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Abstract. This article is concerned with hybrid implicit extragradient methods for variational inequality problems

with constraints of a family of nonexpansive mappings, and a system of variational inequalities. One analyzes the

convergence of the hybrid methods and obtains convergence theorems of solutions without the aid of compactness

in Hilbert spaces.
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1. INTRODUCTION

Throughout this work, one always suppose that H is a real infinite dimensional Hilbert space

and C is a nonempty set of in H. Let S : C→H be a nonlinear single-valued mapping and denote

by Fix(S) the fixed-point set of mapping S, that is, Fix(S) = {x ∈ C : x = Sx}. S is said to be

an asymptotically nonexpansive mapping if ‖T nx−T ny‖ ≤ (1+θn)‖x− y‖, ∀n ≥ 1, x,y ∈C,

where {θn} ⊂ [0,+∞) is a sequence such that limn→∞ θn = 0. In particular, T is said to be

nonexpansive provided that θn = 0. S is said to be an averaged mapping if it can written as

S = (1−α)I +αR, where α ∈ (0,1) is a real constant, I is the identity mapping of H and
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R : C→C is a nonexpansive mapping. Recall that the classical monotone variational inequality

problem (VI) is to find x∗ ∈C such that

(1.1) 〈Sx∗,x− x∗〉 ≥ 0, ∀x ∈C.

The set of all solutions the inequality is denoted by VI(C,A). From the viewpoint of compu-

tation, lots of authors are concerned with robust iterative algorithms for solving the variational

inequality in infinite dimensional spaces; see, e.g., [1, 2, 3, 4, 5, 6, 7]. Among these fast iterative

algorithms, algorithms of extragradient type introduced and studied by Korpelevich [8] are un-

der spotlight of many investigators since they are efficient for non cocoercive mappings. Recall

that S is called monotone if 〈Sx−Sy,x− y〉 ≥ 0, ∀x,y ∈C. It is called η-strongly monotone if

〈Sx− Sy,x− y〉 ≥ η‖x− y‖2, ∀x,y ∈C, where η > 0 is real number. Moreover, it is called α-

inverse-strongly monotone (or α-cocoercive) if 〈Sx−Sy,x−y〉 ≥α‖Sx−Sy‖2, ∀x,y∈C, where

α > 0 is a positive number. Obviously, each inverse-strongly monotone mapping is Lipschitzian

monotone, and each strongly monotone and Lipschitzian mapping is inverse-strongly monotone

but the converse is not true. Let B1,B2 : C→ H be two nonlinear single-valued mappings. One

considers the following system of finding (x∗,y∗) ∈C×C such that

(1.2)

 〈B1y∗+ x∗− y∗,x− x∗〉 ≥ 0, ∀x ∈C,

〈B2x∗+ y∗− x∗,x− y∗〉 ≥ 0, ∀x ∈C.

This system include several problems, such as, variational inequality problems, comple-

mentarity problems, convex quadratic programming and fixed-point problems; see, e.g.,

[9, 10, 11, 12, 13, 14]. In particular, if B1 = B2 = S and x∗ = y∗, then problem (1.2) become

the classical variational inequality (1.1), which solution set is denoted by VI(C,A). Note that,

problem (1.2) can be transformed into a fixed-point problem in the following way.

Recently Cai et al. [12] introduced a viscosity implicit sequence {xn} for solving a hierarchi-

cal variational inequality (HVI) over the common solution set Ω = GSVI(C,B1,B2)∩Fix(T )

of the system (1.2) and the fixed-point problem of T
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

un = snxn +(1− sn)yn,

zn = PC(un−µ2B2un),

yn = PC(zn−µ1B1zn),

xn+1 = PC[αn f (xn)+(I−αnρF)T nyn] ∀n≥ 0,

where µ1 ∈ (0,2α),µ2 ∈ (0,2β ) and {αn},{sn} are sequences in (0,1] such that limn→∞
θn
αn

=

limn→∞ αn = 0, ∑
∞
n=1 αn =∞, ∑

∞
n=1 |αn+1−αn|<∞, ∑

∞
n=1 ‖T n+1yn−T nyn‖<∞, 0< ε ≤ sn≤ 1

and ∑
∞
n=1 |sn+1 − sn| < ∞. They established a solution theorem in norm. Recently, lots of

authors investigated the common solution with the aid of nearest point projections under mild

conditions; see, e.g., [15, 16, 17, 18, 19, 20].

