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Abstract. The partial complement of a graph G with respect to a set S is the graph obtained from G by removing

the edges of induced subgraph 〈S〉 and adding edges which are not in 〈S〉 of G. In this paper we introduce the

concept of distance energy of connected partial complements of a graph. Few properties on distance eigenvalues

and bounds for distance energy of connected partial complement of a graph are achieved. Further distance energy

of connected partial complement of some families of graphs are computed.
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1. INTRODUCTION

Let G be a graph with n vertices and m edges. Let A = (ai j) be the adjacency matrix of G.

Then |A−λ I| = 0 is called characteristic equation of G. The eigenvalues λ1,λ2, . . . ,λn of A,

assumed in non increasing order, are called eigenvalues of G. As A is real symmetric matrix,

the eigenvalues of G are real with sum equal to zero. The energy of G [3] is defined to be sum
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of absolute values of the eigenvalues of G. i.e., E(G) =
n
∑

i=1
|λi|. For all terminologies we refer

[1, 2, 5].

Recently Fedor V. Fomin et.al introduced partial complements of graph [4].

Let G = (V,E) be a graph and S ⊆ V . The partial complement of a graph G with respect to

S, denoted by G⊕S, is a graph (V,ES), where for any two vertices u,v ∈V , uv ∈ ES if and only

if one of the following conditions hold good:

(1) u /∈ S or v /∈ S and uv ∈ E.

(2) u,v ∈ S and uv /∈ E.

Definition 1.1. [12] Let G⊕S be partial complement of a graph G with respect to S. The partial

complement adjacency matrix of G⊕S is n×n matrix defined by Ap(G⊕S) = (ai j), where

ai j =


1, if vi and v j are adjacent with i 6= j

1, if i = j and vi ∈ S

0, otherwise.

Definition 1.2. Let G⊕ S be a connected partial complement of a graph G with respect to

S. Then partial complement distance matrix of the graph G⊕ S is n× n matrix defined by

Dp(G⊕S) = (di j), where

di j =


1, if i = j and vi ∈ S

d(vi,v j), otherwise.

Characteristic polynomial of distance partial complement of a graph G is defined by

φ{Dp(G⊕S)}= |λ I−Dp(G⊕S)| and distance partial complement energy of G⊕S is denoted

by DEp(G⊕S), is defined as
n
∑

i=1
|λi|, where λ ′i s are distance partial complement eigenvalues of

G⊕S.

The distance matrix has found a considerable use in other areas much less mathematical

than applied mathematics [10], physics or chemistry such as [11] anthropology, archeology,

genetics, geology, history, ornithology, philology, psychology, sociology, etc. The origin of

distance matrix may be traced back to very first paper of Cayley. However, this matrix was first
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introduced in rudimentary form by Brunel in 1895. The distance matrix is used in chemistry in

explicit and implicit forms [11]. The earliest explicit use of the distance matrix in chemistry is

work by Clark and Kettle in 1975, although in biochemistry it was used in disguise somewhat

earlier in 1971. Mihalić et al.[9] gave an overview of the use of the distance matrix in chemical

graph theory.

Ap(G⊕S) is adjacency matrix of a partial complement of G by attaching a loop of weight +1

to each of its vertices belonging to the induced set S. Graphs with loops are natural represen-

tations of heteroconjugated molecules, and have been much studied in chemical graph theory.

Loops of weight +1 are just the graph representation of nitrogen atoms. Matrix Dp(G⊕ S)

defined in this article may have some applications in chemistry or other subjects in future.

For more information on energy of graph we refer [6, 7, 8, 13]. The paper is organized as

follows. In section 2, properties of distance energy of connected partial complementary graphs

are achieved. In section 3, bounds for distance energy of connected partial complementary

graphs are established. In section 4, distance energy of some families of connected partial

complementary graphs are computed. Partial complements of graphs need not be connected

always. Since distance matrix is defined only for connected graph, throughout the paper we

consider only connected partial complements of graph.

2. PROPERTIES OF DISTANCE ENERGY OF CONNECTED PARTIAL COMPLEMENTARY

GRAPHS

Theorem 2.1. Let G⊕ S = (V,ES) be a connected partial complement of a graph G = (V,E).

Let φ{Dp(G⊕S),λ}= a0λ n+a1λ n−1+a2λ n−2+a3λ n−3+ . . .+an be the characteristic poly-

nomial of graph G⊕S. Then,

(i) a0 = 1.

