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Abstract. In this note, we introduce the concept of M4-metric space as a generalisation of partial A-metric space.
We also, prove some fixed point theorems satisfying fundamental contraction principles in the setting of M4-metric

space.
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1. INTRODUCTION

The generalisations of metric fixed point have been an important research area for the last
many years and many researchers had contributed a lot in this area. The results on generaliza-
tion of metric space can be seen in the research papers [1-14] and references therein. These
generalisations were then also used to extend the scope of the study of fixed point theory.

Mujahid Abbas, Bashir Ali and Yusuf I Suleiman [15] inroduced the concept of n—tuple
metric space A : X" — [0,00) and also generalised coupled common fixed point theorems for
mixed weakly monotone maps in partially ordered A— metric spaces.
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Using the concept of partially A—metric space, we extend fixed point results in M4 —metric

space.

Definition 1.1. [/1] Let X be a nonempty set and p : X x X — [0, 4o0). We say that (X, p) is
an ordinary partial metric space if for all x,y,z € X we have:

(1) x =y ifand only if p(x,y) = p(x,x) = p(y,y);

(2) p(x,x) < p(x,y);

3) p(x,y) = p(y,x);

@) p(x,2) < p(x,y) +p(y,2) = p(3Y)-

The pair (X, p) is called partial metric space.

Definition 1.2. [/6] Let X be a nonempty set. A function m : X X X — R is called an m-metric
space if the following conditions are satisfied:

(ml) m(x,x) =m(y,y) =m(x,y) & x=y,

(m2) myy < m(x,y),

(m3) m(x,y) = m(y,x),

(m4) (m(x,y) —my) < (m(x,z) —mg) + (m(z,y) +mgy).

Then the pair (X, m) is called an M-metric space.

Definition 1.3. /1] Let X be a nonempty set. An S-metric on X is a function S : X> — [0,00) that
satisfies the following conditions,

1. S(x,y,z) >0,

2. S(x,y,z) =0ifand only if x=y =1z

3. S(x,,z) < S(x,x,a) +S(y,y,a)+ S(z,z,a)
for each x,y,z,a € X.

The pair (X,S) is called S-metric space.

Definition 1.4. [15] Let X be a nonempty set. A function A : X" — [0,0) is called an A-metric

on X if for any xj,a € X,i =1,2,...,n, the following conditions hold:

(Al) A(x17x27x37 "'7xn717-xl’l> Z 0;



1422 K. ANTHONY SINGH, TH. CHHATRAIJIT SINGH, N. PRIYOBARTA SINGH, Y. ROHEN SINGH
(A2) A(x1,X2,X3,...;Xn—1,X,) = 0 ifand only if x; =xp = X3 = ... = Xp_1 = Xp,

(A3)

A(X1,X0,X3, ey Xn—1,%2) < [A(x1,x1,X1, .0y (X1)—1,0)
+A(X2,X2,X2, ceey (xZ)n—laa)

+A(X3,X3,X3, ceey (X3)n_1,a)

+A(xnflaxn*laxn*la sy (anl)nflaa)

FA (X, Xn, Xy -y (Xn)n—1,a).]
The pair (X,A) is called an A-metric space.

Definition 1.5. [/5] Let X be a nonempty set. A partial A-metric space is a function Ap : X" —

[0,00) that satisfies the following conditions, for all xy,xy,...,xp,t €X;
(1) AP(xlaXZ;-“axn) Z 0,
(i) x; = xp = --- = x,, if and only if Ap(x1,x1,...,X1) = Ap(x2,x2,...,xp) = -+ =
Ap(Xp,Xn, -y Xn),
(ii1)
Ap(x1,x2,.. %) < Ap(x1,x1,. 0, (X1)n—1,8) +AP(X2,X2,.. ., (X2)n—1,1)

—I—"'+AP(Xn,Xn,...,(Xn)n_l,t) _AP(t7t7' "7t)7

(IV) AP(xlaxla cee ,Xl) S AP(X1,)C2, e 7xn),

(V) AP(xlaxla s ,XI,XZ) :AP(x27x27 cee ,XZ,X1).

The pair (X,Ap) is called a partial A-metric space.