On the other hand, common fixed-point problems, which find more applications in signal

processing and image reconstructions, are now under spotlight of researchers. Let {Ti}N
i=1 be

N nonexpansive mappings on H such that the common fixed-point set Ω = ∩N
i=1Fix(Ti) is not

empty. In 2015, Bnouhachem et al. [13] introduced the following iterative algorithm yn = βnxn +(1−βn)T n
N T n

N−1 · · ·T n
1 xn,

xn+1 = αnρ f (yn)+ γnxn +((1− γn)I−αnµF)yn ∀n≥ 0,

where T n
i = (1−δ i

n)I+δ i
nTi and δ i

n ∈ (0,1) for i = 1,2, ...,N, 0 < µ < 2η

κ2 and 0≤ ρ < ν

τ
, with

ν = µ(η − µκ2

2 ) limsupn→∞ γn < 1, liminfn→∞ γn > 0, limn→∞ |δ i
n−1− δ i

n| = limn→∞ αn = 0,

∑
∞
n=0 αn = ∞, {βn} ⊂ [σ ,1) and limn→∞ βn = β < 1. They proved the strong convergence of

sequence {xn}. The limit of {xn} also solve a monotone variational inequality with contractive

mapping f . For the works on the iterative methods for common element problems, one refers

to [21, 22, 23, 24, 25, 26] and the references cited therein.

The purpose of this work is to introduce and analyze hybrid implicit extragradient methods

for solving variational inequality problems with constraints of a family of nonexpansive map-

pings, and a symmetrical system of variational inequalities. One analyzes the convergence of

the hybrid methods and obtains convergence theorems of solutions without the aid of compact-

ness in Hilbert spaces. One also solves common fixed point problems of nonexpansive and

strictly pseudocontractive mappings in Hilbert spaces.
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2. PRELIMINARIES

One lists some essential tools for the proof of our main results.

In this case, we say that T is α-averaged. It is easy to see that the averaged mapping T is also

nonexpansive and Fix(T ) = Fix(R).

Lemma 2.1. [13] If the self-mappings {Ti}N
i=1 defined on C are averaged and have a common

fixed point, then ∩N
i=1Fix(Ti) = Fix(T1T2 · · ·TN).

Lemma 2.2. [27] Let {an} be a sequence of nonnegative real numbers satisfying the conditions:

an+1 ≤ (1− λn)an + λnγn ∀n ≥ 1, where {λn} and {γn} are sequences of real numbers such

that (i) {λn} ⊂ [0,1] and ∑
∞
n=1 λn = ∞, and (ii) limsupn→∞ γn ≤ 0 or ∑

∞
n=1 |λnγn| < ∞. Then

limn→∞ an = 0.

Lemma 2.3. [28] Let λ ∈ (0,1], T : C → H be a nonexpansive mapping, and the mapping

T λ : C→ H be defined by T λ x := T x−λ µF(T x) ∀x ∈C, where F : H → H is κ-Lipschitzian

and η-strongly monotone. Then T λ is a contraction provided 0 < µ < 2η

κ2 , i.e., ‖T λ x−T λ y‖ ≤

(1−λτ)‖x− y‖ ∀x,y ∈C, where τ = 1−
√

1−µ(2η−µκ2) ∈ (0,1].

Lemma 2.4. Let the mappings B1,B2 : C→ H be α-inverse-strongly monotone and β -inverse-

strongly monotone, respectively. Let the mapping G : C → C be defined as G := PC(I −

µ1B1)PC(I−µ2B2). If 0≤ µ1 ≤ 2α and 0≤ µ2 ≤ 2β , then G : C→C is nonexpansive.

Proof. Since B1 is α-inverse-strongly monotone and B2 is β -inverse-strongly monotone, one

has

‖(I−µ1B1)u− (I−µ1B1)v‖2 ≤ ‖u− v‖2−2µ1〈u− v,Bu−B1v〉+µ
2
1‖Bu−B1v‖2

≤ ‖u− v‖2−µ1(2α−µ1)‖Bu−B1v‖2

≤ ‖u− v‖2.

On finds that I−µ1B1 is nonexpansive, so is I−µ2B2. This shows G : C→C is nonexpansive.

�

Lemma 2.5. [29] Let X be a Banach space which admits a weakly continuous duality mapping,

C be a nonempty closed convex subset of X, and T : C→C be asymptotically nonexpansive such
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that Fix(T ) 6= /0. Then I−T is demiclosed at zero, i.e., if {xn} ⊂C converges weakly to some

x ∈ C, and {(I− T )xn} converges strongly to zero, then (I− T )x = 0, where I is the identity

mapping of X.

Lemma 2.6. [30] Let T : C→ H be a ζ -strict pseudocontraction. Define S : C→ H by Sx =

λT x+(1−λ )x ∀x ∈C. Then as λ ∈ [ζ ,1), S is a nonexpansive mapping with Fix(S) = Fix(T ).

3. MAIN RESULTS

In this section, one always let the feasible set C be a convex and closed, and assume that the

following condition hold.

T : C → C is an asymptotically nonexpansive mapping with {θn} and {Ti}N
i=1 are N non-

expansive self-mappings on C, and B1,B2 : C → H are α-inverse-strongly monotone and β -

inverse-strongly monotone, respectively.

