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Abstract. In this paper, we introduce the concept of φ -weakly contractive condition relative to four mappings

A,B,S and T in b−metric space. We also prove the existence and uniqueness of common fixed point for two pairs

of mappings satisfying φ -weakly contractive condition by providing some examples.
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1. INTRODUCTION AND PRELIMINARIES

Gerald Jungck [1] introduced the concept of compatible mappings by generalizing the con-

cept of commuting mappings. There are various generalizations of compatible mappings and

these can be found in the literature ([2]-[4]). Weakly compatible [5] is also one of the weaker

form of compatible mappings. Following is the definition of weakly compatible mappings.

Definition 1.1. ([5]) A pair of self mappings f and g in a metric space (X ,d) are said to be

weakly compatible if f t = gt implies f gt = g f t for some t ∈ X.
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Banach contraction principle is one of the most important result for finding fixed point.Let

(X ,d) be a metric space and S,T be two self mappings on (X ,d). A point z ∈ X is said to be a

common fixed point of S and T if Sz = T z = z.

b−metric space or metric type spaces called by some authors was introduced by Bakhtin [6]

in 1989 and extended by Czerwik [7] in 1993. Since then, several papers have been published

on the fixed point theory in such spaces. The definition of b−metric and some properties are

given below:

Definition 1.2. [7] Let X be a non-empty set and d : X×X → [0,∞) be a function satisfying the

following conditions :

(i) d(x,y) = 0 if and only if x = y.

(ii) d(x,y) = d(y,x) .

(iii) d(x,y)≤ s[d(x,z)+d(z,y)],∀x,y,z ∈ X , where s≥ 1 is a real number.

The function d is called a b−metric and the space (X ,d) is called a b−metric space, in short,

bMS.

Definition 1.3. [8] Let (X ,d) be a metric space. Then a sequence (xn)n∈N in X is said to be

(i) convergent if and only if there exists x∈ X such that d(xn,x)→ 0 as n→∞. In this case,

we write lim
n→∞

xn = x.

(ii) Cauchy if and only if d(xn,xm)→ 0 as m,n→ ∞.

(iii) complete if every Cauchy sequence in X converges in X.

Rhoades [9] introduced the concept of φ -weakly contractive mappings by generalising the

Banach fixed point theorem. In this paper, we introduce the concept of φ -weakly contractive

condition for two pairs of weakly compatible mappings and proved some unique common fixed

point theorems.

Throughout this paper, N denotes the set of all positive integers, N0 = {0}∪N,R+ = [0,∞) and

Φ =
{

φ : φ : R+→R+ is upper semi continuous, and lim
n→∞

an = 0 for each sequence {an}n∈N ⊂

R+ with an+1 ≤ φ(an),∀n ∈ N
}

.

Lemma 1.1. [10] Let φ ∈Φ. Then φ(0) = 0 and φ(t)< t for all t > 0.
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Zeqing Liu et al. [11] introduced the concept of ψ-weakly contractive conditions relative to

four mappings A,B,S and T in a metric space (X ,d) as

(1) d(T x,Sy)≤ ψ
(
Mi(x,y)

)
, ∀x,y ∈ X ,

where i = 1,2,3., ψ ∈Φ.

M1(x,y) = max
{

d(Ax,By),d(Ax,T x),d(By,Sy),
1
2
[d(Ax,Sy)+d(T x,By)],

d(Ax,Sy)d(T x,By)
1+d(Ax,By)

,

d(Ax,T x)d(By,Sy)
1+d(Ax,By)

,
1+d(Ax,Sy)+d(T x,By)
1+d(Ax,T x)+d(By,Sy)

d(Ax,T x)
}
,∀x,y ∈ X ,(2)

M2(x,y) = max
{

d(Ax,By),d(Ax,T x),d(By,Sy),
1
2
[d(Ax,Sy)+d(T x,By)],

1+d(Ax,T x)
1+d(Ax,By)

d(By,Sy),
1+d(By,Sy)
1+d(Ax,By)

d(Ax,T x),

1+d(Ax,Sy)+d(T x,By)
1+d(Ax,T x)+d(By,Sy)

d(By,Sy)
}
,∀x,y ∈ X(3)

and

(4) M3(x,y) = max
{

d(Ax,By),d(Ax,T x),d(By,Sy),
1
2
[d(Ax,Sy)+d(T x,By)]

}
,∀x,y ∈ X

Now we introduce the following definition of φ -weakly contractive condition relative to four

mappings A,B,S and T in b-metric space.