Definition 1.6. [15] Let X be a nonempty set. A partial A-metric on X is a function A, : X" —

[0,00) that satisfies the following conditions for all x1,x3,...,x,,t € X,

(1) X1 =X2 lfal’ld OI’lly l'pr(Xl,Xl,...,Xl) :Ap(x27x27~"7x2) :Ap(x17x17"' ,X],Xz).
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(i)

Ap(x1,x2,.. %) < Ap(xr,xr, .., x1,0) FAp(X2,X2,. .., X0,1)

+oo A (X Xy X t) FA(8,2, . T).

(i) Ap(x1,x1,...,x1) <Ap(x1,x2,...,X,).

(Av) Ap(x1,x1,...,%1,%2) = Ap(x2,%2,...,X2,X1).

The pair (X,A) is called a partial A-metric space.

Next, we give the definition of an My4-metric space, but first we introduce the following

notations.

Notation 1.

Lomg, oo = min{ma(xy,x,..ox1),ma(x, X2, ,%2), . ma (X, X, -, Xn) }

2. My = max{ma (x1,X1,...,X1),ma(x2,%2,...,X2), ..., MA(Xp, X, ..., %n) }

X150 505X

Definition 1.7. An My-metric on a nonempty set X is a function my : X" — R™ such that for all

X1,X2,...,Xn,t € X, the following conditions are satisfied:
L. ma(x1,x1,...,x1) = ma(x2,x2,...,%2) = ma(x1,X1,...,Xx1,X2) if and only if x; = x;.

o SmA(X1,X0,0 X))

X15X2 50X

3. mA(xl,xl,. .. ,xl,xz) = mA(XQ,)Q, - ,X2,X1).

4.

(mA(XI;XZa ) _mAxl,sz,..A,xn> < (mA(xl’xl’ caX1E) = mAX1,~X1~~~~7X1J)
+<mA (x27x27 e 7x27t) - msz,xz,...,xz,t)

+ (mA (xl’laxna oo 7xn7t) - mAxn.xn,A..,xn,z)
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The pair (X,my) is called an Mp-metric space. Notice that the condition my(xy,xi,...,X1) =
ma(X2,X%2, ..., x2) = -+ = MA(Xp, Xny - -« X = MA(X],X0,...,Xy) < X] =Xp = -+ = X, implies
that (1) above.

It is straightforward to verify that every partial A-metric space is an M4-metric space but the
converse is not true. The following example is an M4-metric which is not a partial A-metric

space.
Example 1. Ler X = {1,2,...,n} and define

Definition 1.8. Let (X,my4) be an My-metric space. Then

1. a sequence {x,} in X converges to a point x if and only if lim_, (mA (XpsXps ..oy Xp,X) —

mAxP,xp,..‘,xp,x)

2. a sequence {xp} in X is said to be Ma-Cauchy sequence if and only if

plc}gloo (mA (x[”xp’ T 7x177xq) - mAxp,xP,u.,xP‘,xq)
and
palf;gloo (MAX[J-,X[) ..... XpXq - mAxp,xp....,x[;,xq)

exists and finite.
3. an Ma-metric space is said to be complete if every Ma-Cauchy sequence {x,} converges

to a point x such that

;}5130 (mA (vaxpy .. ,xP,x) - mAxP.Xp,w,xp,) =
and
l}f‘l’ (MAXI”XP""’XPvX o mAJCp-,xp ..... xpa) =0.

A ball in the Ma-metric (X, my) space with centre x € X and radius 1 > 0 is defined by
Balx,n] = {x2 € X : mu(x1,x1,...,x1,X%2) —mAXI’XI_”_Txm} <n.
The topology of (X,My) is generated by means of the basis B = {Ba[x,n]: 1 > 0}.
Lemma 1.1. Assume x, — x and y, — y as p — oo in an Ma-matric space (X,my). Then,

lim (mA(xp,xp, o Xp,Yp) —MA ) =mp(x,X,...,Xx,y) — MA e

p—roo XpApseeeXp¥p
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Proof. The proof follows by the inequality (4) in definition (1.7). Indeed, we have

](mA(xp,xp, Cen ,xp,yp) — mAxP,xP.,. ) - (mA(x7x7 cee 7'x7y) - mAx,x,....,x.,y)|

- XpYp

S (n - 1) | (mA (xP7xP’ e 7x177x) - mAxPﬁxP,m,xP,x) + (mA (yP’yP’ e ’yp’y) - mAypﬁyp,m,yp,y) |

O

2. MAIN RESULTS

In this section, we consider some results about the existence and uniqueness of fixed point
for self-mappings on an M4-metric space, under different contraction principles.
Theorem 2.1. Let (X,my) be a complete Ma-metric space and T be a self-mapping on X satis-
fying the following condition:
(D) mp(Tx,Tx,...,Tx,Ty) < kmy(x,x,...,x,y)

forallx,y € X, where k € [0,1). Then T has a unique fixed point u. Moreover, my (u,u, ... u) =
0.