Ω=∩N
i=0Fix(Ti)∩GSVI(C,B1,B2) 6= /0, where T0 := T , GSVI(C,B1,B2) := Fix(G) and G :=

PC(I− µ1B1)PC(I− µ2B2) for constants µ1 ∈ (0,2α) and µ2 ∈ (0,2β ) and F : C→ H is κ-

Lipschitzian and η-strongly monotone such that νδ < τ := 1−
√

1−ρ(2η−ρκ2) for ν ≥ 0

and ρ ∈ (0, 2η

κ2 ).

T n
i := (1−δ i

n)I +δ i
nTi where δ i

n ∈ (0,1) ∀n≥ 1, i = 1,2, ...,N.

{sn} ⊂ (0,1] and {αn},{βn},{γn} ⊂ (0,1) such that

(i) αn + γn ≤ 1 ∀n≥ 1;

(ii) ∑
∞
n=1 αn = ∞, limn→∞ αn = 0, ∑

∞
n=1 |αn+1−αn|< ∞;

(iii) limn→∞
θn
αn

= 0, ∑
∞
n=1 |δ i

n+1−δ i
n|< ∞ for i = 1,2, ...,N;

(iv) 0 < ε ≤ sn ≤ 1, ∑
∞
n=1 |sn+1− sn|< ∞;

(v) {βn} ⊂ [σ ,1), 0 < limn→∞ βn = β < 1, ∑
∞
n=1 |βn+1−βn|< ∞;

(vi) 0 < liminfn→∞ γn ≤ limsupn→∞ γn < 1 and ∑
∞
n=1 |γn+1− γn|< ∞.

Theorem 3.1. labelth1 For any given x1 ∈C, let {xn} be a sequence generated by
zn = PC(I−µ1B1)PC(I−µ2B2)(snxn +(1− sn)zn),

yn = βnxn +(1−βn)T n
N T n

N−1 · · ·T n
1 zn,

xn+1 = PC[αnν f (xn)+ γnxn +((1− γn)I−αnρF)T nyn] ∀n≥ 1.
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Then xn→ x∗ ∈ Ω provided ∑
∞
n=1 ‖T n+1yn−T nyn‖ < ∞, where x∗ ∈ Ω is a unique solution to

〈(ρF−ν f )x∗, p− x∗〉 ≥ 0 ∀p ∈Ω.

Proof. Set un = snxn +(1− sn)zn and vn = PC(I− µ2B2)un. From our conditions on the pa-

rameters, one may assume, without loss of generality, that {γn} ⊂ [a,b] ⊂ (0,1) and θn ≤
αn(τ−νδ )

2 ∀n≥ 1. Hence

αnνδ + γn +(1− γn−αnτ)(1+θn)≤ 1−αn(τ−νδ )+θn ≤ 1− αn(τ−νδ )

2
.

Observe that G : C→C is defined as G := PC(I−µ1B1)PC(I−µ2B2), where µ1 ∈ (0,2α) and

µ2 ∈ (0,2β ). Lemma 2.4 shows that G is nonexpansive. It can be readily seen that there exists a

unique element un ∈C such that un = snxn +(1− sn)Gun. So, the hybrid implicit extragradient

method can be rewritten as
un = snxn +(1− sn)Gun,

yn = βnxn +(1−βn)T n
N T n

N−1 · · ·T n
1 Gun,

xn+1 = PC[αnν f (xn)+ γnxn +((1− γn)I−αnρF)T nyn] ∀n≥ 1.

One claims that PΩ(ν f + I−ρF) is a contraction. An application of Lemma 2.3, we have

‖PΩ(ν f + I−ρF)x−PΩ(ν f + I−ρF)y‖ ≤ ν‖ f (x)− f (y)‖+‖(I−ρF)x− (I−ρF)y‖

≤ νδ‖x− y‖+(1− τ)‖x− y‖= [1− (τ−νδ )]‖x− y‖ ∀x,y ∈C,

which implies that PΩ(ν f + I−ρF) is a contraction. So, x∗ = PΩ(ν f + I−ρF)x∗. Thus, there

exists a unique solution x∗ ∈Ω = ∩N
i=0Fix(Ti)∩GSVI(C,B1,B2) to

〈(ρF−ν f )x∗, p− x∗〉 ≥ 0 ∀p ∈Ω.

Next, we divide the rest of the proof into several steps.

Step 1. We show {xn} is bounded. Indeed, taking an arbitrary p∈Ω, one has Gp= p, T p= p

and Ti p = p for i = 1, ...,N. Since G : C→C is nonexpansive, one obtains from that ‖un− p‖ ≤

sn‖xn− p‖+(1− sn)‖un− p‖. Hence ‖un− p‖ ≤ ‖xn− p‖ ∀n ≥ 1. Then, according to the

relationship ∩N
i=1Fix(Ti) = ∩N

i=1Fix(T n
i ) = Fix(T n

N T n
N−1 · · ·T n

1 ), we get from Lemma 2.1 that

‖yn− p‖ ≤ βn‖xn− p‖+(1−βn)‖T n
N T n

N−1 · · ·T n
1 Gun− p‖

≤ βn‖xn− p‖+(1−βn)‖Gun− p‖

≤ ‖xn− p‖.
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Since αn + γn ≤ 1 leads to 0 < αn
1−γn
≤ 1, from Lemma 2.1, we have