(ii) a1 =−|S|.

(iii) a2 =
(|S|

2

)
−2n(n−1)+3mS.

Proof. (i) Directly from the definition of φ{Dp(G⊕S),λ}, it follows that a0 = 1.
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(ii) Sum of diagonal elements of Dp(G⊕S) is equal to cardinality of the set S.

Hence (−1)a1 = trace {Dp(G⊕S)}= |S|.

(iii) We have

a2 = ∑
1≤i< j≤n

∣∣∣∣∣∣aii ai j

a ji a j j

∣∣∣∣∣∣
a2 = ∑

1≤i< j≤n
(aiia j j−a2

i j)

a2 = ∑
1≤i< j≤n

aiia j j− ∑
1≤i< j≤n

a2
i j

a2 =

(
|S|
2

)
−2n(n−1)+3mS.

�

Theorem 2.2. If λ1,λ2, . . . ,λn represents distance eigenvalues of connected G ⊕ S, then

(i)
n
∑

i=1
λi = |S|

(ii)
n
∑

i=1
λ 2

i = k+4n2−4n−6mS, where mS is number of edges of G⊕S.

Proof. (i) Sum of eigenvalues of Dp(G⊕S) is equal to trace of Dp(G⊕S),

n

∑
i=1

λi =
n

∑
i=1

dii = |S|.

(ii) The sum of squares of eigenvalues of Dp(G⊕S) is the trace of D2
p(G⊕S).

i.e,
n

∑
i=1

λ
2
i =

n

∑
i=1

n

∑
j=1

di jd ji

=
n

∑
i=1

d2
ii +∑

i6= j
di jd ji

= |S|+2 ∑
i< j

d2
i j

= k+4n2−4n−6ms,

where ms is number of edges of G⊕S. �
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Theorem 2.3. Let G⊕ S1 and H⊕ S2 be two connected partial complements of graphs G and

H respectively on n vertices. Let mS1,mS2 denote number of edges of G⊕ S1 and H ⊕ S2 re-

spectively. If λ1 ≥ λ2 ≥ . . .≥ λn and λ ′1 ≥ λ ′2 ≥ . . .≥ λ ′n are distance eigenvalues of G⊕S1 and

H⊕S2 respectively, then
n
∑

i=1
λiλ
′
i ≤

√
(|S1|−6mS1 +4n2−4n)(|S2|−6mS2 +4n2−4n).

Proof. Applying Cauchy Schwarz inequality for (λ1,λ2, . . . ,λn) and (λ ′1,λ
′
2, . . . ,λ

′
n) we get,(

n

∑
i=1

λiλ
′
i

)2

≤

(
n

∑
i=1

λ
2
i

)(
n

∑
i=1

λ
′2
i

)
n

∑
i=1

λiλ
′
i ≤

√
(|S1|−6mS1 +4n2−4n)(|S2|−6mS2 +4n2−4n).

�

3. BOUNDS FOR DISTANCE ENERGY OF CONNECTED PARTIAL COMPLEMENTARY

GRAPHS

Theorem 3.1. Let G⊕S be connected partial complement of a graph G with induced set |S|= k.

Then√
k+2(2n2−2n−3mS)≤ DEp(G⊕S)≤

√
n[k+2(2n2−2n−3mS)].

Proof. Taking ai = 1,bi = |λi| in Cauchy Schwarz inequality we get,(
n

∑
i=1
|λi|

)2

≤

(
n

∑
i=1

1

)(
n

∑
i=1

λ
2
i

)

(DEp(G⊕S))2 ≤ n[k+2(2n2−2n−3mS)]

DEp(G⊕S)≤
√

n[k+2(2n2−2n−3mS)].

Also [
n

∑
i=1
|λi|

]2

≥
n

∑
i=1
|λi|2

[DEp(G⊕S)]2 ≥ k+2(2n2−2n−3mS)

DEp(G⊕S)≥
√

k+2(2n2−2n−3mS).

�
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Theorem 3.2. Let G⊕S be a connected partial complement of a graph G on n vertices with

induced set S of order k. Then DEp(G⊕ S) ≥
√

k+2(2n2−2n−3mS)+n(n−1)D2/n where

D = |Dp(G⊕S)|.