Proof. Since k € [0,1), we can choose a natural number ng such that for a given 0 < € < 1, we

have k"0 < ﬁ. Let 7" = F and F'xy = x; for all natural number i, where x is arbitrary.

Hence, for all x,y € X, we have
mp(Fx,....,Fx,Fy) = ma(T"x,...,T"x,T")
< K'myg(x,x,...,x,y)
For any i, we have
ma(Xip 1y X 1,X) = ma(Fxi,... ., Fx;,Fxi_1)
< k”OmA(x,-,...,xi,xifl)
< k"°+imA(x1,...,x1,xo)—>()asi—><>o.

Similarly, by (1) we have my (x;,...,x;,x;) — 0 as i — co. Thus, we choose / such that

€

MA(X1 1, X141,X]) < m
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mA<xl7"‘7xl7xl) < 2(n_ 1)‘

Now, let n = § +my(x;,...,x;,x;). Define the set

By [Xl, n] = {y € X|mA(x17 i axlay) - mAxmwxwySn}'

Note that, x; € B4[x;,n]. Therefore Ba[x;, 1] # ¢. Let z € B4[x;,n] be arbitrary. Hence,

ma(Fz,...,Fz,Fx;)

Also, we know that

mA(FXl,FXl,...,F.X[,X]) :mA('xl+17xl+17"'7-xl+1>xl) <

Therefore,

ma (FZ7FZ7 ce ,FZ,.X[) - mAFZ~,~~~7FZ~,XZ

<

IN

IN

IN

IN

K'my(z,...,2,x1)

kno[(n — 1){mA (Z,Z; . ,Z) — mAz,z,...,z}

Fmp (X xpy X)) —may A ma ]
E E

Hn—1) [(n— 1)2(n Y tma,, o, T maCx X))
E E

1) (5 Mg T A 20)]

E
1 (14 2ma (x7,x7,. .., x7)].

4n—1)

< (n—=1)[ma(Fz,Fz,....Fx;) —ma.. Fz,Fxl]

+mA(FXZ,...,FXI,Xl)

- mAFle,FXl,xl

VAN

(l’l— l)mA(FZ,FZ7'~'7Fxl)+mAFxl.<

(l’l— 1)4(,18_ 1) [1 +2mA(xl,xl,...,xl)] —|—ﬁ
£

4,Fxl,xl

IN

E E ( )
= -+ + —ma(Xxy,x7,...,X
l l( 1) 2 A l? 17 Y [

né +8 ( )
= —MA\X], X, .., X,
4-(]1—1) 2 A l? l7 ) l

&
< 5 +mA(Xl,Xl,...,X[)-
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Thus, Fz € Bp[x;,n] which implies that F maps By[x;, 1] into itself. Thus by repeating the
process we deduce that for all n > 1, we have F"x; € By [x;,n] and that is x,, € Bp[x;, 1] for all

m > [. Therefore, for all m > n > [ where n = [ +i for some i.

mA(xm“'axnaxm) = mA(Fxn—lw-';Fxn—lanm—l)

S knOmA(xn—la'"7-xn—17-xm—1)

< KPOmA(Xn—2, -y Xn—2s Xim—2)

< ki"OmA(xl, e X X))

S mA(XZ,...,XI,xm_i)
£

S 5 + mAxl""'er’xm—i + my (Xl, s 7xlaxl)
E

< —+ZMA(XI,...,X[,XZ>

2

Also, we have my (x;, ..., x;,x;) < §, which implies that my (x,, . .., X, X,) < € forallm > n > 1,

and thus mg (X, . .., Xp, Xm) — My < g for all m > n > [. By the contraction condition (1),

XnseXn,Xm

we see that the sequence {my (xy,...,x,,x;)} is decreasing and hence, for all m > n > [, we have

MAanu,Xnyxm - mAXn,-u,Xme S MA-’Cn,uu,Xn,xm

= ma(Xn,..., Xn,Xn)