‖xn+1− p‖ ≤ ‖αn(ν f (xn)−ρF p)+ γn(xn− p)+((1− γn)I−αnρF)T nyn

−((1− γn)I−αnρF)p‖

≤ αnνδ‖xn− p‖+αn‖(ν f −ρF)p‖+ γn‖xn− p‖

+(1− γn)‖(I− αn
1−γn

ρF)T nyn− (I− αn
1−γn

ρF)p‖

≤ αnνδ‖xn− p‖+αn‖(ν f −ρF)p‖

+γn‖xn− p‖+(1− γn−αnτ)(1+θn)‖yn− p‖

≤ [αnνδ + γn +(1− γn−αnτ)(1+θn)]‖xn− p‖+αn‖(ν f −ρF)p‖

≤ [1− αn(τ−νδ )
2 ]‖xn− p‖+ αn(τ−νδ )

2 · 2‖(ν f−ρF)p‖
τ−νδ

≤max{2‖(ν f−ρF)p‖
τ−νδ

,‖xn− p‖}.

By induction, we get ‖xn− p‖ ≤max{2‖(ν f−ρF)p‖
τ−νδ

,‖x1− p‖}. Thus, {xn} is a bounded vector

sequence.

Step 2. We show that xn− xn+1→ 0 and yn− yn+1→ 0.

Indeed, we estimate

‖yn+1− yn‖

= ‖(1−βn)(T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1−T n
N T n

N−1 · · ·T n
1 zn)

−(βn+1−βn)T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1 +βn(xn+1− xn)+(βn+1−βn)xn+1‖

≤ βn‖xn+1− xn‖+(1−βn)‖T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1−T n
N T n

N−1 · · ·T n
1 zn‖

+|βn+1−βn|‖xn+1−T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1‖

≤ βn‖xn+1− xn‖+(1−βn)[‖zn+1− zn‖+‖T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1−T n
N T n

N−1 · · ·T n
1 zn+1‖]

+|βn+1−βn|‖xn+1−T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1‖.

It follows from the definition of T n+1
i that

‖T n+1
2 T n+1

1 zn+1−T n
2 T n

1 zn+1‖

≤ ‖T n+1
2 T n+1

1 zn+1−T n+1
2 T n

1 zn+1‖+‖T n+1
2 T n

1 zn+1−T n
2 T n

1 zn+1‖

≤ ‖T n+1
1 zn+1−T n

1 zn+1‖+‖T n+1
2 T n

1 zn+1−T n
2 T n

1 zn+1‖

≤ |δ 1
n+1−δ 1

n |(‖zn+1‖+‖T1zn+1‖)+ |δ 2
n+1−δ 2

n |(‖T n
1 zn+1‖+‖T2T n

1 zn+1‖),
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from which it follows that

‖T n+1
3 T n+1

2 T n+1
1 zn+1−T n

3 T n
2 T n

1 zn+1‖

≤ ‖T n+1
2 T n+1

1 zn+1−T n
2 T n

1 zn+1‖+‖(1−δ 3
n+1)T

n
2 T n

1 zn+1

+δ 3
n+1T3T n

2 T n
1 zn+1− (1−δ 3

n )T
n

2 T n
1 zn+1−δ 3

n T3T n
2 T n

1 zn+1‖

≤ |δ 1
n+1−δ 1

n |(‖zn+1‖+‖T1zn+1‖)+ |δ 2
n+1−δ 2

n |(‖T n
1 zn+1‖

+‖T2T n
1 zn+1‖)+ |δ 3

n+1−δ 3
n |(‖T n

2 T n
1 zn+1‖+‖T3T n

2 T n
1 zn+1‖).

By induction on N, we have

‖T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1−T n
N T n

N−1 · · ·T n
1 zn+1‖

≤ |δ 1
n+1−δ 1

n |(‖zn+1‖+‖T1zn+1‖)+ |δ 2
n+1−δ 2

n |(‖T n
1 zn+1‖+‖T2T n

1 zn+1‖)

+ · · ·+ |δ N
n+1−δ N

n |(‖T n
N−1 · · ·T n

1 zn+1‖+‖TNT n
N−1 · · ·T n

1 zn+1‖).

Since ∑
∞
n=1 ∑

N
i=1 |δ i

n−δ i
n+1|< ∞, one asserts that

sup
n≥1
{

N

∑
i=1

(‖T n
i−1 · · ·T n

1 zn+1‖+‖TiT n
i−1 · · ·T n

1 zn+1‖)} ≤M0 for some M0 > 0,

with T n
0 := I, and hence

∞

∑
n=1
‖T n+1

N T n+1
N−1 · · ·T

n+1
1 zn+1−T n

N T n
N−1 · · ·T n

1 zn+1‖ ≤
∞

∑
n=1

N

∑
i=1
|δ i

n+1−δ
i
n|M0 < ∞.