Proof. Using arithmetic mean and geometric mean inequality,

1
n(n−1) ∑

i6= j
|λi||λ j| ≥

[
∏
i 6= j
|λi||λ j|

] 1
n(n−1)

=

[
n

∏
i=1
|λi|2(n−1)

] 1
n(n−1)

=

[
n

∏
i=1
|λi|

] 2
n

= [det(Dp(G⊕S))]2/n

= D2/n.

Hence,

∑
i 6= j
|λi||λ j| ≥ n(n−1)D2/n.

Now consider

[DEp(G⊕S)]2 = (
n

∑
i=1
|λi|)2

=
n

∑
i=1
|λi|2 +∑

i 6= j
|λi||λ j|.

Thus,

DEp(G⊕S)≥
√

k+2(2n2−2n−3mS)+n(n−1)D2/n.

�

Theorem 3.3. Let G⊕S = (V,ES) be a connected graph with induced subgraph < S >. Then

k ≤ DEp(G⊕S)≤
√

2mS[k+2(2n2−2n−3mS)].
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Proof. Let λ1,λ2, . . . ,λn be the distance eigenvalues of G⊕S.

Since,
n

∑
i=1

λi = |S|= k

and
n

∑
i=1

λ
2
i = k+2(2n2−2n−3ms),

we have

∑
i< j

λiλ j =

(
k
2

)
−2n(n−1)+3mS.(1)

Now consider

[DEp(G⊕S)]2 =

(
n

∑
i=1
|λi|

)2

=
n

∑
i=1
|λi|2 +2 ∑

1≤i≤ j≤n
|λi||λ j|

≥
n

∑
i=1
|λi|2 +2

∣∣∣∣∣∑i< j
λiλ j

∣∣∣∣∣
[DEp(G⊕S)]2 ≥ k+2(2n2−2n−3ms)+2

[(
k
2

)
−2n(n−1)+3mS

]
by using theorem (2.2) and equation (1).

Hence,

DEp(G⊕S)≥ k.

From theorem (3.1), we have DEp(G⊕S)≤
√

n[k+2(2n2−2n−3mS)].

Since n≤ 2mS,

DEp(G⊕S)≤
√

2mS[k+2(2n2−2n−3mS)].

Thus,

k ≤ DEp(G⊕S)≤
√

2mS[k+2(2n2−2n−3mS)].

�
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Theorem 3.4. Let G⊕S = (V,ES) be a connected partial complement of a graph G = (V,E) of

order n and size mS and ρ(G⊕S) = max
1≤i≤n

{|λi|} be the distance spectral radius of G⊕S. Then

√
k+2(2n2−2n−3ms)

n
≤ ρ(G⊕S)≤

√
k+2(2n2−2n−3ms).

Proof. Consider

ρ
2(G⊕S) = max

1≤i≤n
{|λi|2}

≤
n

∑
j=1

λ
2
j = k+2(2n2−2n−3ms).

ρ(G⊕S)≤
√

k+2(2n2−2n−3ms).

Next consider

nρ
2(G⊕S)≥ max

1≤i≤n
{|λi|2}

≥ k+2(2n2−2n−3ms).

We have,

ρ(G⊕S)≥

√
k+2(2n2−2n−3ms)

n
.

Hence, √
k+2(2n2−2n−3ms)

n
≤ ρ(G⊕S)≤

√
k+2(2n2−2n−3ms).

�

Lemma 3.1. [8] Let a,a1,a2, . . . ,an,A and b,b1,b2, . . . ,bn,B be real numbers such that a ≤

ai ≤ A and b≤ bi ≤ B, ∀ i = 1,2, ...n. Then the following inequality is valid.

(2)

∣∣∣∣∣n n

∑
i=1

aibi−
n

∑
i=1

ai

n

∑
i=1

bi

∣∣∣∣∣≤ α(n)(A−a)(B−b)

where α(n) = n[n
2 ](1−

1
n [

n
2 ]) and [x] denote the integral part of a real number and equality

holds if and only if a1 = a2 = ...= an and b1 = b2 = ...= bn.
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Theorem 3.5. Let G⊕S be a connected partial complement of G on n vertices and ms edges.

Let |λ1|, |λ2|, . . . , |λn| be a non-increasing order of distance eigenvalues of G⊕S. Then

DEp(G⊕S)≥
√

n(k+4n2−4n−6mS)−α(n)(|λ1|− |λn|)2.