S kmA(xn—17xn—17"'7xn—l)

< k"my(x0,x0,...,X%0) — 0 as n — oo.
Thus, we deduce that

n}’llr_r}oo[mA (Xn, v 7‘xn7xm) - mAxn,m,xn.xm] = O
and
hm [MAxn ..... Xn.,Xm - mAxn,“.,xn,xm] = 0

n,m—oo
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Hence, the sequence {x,} is an M4-Cauchy. Since X is complete, there exists u € X such that

lim [ma (xy, ... X, u) —ma, ] =0

n—yoo e
and

lim [Ma (X, . . ., X, 1) — mAxn.mxn.u] =0.

n—co e
The contraction condition (1) implies that ma (x,Xp, .. .,x,) — 0 as n — oo. Moreover, notice
that

lim [MA(X,,, ee s Xn, u) - mAan’Xn’u] = lim |mA(xn7xn7 s >xn) - mA(”a u... 7u)| =0,

n—oo n—oo

and hence my (u,u...,u) = 0. Since x,, — u, ma(u,u...,u) =0 and my (x,,X,,...,x,) — 0 as

n — oo, then

,}glgomA (-xna -5 Xny M) = r}gl;lomAx,l,.”,x,1.u =0.

Since mp(Txy, ..., Txy, Tu) < kmy(xp, ... ,x,u) — 0 as n — oo, then Tx,, — Tu.

Now, we show that Tu = u. By Lemma (1.1) and that Tx, — Tu and x,, 11 = Tx, — u, we

have
r}l_{l;lomA (xru <oy Xny l/t) = mAxn,..qxn‘u =0
- ’}B;I‘}omA (xn+17 <oy X1, M) - mAx,Hl,..A,anrl,u
= lim mp(Txn, ., Ton,u) = Magy, 7,
= mA(”? e ,I/l, I/l) - mATu,..”Tu,u
- I’l’lA(Tl/l, ceey TM, Lt) - mATu,m,Tu,u
Hence, ma(Tu,...,Tu,u) = ma,, .. =ma(u,u,...,u), but also by the contraction condition

(1) we see that ma,, = my(Tu,Tu,...,Tu). Therefore, (2) in definition (1.7) implies that

STu,u

Tu=u.
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To prove the uniqueness of the fixed point u, assume that 7" has two fixed points u,v € X; that

i8S Tu =u and Tv = v. Thus,
ma(u,...,u,v) =ma(Tu,...,Tu,Tv) < kma(u,...,u,v) < ma(u,u,...,u,v),

ma(u, ... u,u) =ma(Tu,Tu,...,Tu) < kmg(u,... uu) <ms(u,u,... uu),

and

ma(V,v,...,v) =ma(Tv,Tv,...,Tv) < kmg(v,v,...,v) <ma(v,v,...,v),

which implies that m4 (u,u, ..., u,v) =0 =my(u,u,...,u) = my(v,v,...,v), and hence u = v as
disered. Finally, assume that u is a fixed point of 7. Then applying the contraction condition

(1) with k € [0, 1), implies that

ma(u,u,...,u) = ma(Tu,Tu,...,Tu)

< kmg(u,u,... u)

< K'ma(u,u,...,u).

Taking the limit as n — oo, implies that ma (u,u,...,u) = 0.

In the following result, we prove the existence and uniqueness of a fixed point for a self-

mapping in Mu-metric space, but under a more general contraction. 0

Theorem 2.2. Let (X,my) be a complete Ms-metric space and T be a self-mapping on X satis-

fying the following condition
(2) mA(TX, T, Ty) < A‘[mA(xw REER TX) +mA(y7' TR Ty)]
forall x,y € X, where A € |0, %) Then T has a unique fixed point u, where ma(u,u, . ..,u) = 0.

Proof. Let xg € X be arbitrary. Consider the sequence {x,} defined by x, = T"x¢ and my, =

ma (Xp, ..., Xn,Xnt1). Note that if there exists a natural number n such that my, = 0, then x,, is a
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fixed point of 7" and we are done. So, we may assume that my > 0 for n > 0. By (2), we obtain

for any n > 0,

ma, = ma(Xn, ..., Xn,Xn+1)

= ma(Txy—1,.-, Txp—1,Txy,)

< Alma(xn—1, e xn—1,Txp—1) +ma(xp, ..., %0, Txy)]
= Alma(Xn—1,y- - Xn—1,%n) +ma(Xn, - .o, Xn, Xn—1)]

= Alma, , +ma,]

< Amy

= my +lmAn

n n—1

=>my, < Umy,

n —

whereu:%<lasl €[0,1).

