝑑𝑥 − 𝑥𝛼𝑑𝑦, by remark 3 one can choose: 𝑢(𝑥𝛼, 𝑦𝛼) =
1

𝑥2𝛼+𝑦2𝛼 

1

(𝑥2𝛼+𝑦2𝛼)
 [

1

2𝛼
𝑑𝛼(ln(𝑥2𝛼 + 𝑦2𝛼)) − (𝑦𝛼𝑑𝑥 − 𝑥𝛼𝑑𝑦  ) = 0] 

1

2𝛼(𝑥2𝛼 + 𝑦2𝛼)
𝑑𝛼(ln(𝑥2𝛼 + 𝑦2𝛼)) −

1

𝛼
𝑑𝛼(𝑡𝑎𝑛−1(

𝑥𝛼

𝑦𝛼
)) = 0 

−1

2𝛼
𝑑𝛼 (

1

𝑥2𝛼 + 𝑦2𝛼
) −

1

𝛼
𝑑𝛼(𝑡𝑎𝑛−1(

𝑥𝛼

𝑦𝛼
)) = 0 

Now take 𝛼 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 to get the general solution: 

−1

2𝛼
(

1

𝑥2𝛼 + 𝑦2𝛼
) −

1

𝛼
𝑡𝑎𝑛−1(

𝑥𝛼

𝑦𝛼
)) = 𝑐 

where c is an arbitrary constant. 
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Example 5.3: Solve  3𝑥4𝛼𝑦2𝛼𝑑𝑥 + 𝑦𝛼𝑑𝑥 + 𝑥𝛼𝑑𝑦 = 0   

Solution:  The equation contains the expression  𝑦𝛼𝑑𝑥 + 𝑥𝛼𝑑𝑦 . According to the first remark 

the function 𝑢(𝑥𝛼 , 𝑦𝛼) =
1

𝑥𝛼𝑦𝛼
   is suitable. Now multiply the equation by it twice to get: 

                       
1

(𝑥𝛼𝑦𝛼)2 [3𝑥4𝛼𝑦2𝛼𝑑𝑥 + 𝑦𝛼𝑑𝑥 + 𝑥𝛼𝑑𝑦 = 0] 

3𝑥2𝛼𝑑𝑥 +
𝑦𝛼𝑑𝑥 + 𝑥𝛼𝑑𝑦

(𝑥𝛼𝑦𝛼)2
= 0 

1

𝛼
𝑑𝛼(𝑥3𝛼) −

1

𝛼
𝑑𝛼 (

1

𝑥𝛼𝑦𝛼
) = 0 

Now take 𝛼 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 to get the general solution: 

1

𝛼
(𝑥3𝛼) −

1

𝛼
(

1

𝑥𝛼𝑦𝛼
) = 𝑐 

where c is an arbitrary constant and 𝑥 , 𝑦 ≠ 0. 
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