Proof. Taking ai = bi = |λi|, a = b = |λn| and A = B = |λ1| in Lemma 3.1, we obtain

(3)

∣∣∣∣∣∣n
n

∑
i=1
|λi|2−

(
n

∑
i=1

λi

)2
∣∣∣∣∣∣≤ α(n)(|λ1|− |λn|)2.

But
n

∑
i=1
|λi|2 = k+4n2−4n−6mS.

Inequality (3) becomes n(k+4n2−4n−6mS)− [DEp(G⊕S)]2 ≤ α(n)(|λ1|− |λn|)2

DEp(G⊕S)≥
√

n(k+4n2−4n−6mS)−α(n)(|λ1|− |λn|)2.

�

Lemma 3.2. [8] Let ai 6= 0, bi,r and R be real numbers satisfying rai ≤ bi ≤ Rai, then the

following inequality holds

n

∑
i=1

b2
i + rR

n

∑
i=1

ai ≤ (r+R)
n

∑
i=1

aibi.

Theorem 3.6. Let G⊕ S be connected partial complement of G on n vertices and mS edges

with induced subgraph < S > . Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| > 0 be a non-increasing order of

eigenvalues of Dp(G⊕S) then

DEp(G⊕S)≥ n(k+4n2−4n−6mS + |λ1||λn|)
|λ1|+ |λn|

.

Proof. Taking bi = |λi|, ai = 1,r = |λn| and R = |λ1| in Lemma 3.2, we obtain
n

∑
i=1
|λi|2 + |λ1||λn|

n

∑
i=1

1≤ (|λ1|+ |λn|)
n

∑
i=1
|λi|

n

∑
i=1
|λi|2 + |λ1||λn|n≤ (|λ1|+ |λn|)DEp(G⊕S)

DEp(G⊕S)≥ n(k+4n2−4n−6mS + |λ1||λn|)
|λ1|+ |λn|

.

�
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Theorem 3.7. Let G⊕S be connected partial complement of a graph G on n vertices and mS

edges. Suppose that λ1 ≥ λ2 ≥ . . .≥ λn are the distance eigenvalues of G⊕S, then

DEp(G⊕S)≤ λ1 +
√

(n−1)(k+4n2−4n−6mS−λ 2
1 ).

Proof. Applying Cauchy Schwarz inequality for (n−1) terms,

(
n

∑
i=2

λi)
2 ≤ (

n

∑
i=2

1)(
n

∑
i=2

λ
2
i )

[DEp(G⊕S)−λ1]
2 ≤ (n−1)(k+4n2−4n−6mS−λ

2
1 )

DEp(G⊕S)≤ λ1 +
√
(n−1)(k+4n2−4n−6mS−λ 2

1 ).

�

Theorem 3.8. If G⊕S is a connected partial complement of a graph G with n vertices and mS

edges and 2mS ≥ n, then,

DEp(G⊕S)≤ k+4n2−4n−6mS

n
+

√√√√(n−1)

[
k+4n2−4n−6mS−

(
k+4n2−4n−6mS

n

)2
]
.

Proof. From theorem 3.7, we have,

DEp(G⊕S)≤ λ1 +
√

(n−1)(k+4n2−4n−6mS−λ 2
1 ).

Let

f (x) = x+
√
(n−1)(k+4n2−4n−6mS− x2).

For decreasing function

f ′(x)≤ 0⇒ 1− 2x(n−1)

2
√

(n−1)(k+4n2−4n−6mS− x2)
≤ 0

⇒ x≥

√
k+4n2−4n−6mS

n
.

Since 2mS + |S| ≥ n, we have,

√
k+4n2−4n−6mS

n
≤ k+4n2−4n−6mS

n
≤ λ1.

Thus,

DEp(G⊕S)≤ k+4n2−4n−6mS

n
+

√√√√(n−1)

[
k+4n2−4n−6mS−

(
k+4n2−4n−6mS

n

)2
]
.
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�

4. DISTANCE PARTIAL COMPLEMENT SPECTRUM OF SOME FAMILIES OF GRAPHS

Theorem 4.1. If Kn is complete graph of order n and Kn⊕S is its connected partial complement,

then

Dp-complement spectrum of Kn⊕S with |S|= k,k < n is −1
(n+ k−2)+

√
5k2 +n2−2nk

2
(n+ k−2)−

√
5k2 +n2−2nk

2
n−2 1 1

 .