Definition 1.4. Two pairs of self mappings {A,B} and {S,T} in a b−metric space (X ,d) are

said to be φ -weakly contractive mappings if they satisfy

(5) d(T x,Sy)≤ φ
(
∆i(x,y)

)
, ∀x,y ∈ X ,

where i = 1,2,3. and φ ∈Φ

∆1(x,y) = max
{

d(Ax,By),d(Ax,T x),d(By,Sy),
1
2s
[d(Ax,Sy)+d(T x,By)],

d(Ax,Sy)d(T x,By)
1+d(Ax,By)

,

d(Ax,T x)d(By,Sy)
1+d(Ax,By)

,
1+d(Ax,Sy)+d(T x,By)

1+ s
(
d(Ax,T x)+d(By,Sy)

)d(Ax,T x)
}
,∀x,y ∈ X ,(6)
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∆2(x,y) = max
{

d(Ax,By),d(Ax,T x),d(By,Sy),
1
2s
[d(Ax,Sy)+d(T x,By)],

1+d(Ax,T x)
1+d(Ax,By)

d(By,Sy),
1+d(By,Sy)
1+d(Ax,By)

d(Ax,T x),

1+d(Ax,Sy)+d(T x,By)
1+ s

(
d(Ax,T x)+d(By,Sy)

)d(By,Sy)
}
,∀x,y ∈ X(7)

and

(8) ∆3(x,y) = max
{

d(Ax,By),d(Ax,T x),d(By,Sy),
1
2s
[d(Ax,Sy)+d(T x,By)]

}
,∀x,y ∈ X .

2. MAIN RESULTS

Our main results are as follows.

Theorem 2.1. Let {A,B} and {S,T} be two pairs of self mappings in a b−metric space (X ,d)

such that

(i) {A,T} and {B,S} are weakly compatible;

(ii) T (X)⊆ B(X) and S(X)⊆ A(X);

(iii) one of A(X),B(X),S(X) and T (X) is complete;

(iv) d(T x,Sy)≤ φ
(
∆1(x,y)

)
,∀x,y ∈ X,

where φ is in Φ and s > 1 is a real number. Then, A,B,S and T have a unique common fixed

point in X.

Proof. Let x0 ∈ X . It follows from (ii) that there exist two sequences {yn}n∈N and {xn}n∈N0 in

X such that

(9) y2n+1 = Bx2n+1 = T x2n, y2n+2 = Ax2n+2 = Sx2n+1,∀n ∈ N0

Put dn = d(yn,yn+1),∀n ∈ N.

Now we prove

(10) lim
n→∞

dn = 0.

Using (iv)and (9), we derive

(11) d2n = d(T x2n,Sx2n−1)≤ φ
(
∆1(x2n,x2n−1)

)
,∀n ∈ N
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and

∆1(x2n,x2n−1) = max
{

d(Ax2n,Bx2n−1),d(Ax2n,T x2n),d(Bx2n−1,Sx2n−1),

1
2s
[d(Ax2n,Sx2n−1)+d(T x2n,Bx2n−1)],

d(Ax2n,Sx2n−1)d(T x2n,Bx2n−1)

1+d(Ax2n,Bx2n−1)
,
d(Ax2n,T x2n)d(Bx2n−1,Sx2n−1)

1+d(Ax2n,Bx2n−1)
,

1+d(Ax2n,Sx2n−1)+d(T x2n,Bx2n−1)

1+ s
(
d(Ax2n,T x2n)+d(Bx2n−1,Sx2n−1)

)d(Ax2n,T x2n)
}

= max
{

d(y2n,y2n−1),d(y2n,y2n+1),d(y2n−1,y2n),
1
2s
[d(y2n,y2n)+d(y2n+1,y2n−1)],

d(y2n,y2n)d(y2n+1,y2n−1)

1+d(y2n,y2n−1)
,
d(y2n,y2n+1)d(y2n−1,y2n)

1+d(y2n,y2n−1)
,

1+d(y2n,y2n)+d(y2n+1,y2n−1)

1+ s
(
d(y2n,y2n+1)+d(y2n−1,y2n)

)d(y2n,y2n+1)
}

= max
{

d2n−1,d2n,d2n−1,
1
2s

d(y2n+1,y2n−1),0,
d2nd2n−1

1+d2n−1
,
1+d(y2n+1,y2n−1)

1+ s(d2n +d2n−1)
d2n
}

= max
{

d2n−1,d2n
}
,∀n ∈ N.(12)

Suppose that d2n0−1 < d2n0 for some n0 ∈ N. It follows from (11), (12), φ ∈ Φ, and Lemma

1.1 that

d2n0 ≤ φ
(
∆1(x2n0,x2n0−1)

)
= φ

(
max{d2n0−1,d2n0}

)
= φ(d2n0)< d2n0,

which is a contradiction. Hence

(13) d2n ≤ d2n−1 = ∆1(x2n,x2n−1),∀n ∈ N.