On the other hand, since αn + γn ≤ 1 implies 0 < αn
1−γn
≤ 1, we deduce that

‖xn+2− xn+1‖ ≤ ‖αn+1ν f (xn+1)−αnν f (xn)+((1− γn+1)I−αn+1ρF)T n+1yn+1

−((1− γn)I−αnρF)T nyn + γn+1xn+1− γnxn‖

= ‖αn+1ν( f (xn+1)− f (xn))+(1− γn+1)[(I− αn+1
1−γn+1

ρF)T n+1yn+1

−(I− αn+1
1−γn+1

ρF)T nyn]+ (αn+1−αn)(ν f (xn)−ρFT nyn)

+(γn+1− γn)(xn−T nyn)+ γn+1(xn+1− xn)‖

≤ αn+1νδ‖xn+1− xn‖+(1− γn+1−αn+1τ)(1+θn+1)‖yn+1− yn‖

+‖T n+1yn−T nyn‖+(|αn+1−αn|+ |γn+1− γn|)M1 + γn+1‖xn+1− xn‖,

where supn≥1{‖ν f (xn)−ρFT nyn‖+ ‖xn−T nyn‖} ≤M1 for some M1 > 0. Also, we observe

that

‖zn+1− zn‖ ≤ ‖sn+1xn+1 +(1− sn+1)zn+1− snxn− (1− sn)zn‖

≤ sn+1‖xn+1− xn‖+(1− sn+1)‖zn+1− zn‖+ |sn+1− sn|‖xn− zn‖,
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which immediately yields ‖zn+1− zn‖ ≤ ‖xn+1− xn‖+ |sn+1−sn|
ε
‖xn− zn‖. From thees estima-

tions, one has

‖yn+1− yn‖

≤ βn‖xn+1− xn‖+(1−βn)[‖xn+1− xn‖+ |sn+1−sn|
ε
‖xn− zn‖+‖T n+1

N T n+1
N−1 · · ·T

n+1
1 zn+1

−T n
N T n

N−1 · · ·T n
1 zn+1‖]+ |βn+1−βn|‖xn+1−T n+1

N T n+1
N−1 · · ·T

n+1
1 zn+1‖

≤ ‖xn+1− xn‖+(|sn+1− sn|+ |βn+1−βn|)M2 +‖T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1

−T n
N T n

N−1 · · ·T n
1 zn+1‖,

where supn≥1{
‖xn−zn‖

ε
+‖xn−T n

N T n
N−1 · · ·T n

1 zn‖} ≤M2 for some M2 > 0. Further, one also has

‖xn+2− xn+1‖

≤ [αn+1νδ + γn+1 +(1− γn+1−αn+1τ)(1+θn+1)]‖xn+1− xn‖

+(1− γn+1−αn+1τ)(1+θn+1)[(|sn+1− sn|+ |βn+1−βn|)M2

+‖T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1−T n
N T n

N−1 · · ·T n
1 zn+1‖]

+‖T n+1yn−T nyn‖+(|αn+1−αn|+ |γn+1− γn|)M1

≤ [1− αn+1(τ−νδ )
2 ]‖xn+1− xn‖+M2(|sn+1− sn|+ |βn+1−βn|)+(|αn+1−αn|

+|γn+1− γn|)M1 +‖T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1−T n
N T n

N−1 · · ·T n
1 zn+1‖+‖T n+1yn−T nyn‖.

Since {αn(τ−νδ )
2 } ⊂ [0,1], ∑

∞
n=1

αn(τ−νδ )
2 = ∞, and

∞

∑
n=1

[M2(|sn+1− sn|+ |βn+1−βn|)+(|αn+1−αn|+ |γn+1− γn|)M1

+‖T n+1
N T n+1

N−1 · · ·T
n+1

1 zn+1−T n
N T n

N−1 · · ·T n
1 zn+1‖+‖T n+1yn−T nyn‖]< ∞

and the assumptions (ii), (iv), (v), (vi)), applying Lemma 2.2, we conclude that ‖xn+1−xn‖→ 0

as n→ ∞. So, ‖yn+1− yn‖→ 0 as n→ ∞.

Step 3. We show that xn−Gxn→ 0.

Indeed, we denote q := PC(p−µ2B2 p), and note that vn = PC(un−µ2B2un) and zn = PC(vn−

µ1B1vn). Then zn = Gun, ‖vn−q‖2 ≤ ‖un− p‖2−µ2(2β −µ2)‖B2un−B2 p‖2 and ‖zn− p‖2 ≤

‖vn−q‖2−µ1(2α−µ1)‖B1vn−B1q‖2. These two inequalities lead to

‖zn− p‖2 ≤ ‖xn− p‖2−µ2(2β −µ2)‖B2un−B2 p‖2−µ1(2α−µ1)‖B1vn−B1q‖2.
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Let wn := αnν f (xn)+ γnxn +((1− γn)I−αnρF)T nyn. From the convexity of ‖ · ‖2, we obtain