Proof. Dp(Kn⊕S) =

(2J− I)k×k Jk×(n−k)

J(n−k)×k (J− I)(n−k)×(n−k)


n×n

is the distance partial complement

matrix of Kn⊕S. The result is proved by showing AZ = λZ for certain vectors Z and by making

use of fact that the geometric multiplicity and algebraic multiplicity of each distance eigenvalue

λ is same, as Dp(Kn⊕S) is real and symmetric.

Let Z =

X

Y

 be an eigenvector of order 2n partitioned conformally with Dp(Kn⊕S).

Consider

(4) [Dp(Kn⊕S)−λ I]

X

Y

=

[2J− (λ +1)I]X + JY

JX +[J− (λ +1)I]Y

 .
First, let X = Xi = e1− ei, i = 2,3, . . . ,k and Y = Yj = e1− e j, j = 2,3, . . . ,n− k.

From equation (4), we have [2J− (λ +1)I]Xi + JYj =−(λ +1)Xi.

So, λ = 1 is the distance eigenvalue with multiplicity of at least (n−2) since there are (k−1)

independent vectors of the form Xi and n− k−1 independent vectors of the form Yj.

Let X = 1k and Y =

(
λ − k+1

λ +1

)
1n−k where λ is any root of the equation

(5) λ
2 +(2−n− k)λ − k2 +nk−n− k+1 = 0.

From equation (4),

[2J− (λ +1)I]1k + J
(

λ − k+1
λ +1

)
1n−k = 2k− (λ +1)1k +

(
λ − k+1

λ +1

)
(n− k)1k

= [λ 2 +(2−n− k)λ − k2 +nk−n− k+1]1k.
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Using equation (5), we obtain λ =
(n+ k−2)+

√
5k2 +n2−2nk

2
and λ =

(n+ k−2)−
√

5k2 +n2−2nk
2

are distance eigenvalues both with multiplicity of at least

one.

Thus distance partial complement spectrum of Kn⊕S is −1
(n+ k−2)+

√
5k2 +n2−2nk

2
(n+ k−2)−

√
5k2 +n2−2nk

2
n−2 1 1

 and distance

partial complement energy of (Kn⊕S) is DEp(Kn⊕S) = (n−2)+
√

5k2 +n2−2nk.

�

Theorem 4.2. Let S0
n be the crown graph of order 2n and S0

n⊕S be its connected partial com-

plement with |S|= n, then distance partial complement spectrum of S0
n⊕S is−1+

√
2 −1−

√
2

(3n−2)+
√

5n2 +4n+8
2

(3n−2)−
√

5n2 +4n+8
2

n−1 n−1 1 1

 .

Proof. Dp(S0
n⊕S) =

 Jn×n (J+ I)n×n

(J+ I)n×n 2(J− I)n×n


2n×2n

is the distance partial complement matrix

of S0
n⊕S. The result is proved by showing AZ = λZ for certain vector Z and by making use of

fact that the geometric multiplicity and algebraic multiplicity of each distance eigenvalue λ is

same, as Dp(S0
n⊕S) is real and symmetric.

Let Z =

X

Y

 be an eigenvector of order 2n partitioned conformally with Dp(S0
n⊕S).

Consider

(6) [Dp(S0
n⊕S)−λ I]

X

Y

=

 [(J−λ I)X +(J+ I)Y

(J+ I)X +[2J− (λ +2)I]Y

 .

First, Let X = 1n and Y =
λ −n
n+1

1n where λ is any root of the equation

(7) λ
2 +(2−3n)λ +n2−4n−1 = 0.
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Then from equation (6), (J−λ I)1+(J+ I)
λ −n
n+1

1n = (n−λ )1n +(n+1)
λ −n
n+1

1n = 0

and also

(J−λ I)1n +[2J− (λ −2)]
λ −n
n+1

1n = (n+1)1n +(2n−λ −2)
λ −n
n+1

1n

=

(
−λ 2 +(3n−2)λ −n2 +4n+1

n+1

)
1n.

From equation (7), λ =
(3n−2)+

√
5n2 +4n+8

2
and λ =

(3n−2)−
√

5n2 +4n+8
2

are dis-

tance eigenvalues both with multiplicity of at least one.