By repeating this process, we get
ma, < U'my,.
Thus, lim,,_..my4, = 0. By (2), for all natural number n,m, we have
mp(Xp, ..o Xy Xm) = ma(T"x0,...,T"x0,T"x0)
= ma(Txy—1,--, Txp—1,TXp—1)
< Alma(xn—1, s Xn—1,Txp—1) +mag(Xp—1,- oy Xin—1, TXp—1)]

= )L[mA(xn—l o9 Xn—1 >xn) +mA(xm—17- -y Xm—1 7xm)]

IN

A’ [mAn—l + mAm—l ] :

Since lim,,_,..my4, = 0, for every € > 0, we can find a natural number ng such that my, < % and

my, < % for all m,n > ng. Therefore, it follows that

ma(Xn, .. XnXm) < Alma, | +ma, ||
& €
PR
< a8+3
€ €

< §+§:0f0ralln,m>no.
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This implies that

ma(Xn, -« o, XnyXm) — My <&

Xnsee o XnXm

for all n,m > ny.

Now, for all natural numbers »n,m, we have
My, = ma(Txp—1,..., TxXp—1,Txp_1)
< Afma(xn—1,- s xn—1, Txp—1) +ma(xp—1, -, Xn—1, TXp—1)]
= Alma(Xp—1y-- 3 Xn—1,%0) +ma(Xn—1, - s Xn—1,Xn)]
= Almg, ,+my, ||
= 2Amy, .

As lim,, y.omy, , = 0, for every € > 0 we can find a natural number ng such that m,, < % and

for all m,n > ng. Therefore, it follows that

Airnim < Alma, Fma, ]
< A [g + ;]
< §+§ — 0 forall n,m > no.
which implies that
Ma,, n —MAy o, < € forall n,m > ng.

Thus, {x,} is an M4-Cauchy sequence in X. Since X is complete, there exists u € X such that

lim mg (X, ..., Xp, 1) — mg =0.

N—soo X7 5ee e X115l

Now, we show that u is a fixed point of 7 in X. For any natural number n, we have,

’}1_r>13°mA (Xny -5 Xpyu) —ma, =0
= lim ... —

frisre mA (xn—H e Xntl, l/t) mAan BRI
= r}grolo mA(Tx”7 tt Txn? Ll) - mATxn,... Txn,u

= mA(TI/t, ceey Tuyu) _mATu
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This implies that ma (Tu, ..., Tu,u) = my = 0, and that is mg(Tu,...,Tu,u) = my

u,...,u,Tu ..., u,Tu’

Now, assume that

ma(Tu,...,Tu,u) = ma(Tu,...,Tu,Tu)
< 2Amp(u,...,u,Tu)
= 2Amyp(Tu,...,Tu,u)

< my(uy...,u,Tu)

Thus,

mp(Tu,...,Tu,u) = mp(u,...,u,u)

IN

ma(Tu, ..., Tu,Tu)

IA

2Amyp(u, ... ,u,Tu)

< my(uy...,u,Tu)
Therefore, Tu = u and thus u is a fixed point of T'.

Next, we show that if u is a fixed point, then my (u,...,u,u) = 0. Assume that u is a fixed

point of 7', then using the contraction (2), we have

ma(u,u,...,u) = mp(Tu,...,Tu,Tu)
< Alma(u,u,...,u,Tu)+my(u,u,... u,Tu))
= 2Amp(u,u,...,u,Tu)
= 2Amp(u,u,...,u)

1
< ma(u,u,...,u)since A € [0,5),

that is, ma (u,u,...,u) =0.
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Finally, to prove the uniqueness, assume that 7" has two fixed points, say u,v € X. Hence,
ma(u,...,u,v) = ma(Tu,...,Tu,Tv)
< Alma(u,u,...,u,Tu) +ma(v,v,...,v,Tv)]
= Alma(u,u,...,u)+ma(v,v,...,v)] =0,
which implies that
ma(u,...,u,v) =0=ma(u,u,...,.u) =ma(vv,...,v),
and u = v as required. 0

In closing, the authors would like to bring to the reader’s attention that in this interesting
My -metric space, it is possible to add some control functions in both contractions of Theorems

1 and 2.