‖xn+1− p‖2 ≤ ‖αn(ν f (xn)−ρFT nyn)+ γn(xn− p)+(1− γn)(T nyn− p)‖2

≤ γn‖xn− p‖2 +(1− γn)‖T nyn− p‖2 +2αn〈ν f (xn)−ρFT nyn,wn− p〉

≤ γn‖xn− p‖2 +(1− γn)[βn‖xn− p‖2 +(1−βn)‖zn− p‖2 +θn(2+θn)‖yn− p‖2]

+2αn〈ν f (xn)−ρFT nyn,wn− p〉

≤ ‖xn− p‖2− (1− γn)(1−βn)[µ2(2β −µ2)‖B2un−B2 p‖2 +µ1(2α−µ1)‖B1vn−B1q‖2]

+θn(2+θn)‖yn− p‖2 +2αn‖ν f (xn)−ρFT nyn‖‖wn− p‖

≤ ‖xn− p‖2− (1− γn)(1−βn)[µ2(2β −µ2)‖B2un−B2 p‖2 +µ1(2α−µ1)‖B1vn−B1q‖2]

+θn(2+θn)M3 +2αnM3,

where supn≥1{‖yn− p‖2 +‖ν f (xn)−ρFT nyn‖‖wn− p‖} ≤M3 for some M3 > 0. This imme-

diately yields

(1− γn)(1−βn)[µ2(2β −µ2)‖B2un−B2 p‖2 +µ1(2α−µ1)‖B1vn−B1q‖2]

≤ ‖xn− p‖2−‖xn+1− p‖2 +θn(2+θn)M3 +2αnM3

≤ (‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖+θn(2+θn)M3 +2αnM3.

Since µ1 ∈ (0,2α), µ2 ∈ (0,2β ), limn→∞ αn = 0, limn→∞ θn = 0 and liminfn→∞(1− γn)(1−

βn)≥ (1−b)(1−β )> 0, we obtain from xn− xn+1→ 0 that

lim
n→∞
‖B2un−B2 p‖= lim

n→∞
‖B1vn−B1q‖= 0.

On the other hand, one has

2‖zn− p‖2 ≤ 2µ1‖B1q−B1vn‖‖zn− p‖+‖vn−q‖2 +‖zn− p‖2−‖vn− zn + p−q‖2,

which implies that

‖zn− p‖2 ≤ 2µ1‖B1q−B1vn‖‖zn− p‖+‖vn−q‖2−‖vn− zn + p−q‖2.

Similarly, we obtain

‖vn−q‖2 ≤ 2µ2‖B2 p−B2un‖‖vn−q‖+‖un− p‖2−‖un− vn +q− p‖2

and
‖zn− p‖2 ≤ ‖xn− p‖2−‖un− vn +q− p‖2−‖vn− zn + p−q‖2

+2µ1‖B1q−B1vn‖‖zn− p‖+2µ2‖B2 p−B2un‖‖vn−q‖.
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These lead to

‖xn+1− p‖2 ≤ γn‖xn− p‖2 +(1− γn)[βn‖xn− p‖2 +(1−βn)‖zn− p‖2

+θn(2+θn)‖yn− p‖2]+2αn〈ν f (xn)−ρFT nyn,wn− p〉

≤ ‖xn− p‖2− (1− γn)(1−βn)[‖un− vn +q− p‖2 +‖vn− zn + p−q‖2]

+2µ1‖B1q−B1vn‖‖zn− p‖+2µ2‖B2 p−B2un‖‖vn−q‖

+θn(2+θn)‖yn− p‖2 +2αn‖ν f (xn)−ρFT nyn‖‖wn− p‖

≤ ‖xn− p‖2− (1− γn)(1−βn)[‖un− vn +q− p‖2 +‖vn− zn + p−q‖2]

+2µ1‖B1q−B1vn‖‖zn− p‖+2µ2‖B2 p−B2un‖‖vn−q‖+θn(2+θn)M3 +2αnM3.

This yields that

(1− γn)(1−βn)[‖un− vn +q− p‖2 +‖vn− zn + p−q‖2]

≤ (‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖+2µ1‖B1q−B1vn‖‖zn− p‖

+2µ2‖B2 p−B2un‖‖vn−q‖+θn(2+θn)M3 +2αnM3.

Since limn→∞ αn = 0, limn→∞ θn = 0 and liminfn→∞(1− γn)(1−βn)≥ (1−b)(1−β )> 0, we

infer xn− xn+1→ 0 that limn→∞ ‖un− vn +q− p‖= 0 and limn→∞ ‖vn− zn + p−q‖= 0. So it

follows that ‖un−Gun‖ = ‖un− zn‖ ≤ ‖un− vn + q− p‖+ ‖vn− zn + p− q‖ → 0 as n→ ∞).