Let Xi = e1−ei, i = 2,3, . . . ,n and Yi = λXi, where λ is any root of the equation λ 2+2λ −1=0.

Observe that JXi = JYi = 0.

From equation (6), (J−λ I)Xi +(J+ I)λXi =−λXi +λXi = 0

and (J+ I)Xi +[2I− (λ +2)I]λXi = (−λ 2−2λ +1)Xi.

From equation (7), λ =−1+
√

2 and λ =−1−
√

2 both distance eigenvalues are of multiplic-

ity at least (n−1) as there are (n−1) linearly independent vectors of the form Xi .

Distance partial complement spectrum of S0
n⊕S is−1+

√
2 −1−

√
2

(3n−2)+
√

5n2 +4n+8
2

(3n−2)−
√

5n2 +4n+8
2

n−1 n−1 1 1

 and distance

partial complement energy is DEp(S0
n⊕S) = 2

√
2(n−1)+

√
5n2 +4n+8. �

Theorem 4.3. Let Kn×2 be cocktail party graph with vertex set V = {v1,v2, . . . ,vn,u1,u2, . . . ,un}

and |S| = {v1,v2, . . . ,vn}. Let Kn×2⊕ S be its connected partial complement. Then distance

partial complement spectrum of Kn×2⊕S is 0 −2
(3n−2)+

√
5n2 +8n+4

2
(3n−2)−

√
5n2 +8n+4

2
n−1 n−1 1 1

 .

Proof. Dp(Kn×2⊕S) =

(2I− J)n×n (J+ I)n×n

(J+ I)n×n (J− I)n×n


2n×2n

is the distance partial complement ma-

trix of Kn×2⊕S. The result is proved by showing AZ = λZ for certain vectors Z and by making

use of fact that the geometric multiplicity and algebraic multiplicity of each distance eigenvalue

λ is same, as Dp(Kn×2⊕S) is real and symmetric.
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Let Z =

X

Y

 be an eigenvector of order 2n partitioned conformally with Dp(Kn×2⊕S).

Note that

(8) [D(Kn×2⊕S)−λ I]

X

Y

=

[2J− (λ +1)I]X +(J+ I)Y

(J+ I)X +[J− (λ +1)Y

 .
Case 1: Let X = 1n and Y =

λ −2n+1
n+1

1n, where λ is any root of the equation

(9) λ
2 +(2−3n)λ +n2−5n = 0.

Then from equation (8),

[2J− (λ +1)I]1n +(J+ I)
λ −2n+1

n+1
1n =

[
(2n−λ −1)+

(n+1)(λ −2n+1)
n+1

]
1n = 0

and

(J+ I)1n +[J− (λ +1)I]
λ −2n+1

n+1
1n =

[
(n+1)+

(n−λ −1)(λ −2n+1)
n+1

]
1n

=− [λ 2 +(2−3n)λ +n2−5n]
n+1

1n.

From equation (9), λ =
(3n−2)+

√
5n2 +8n+4

2
and λ =

(3n−2)−
√

5n2 +8n+4
2

are the

distance eigenvalues with multiplicity of at least one.

Case 2: Let X = Xi = e1− ei, i = 2,3, . . . ,n−1 and Y = Yi = (λ +1)Xi.

From equation (8), [2J− (λ +1)I]Xi +(J+ I)Yi =−(λ +1)Xi +(λ +1)Xi = 0

also (J+ I)Xi +[J− (λ +1)I]Yi = Xi +[J− (λ +1)I](λ +1)Xi = (−λ 2−2λ )Xi.

From equation(9), λ = 0 and λ = −2 are the distance eigenvalues with multiplicity of at least

n−1.

Distance partial complement spectrum of Kn×2⊕S is 0 −2
(3n−2)+

√
5n2 +8n+4

2
(3n−2)−

√
5n2 +8n+4

2
n−1 n−1 1 1


and DEp(Kn×2⊕S) = 2(n−1)+

√
5n2 +8n+4.

�

Theorem 4.4. Let K1,n−1⊕ S be the connected partial complement of a star graph of order n

with
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|S| = k, k is the number of pendant vertices. Then characteristic poynomial of Dp(K1,n−1⊕S)

is λ k−1(λ +2)n−k−2{λ 3 +(k−2n+4)λ 2 +(2k2−2nk−n+1)λ + k2− kn− k}.