Theorem 2.3. Let (X,my4) be a complete Ms-metric space and T be a self-mapping on X satis-

fying the following condition: for all x1,x7,...,x, € X

3) ma(Tx1,Txz,...,Txy) < mg(x1,%2,...,%,) — O (ma(x1,X2,...,%1)),

where ¢ : [0,00) — [0,0) is a continuous and non-decreasing function and ¢ ~'(0) = 0 and

¢(t) >0forallt > 0. Then T has a unique fixed point in X.

Proof. Let xo € X. Define the sequence {x,} in X such that x, = 7" 'xg = Tx,,_; foralln € N.
Note that if there exists an n € N such that x,, 1| = x,, then x, is a fixed point for 7. Without

loss of generality, assume that x,,. | # x,, for all n € N. Now
mA(xnaanrl:---aanrl) = mA(TxnflaTxna"wan)

< mg(Xp—1,Xn, -y Xn) — O(mMa(Xp—1,%n, ..., Xn))

4) < ma(Xn—1,%n, -+ Xn)
Similarly, we can prove that ma(x,—1,%n,...,%;) < ma(Xy—2,X4—1,...,X,—1). Hence,
ma (X, Xnt1,---,Xp+1) is @ nondecreasing sequence. Hence there exists r > 0 such that
lim mA(Xn7xn+17 cee >xn+l) =r

n—oo
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Now, by taking the limit as n — oo in the inequality (4), we get r < r — ¢ (r) which leads to a

contraction unless » = 0. Therefore,
lim mg (X, Xpt 15«3 Xnt1) = 0.

n—oo

Suppose that {x,} is not an M4-Cauchy sequence. Then there exists an € > 0 such that we

can find subsequences X, and x,, of {x,} such that
(5) MA (X Xy - -+ 3 Xmy) —MA,, > €

Choose n; to be the smallest integer with n; > my, and satisfies the inequality (5). Hence,

mA(‘xnk’xmkfl""mek—l)_mAxnk,xmk_l.,M,xmk_l < &
Now,
€ < my (xmkvxnw e 7xnk> T IMA G gy
< A 1)+ (1= DGttt =
> e+ (n—1)ma(xp—1,-- Xn—1)
< g

as n — oo. Hence, we have contradiction. Without loss of generality, assume that m4 =

X1 X1 e XXM

ma (Xp, Xp, - - -y Xn, Xm ). Then we have
0 S mAxn,xn....,xn,xm —ma (‘xn?xn’ Tt 7‘xn?xm)
S A)Cn,Xn,444,X}1.,Xm
= mA(xn7xn7~-~axn7xm)
= ma(Txp—1,Txp—1,...,TX_1)
< mpA(Xp—1, X015 Xn—1) — O (MA(Xp—1, X015, Xn—1))
< mA(xn—laxn—la"'7xn—l)
< I’I’ZA(X(),X(),...,X())-
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Hence, lim,,_,co 114 —m _exists and finite. Therefore, {x,} is an M4-Cauchy

XnXn - XnXm AXn AR5 XX

sequence. Since X is a complete, the sequence {x, } converges to an element x € X; that is,

0 = ’}grolomA(xn,xn,...,xn,x)—mAXn,x”’__”x”_x
= lim ma(Xp11,%0415 - -y Xnt1,X) — M
Pl A( n+1rAn+1s -« -y Ant1, ) Ay 1 X 1
= Jl_r)l(’)lomA(Txn, Txny- o, TXnyX) —Mag, 1o 7

- mA<Tx7 T.X', [ERE) T.X',.X) T MAL T Txx

Similar to the proof of the Theorem 2, it is not difficult to show that this implies that, Tx = x

and so x is a fixed point.

Finally, we show that T has a unique fixed point. Assume that there are two fixed points

u,v € X of T. If we have my (u,u,...,u,v) > 0, then condition (3) implies that
ma(u,u, ... ,u,v) —ma(Tu,Tu,...,Tu,v) < ma(u,u,...,u,v)—¢(ma(u,u,...,u,v))
< my(uu,...,u,v)

and that is a contradiction. Therefore, m4 (u,u,...,u,v) = 0 and similarly m4 (u,u,...,u) =

Mj(v,v,...,v) =0 and thus u = v as desired. O
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