Since ‖un− zn‖= ‖snxn +(1− sn)zn− zn‖= sn‖xn− zn‖ implies

‖xn− zn‖=
‖un− zn‖

sn
≤ ‖un− zn‖

ε
→ 0 (n→ ∞),

we have ‖un− xn‖= ‖snxn +(1− sn)zn− xn‖= (1− sn)‖zn− xn‖→ 0 (n→ ∞), which attains

‖xn−Gxn‖≤‖xn−un‖+‖un−Gun‖+‖Gun−Gxn‖≤ 2‖xn−un‖+‖un−Gun‖→ 0 (n→∞).

Step 4. We show that xn−T n
N T n

N−1 · · ·T n
1 xn→ 0 and xn−T xn→ 0.

Observe that

‖yn− p‖2 = ‖βn(xn− p)+(1−βn)(T n
N T n

N−1 · · ·T n
1 zn− p)‖2

≤ βn‖xn− p‖2 +(1−βn)‖un− p‖2−βn(1−βn)‖xn−T n
N T n

N−1 · · ·T n
1 zn‖2

≤ ‖xn− p‖2−βn(1−βn)‖xn−T n
N T n

N−1 · · ·T n
1 zn‖2,
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which yields

‖xn+1− p‖2 ≤ γn‖xn− p‖2 +(1− γn)[‖yn− p‖2 +θn(2+θn)‖yn− p‖2]

+2αn〈ν f (xn)−ρFT nyn,wn− p〉

≤ ‖xn− p‖2− (1− γn)βn(1−βn)‖xn−T n
N T n

N−1 · · ·T n
1 zn‖2 +θn(2+θn)M3 +2αnM3.

This immediately implies that

(1− γn)βn(1−βn)‖xn−T n
N T n

N−1 · · ·T n
1 zn‖2

≤ (‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖+θn(2+θn)M3 +2αnM3.

Since limn→∞ αn = 0, limn→∞ θn = 0 and liminfn→∞(1− γn)βn(1−βn)≥ (1−b)β (1−β )> 0,

we infer from xn− xn+1 → 0 that limn→∞ ‖xn−T n
N T n

N−1 · · ·T n
1 zn‖ = 0. We observe that ‖yn−

xn‖= (1−βn)‖T n
N T n

N−1 · · ·T n
1 zn− xn‖ and

‖xn−T n
N T n

N−1 · · ·T n
1 xn‖

≤ ‖xn−T n
N T n

N−1 · · ·T n
1 zn‖+‖T n

N T n
N−1 · · ·T n

1 zn−T n
N T n

N−1 · · ·T n
1 xn‖

≤ ‖xn−T n
N T n

N−1 · · ·T n
1 zn‖+‖zn− xn‖.

Hence, limn→∞ ‖yn−xn‖= limn→∞ ‖xn−T n
N T n

N−1 · · ·T n
1 xn‖= 0. We also note that ‖xn−T nyn‖≤

‖xn− xn+1‖+αn‖ν f (xn)−ρFT nyn‖+ γn‖xn−T nyn‖, which yields

‖xn−T nyn‖ ≤ 1
1−b [‖xn− xn+1‖+αn‖ν f (xn)−ρFT nyn‖]→ 0 (n→ ∞).

Consequently, we obtain from the above two inequalities that

‖yn−T nyn‖ ≤ ‖yn− xn‖+‖xn−T nyn‖→ 0 (n→ ∞).

In view of this and ∑
∞
n=1 ‖T n+1yn−T nyn‖< ∞, we get

‖yn−Tyn‖ ≤ ‖yn−T nyn‖+‖T nyn−T n+1yn‖+‖T n+1yn−Tyn‖

≤ (2+θ1)‖yn−T nyn‖+‖T nyn−T n+1yn‖→ 0 (n→ ∞).

which implies that as n→ ∞,

‖xn−T xn‖ ≤ ‖xn− yn‖+‖yn−Tyn‖+‖Tyn−T xn‖ ≤ (2+θ1)‖xn− yn‖+‖yn−Tyn‖→ 0.

Step 5. We show that

limsup
n→∞

〈ν f (x∗)−ρF(x∗),xn− x∗〉 ≤ 0,
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where x∗ = PΩ(ν f + I−ρF)x∗.

Indeed, there exists a subsequence {xnk} of {xn} such that

limsup
n→∞

〈ν f (x∗)−ρF(x∗),xn− x∗〉= lim
k→∞
〈ν f (x∗)−ρF(x∗),xnk− x∗〉.

Since {xn} is a bounded sequence in C, one assumes that xnk ⇀ x̄ ∈C. Also, since G : C→C is

nonexpansive and T : C→C is asymptotically nonexpansive, utilizing Lemma 2.5 and xnk ⇀ x̄

that x̄ ∈ Fix(G)∩Fix(T ) = Fix(T )∩GSVI(C,B1,B2). Now, let the mapping W : C→C be de-

fined as Wx := βx+(1−β )T n
N T n

N−1 · · ·T n
1 x, with σ ≤ β < 1. It follows that W is a nonexpansive

mapping and Fix(W ) =∩N
i=1Fix(Ti). Noticing ‖Wxn−xn‖= (1−β )‖T n

N T n
N−1 · · ·T n

1 xn−xn‖, we

get limn→∞ ‖xn−Wxn‖ = 0. Utilizing Lemma 2.5 again, we deduce from (I−W )xn→ 0 and

xnk ⇀ x̄ that x̄ ∈ Fix(W ) = ∩N
i=1Fix(Ti). Consequently, x̄ ∈ ∩N

i=0Fix(Ti)∩GSVI(C,B1,B2) = Ω.