Proof. Dp(K1,n−1 ⊕ S) =


0 J1×k J1×(n−k−1)

Jk×1 Jk×k 2Jk×(n−k−1)

J(n−k−1)×1 2J(n−k−1)×k 2B(n−k−1)×(n−k−1)


n×n

is the distance

partial complement matrix of K1,n−1⊕S, where B is the adjacency matrix of complete subgraph.

Characteristic polynomial of K1,n−1⊕S is

(10) |λ I−Dp(K1,n−1⊕S)|=

∣∣∣∣∣∣∣∣∣
λ −J −J

−J λ I− J −2J

−J −2J λ I−2B

∣∣∣∣∣∣∣∣∣
n×n

On applying row operation Ri = Ri − Ri+1, i = 2,3, . . . ,k− 1,k + 1, . . . ,n− k− 2 and col-

umn operations Ci = Ci +Ci+1 + . . .+Ck, i = 2,3, . . . ,k− 1,C j = C j +C j+1, . . . ,Cn−k−1, j =

k+1, . . . ,n− k−2 in equation(10) and further simplifying the determinant, it reduces to order

3.

i.e., |λ I−Dp(K1,n−1⊕S)|= λ k−1(λ +2)n−k−2

∣∣∣∣∣∣∣∣∣
λ −k −(n− k−1)

−1 λ − k −2(n− k−1)

−1 −2k λ −2(n− k−2)

∣∣∣∣∣∣∣∣∣
The result is obtained on further expansion of determinant.

�

Theorem 4.5. Let Kp,q⊕ S be connected partial complement of complete bipartite graph of

order n = p+q such that p = a+b,q = c+d and k = a+ c with b,d 6= 0. Then characteristic

polynomial of Dp(Kp,q⊕S) is λ n−4{λ 4 +(k−2n+4)λ 3 +(ad−2ab−8ac−4n+bc+3bd−

2cd + 4)λ 2 +(2ad− 4ab− 32ac− 4k+ 2bc− 4cd + 9abc+ 3abd + 9acd + 3bcd)λ − 32ac+

18abc+18acd−9abcd}.
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Proof. Distance partial complement matrix of Kp,q⊕S is

Dp(Kp,q⊕ S) =


Ja×a 2Ja×b 3Ja×c Ja×d

2Jb×a 2Bb×b Jb×c Jb×d

3Jc×a Jc×b Jc×c 2Jc×d

Jd×a Jd×b 2Jd×c 2Bd×d


n×n

, where B is the matrix of complete sub-

graph.

Characteristic polynomial of Kp,q⊕S is

(11) |λ I−Dp(Kp,q⊕S)|=

∣∣∣∣∣∣∣∣∣∣∣∣

λ I− J −2J −3J −J

−2J λ I−2B −J −J

−3J −J λ I− J −2J

−J −J −2J λ I−2B

∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

On applying row operation Ri = Ri−Ri+1, i = 1,2, . . . ,a−1,a+1, . . . ,b−1,b+1, . . . ,c−1,

c+1 . . . ,d−1 and column operations Ci =Ci +Ci+1, . . . ,Ca,C j =C j +C j+1, . . . ,Cb,Cl =Cl +

Cl+1, . . . ,Cc,

Cm =Cm +Cm+1, . . . ,Cd , where i = 1,2, . . . ,a−1, j = a+1, . . . ,b−1, l = b+1, . . . ,c−1,

m = c+1, . . . ,d−1 in equation (11) and further simplifying the determinant, it reduces to order

4.

i.e., |λ I−Dp(Kp,q⊕S)|= λ k−2λ n−k−2

∣∣∣∣∣∣∣∣∣∣∣∣

λ −a −2b −3c −d

−2a λ −2b+2 −c −d

−3a −b λ − c −2d

−a −b −2c λ −2d +2

∣∣∣∣∣∣∣∣∣∣∣∣
4×4

.

The result is obtained by further expansion of determinant. �

5. CONCLUSION

The distance partial complement energy depends on the chosen induced set of graph such

that resultant partial complement is connected. It is quite interesting to find the distance energy

of connected partial complement graph for various induced subgraph in a graph. We found few

bounds for distance energy of connected partial complements of graph and derived the spectrum

for class of graphs.
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