Therefore

limsup
n→∞

〈ν f (x∗)−ρF(x∗),xn− x∗〉 = lim
k→∞
〈ν f (x∗)−ρF(x∗),xnk− x∗〉

= 〈ν f (x∗)−ρF(x∗), x̄− x∗〉 ≤ 0.

So it follows from xn− xn+1→ 0 that limsupn→∞〈ν f (x∗)−ρF(x∗),xn+1− x∗〉 ≤ 0.

Step 6. We show that xn→ x∗.

Indeed, since αnνδ + γn + (1− γn−αnτ)(1+ θn) ≤ 1− αn(τ−νδ )
2 ∀n ≥ 1, it follows from

xn+1 = PCwn that

‖xn+1− x∗‖2 = 〈xn+1−wn,xn+1− x∗〉+ 〈wn− x∗,xn+1− x∗〉

≤ 〈wn− x∗,xn+1− x∗〉

≤ [αnνδ‖xn− x∗‖+ γn‖xn− x∗‖+‖((1− γn)I−αnρF)T nyn

−((1− γn)I−αnρF)x∗‖]‖xn+1− x∗‖+αn〈(ν f −ρF)x∗,xn+1− x∗〉

≤ [αnνδ‖xn− x∗‖+ γn‖xn− x∗‖+(1− γn)(1− αn
1−γn

τ)(1+θn)‖yn− x∗‖]‖xn+1− x∗‖

+αn〈(ν f −ρF)x∗,xn+1− x∗〉

≤ [1− αn(τ−νδ )
2 ]‖xn− x∗‖‖xn+1− x∗‖+αn〈(ν f −ρF)x∗,xn+1− x∗〉

≤ 1
2 [1−

αn(τ−νδ )
2 ]‖xn− x∗‖2 + 1

2‖xn+1− x∗‖2 +αn〈(ν f −ρF)x∗,xn+1− x∗〉,

which hence yields

‖xn+1− x∗‖2 ≤ [1− αn(τ−νδ )
2 ]‖xn− x∗‖2 +2αn〈(ν f −ρF)x∗,xn+1− x∗〉

= [1− αn(τ−νδ )
2 ]‖xn− x∗‖2 + αn(τ−νδ )

2 · 4〈(ν f−ρF)x∗,xn+1−x∗〉
τ−νδ

.
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Applying Lemma 2.2, we conclude that ‖xn−x∗‖→ 0 as n→∞. This completes the proof. �

Remark 3.1. Compared with the corresponding results in Cai et al. [12], Bnouhachem et al.

[13] and Ceng and Wen [14], our results improve and extend them in the following aspects. The

mappings are extended from nonexpansive mappings to asymptotically nonexpansive mappings.

The signal variational inequality is extended to the system of variational inequalities. Our

algorithm, which more robust and efficient, is based on a viscosity descent method, which link

our problem with another monotone variational inequality with mapping f . In addition, there

is no compact assumptions and the restrictions are much mild.

Under the conditions of Theorem 1, one can show that the sequence {xn} generated by

un = snxn +(1− sn)zn,

zn = PC(I−µ1B1)PC(un−µ2B2un),

yn = βnxn +(1−βn)T n
N T n

N−1 · · ·T n
1 zn,

xn+1 = PC[αnν f (xn)+ γnxn +((1− γn)I−αnρF)(ζ Tyn +(1−ζ )yn)] ∀n≥ 1,

converges to x∗ ∈Ω = ∩N
i=0Fix(Ti)∩GSVI(C,B1,B2), where x∗ ∈Ω is a unique solution to the

〈(ρF−ν f )x∗, p− x∗〉 ≥ 0 ∀p ∈Ω in norm.

Let the mapping S : C→C be defined by Sx := ζ T x+(1−ζ )x ∀x ∈C. Then λ = ζ ∈ [ζ ,1)

and T : C→C is a ζ -strict pseudocontraction. By virtue of Lemma 2.6, we know that S : C→

C is a nonexpansive mapping with θn = 0 and Fix(S) = Fix(T ). In this situation, the above

iterative scheme can be rewritten as

un = snxn +(1− sn)zn,

zn = PC(I−µ1B1)vn = PC(un−µ2B2un),

yn = βnxn +(1−βn)T n
N T n

N−1 · · ·T n
1 zn,

xn+1 = PC[αnν f (xn)+ γnxn +((1− γn)I−αnρF)Syn] ∀n≥ 1.

By the similar arguments to those in the proof of Theorem 3.1, we can obtain the desired result.
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