Similarly we infer

d2n+1 ≤ d2n = ∆1(x2n,x2n+1),∀n ∈ N,

which together with (13) ensures

dn+1 ≤ dn,∀n ∈ N,

which means that the sequence {dn}n∈N is non-increasing and bounded. Consequently there

exists r≥ 0 with lim
n→∞

dn = r. Suppose that r > 0. It follows from (11), (13), φ ∈Φ, and Lemma
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1.1 that

r = lim
n→∞

supd2n ≤ lim
n→∞

supφ
(
∆1(x2n,x2n−1)

)
= lim

n→∞
supφ(d2n−1)≤ φ(r)< r,

which is a contradiction. Hence, r= 0, that is, (10) holds.

Next we prove that {yn}n∈N is a Cauchy sequence. Because of (10) it is sufficient to verify

that {y2n}n∈N is a Cauchy sequence. Suppose that {y2n}n∈N is not a Cauchy sequence. It follows

that there exist ε > 0 and two sub-sequences {y2m(k)}k∈N and {y2n(k)}k∈N of {y2n}n∈N such that

(14) 2n(k)> 2m(k)> 2k, d(y2m(k),y2n(k))≥ ε,∀k ∈ N,

where 2n(k) is the smallest index satisfying (14). It follows that

(15) d(y2m(k),y2n(k)−1)< ε,∀k ∈ N.

From conditions (14),(15) and using the b-metric triangular inequality, we have,

ε ≤ d(y2m(k),y2n(k))

≤ s
[
d(y2m(k),y2n(k)−1)+d(y2n(k)−1,y2n(k))

]
< s

[
ε +d(y2n(k)−1,y2n(k))

]
(16)

By taking the upper limit as k→ ∞ in (14 ) and using (16 ), we get

(17) ε ≤ lim
k→∞

supd(y2m(k),y2n(k))< sε

From triangular inequality, we have

(18) d(y2m(k),y2n(k))≤ s[d(y2m(k),y2m(k)+1)+d(y2m(k)+1,y2n(k))]

and

(19) d(y2m(k)+1,y2n(k))≤ s[d(y2m(k)+1,y2m(k))+d(y2m(k),y2n(k))]

By taking the upper limit as k→ ∞ in (14) and applying (18), (19), we get

ε ≤ lim
k→∞

supd(y2m(k),y2n(k))

≤ s
(

lim
k→∞

supd(y2m(k)+1,y2n(k))
)
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Again by taking the upper limit as k→ ∞ in (19), we get

lim
k→∞

supd(y2m(k)+1,y2n(k))

≤ s
(

lim
k→∞

supd(y2m(k),y2n(k))
)

≤ s(sε) = s2
ε

Thus

(20)
ε

s
≤ lim

k→∞
supd(y2m(k)+1,y2n(k))≤ s2

ε

Note that (6) and (16) yield

lim
k→∞

sup∆1(x2m(k),x2n(k)−1)

= lim
k→∞

supmax
{

d(Ax2m(k),Bx2n(k)−1),d(Ax2m(k),T x2m(k)),d(Bx2n(k)−1,Sx2n(k)−1),

1
2s
[d(Ax2m(k),Sx2n(k)−1)+d(T x2m(k),Bx2n(k)−1)],

d(Ax2m(k),Sx2n(k)−1)d(T x2m(k),Bx2n(k)−1)

1+d(Ax2m(k),Bx2n(k)−1)
,
d(Ax2m(k),T x2m(k))d(Bx2n(k)−1,Sx2n(k)−1)

1+d(Ax2m(k),Bx2n(k)−1)

1+d(Ax2m(k),Sx2n(k)−1)+d(T x2m(k),Bx2n(k)−1)

1+ s
(
d(Ax2m(k),T x2m(k))+d(Bx2n(k)−1,Sx2n(k)−1)

)d(Ax2m(k),T x2m(k))
}

= lim
k→∞

supmax
{

d(y2m(k),y2n(k)−1),d(y2m(k),y2m(k)+1),d(y2n(k)−1,y2n(k)),

1
2s
[d(y2m(k),y2n(k))+d(y2m(k)+1,y2n(k)−1)],

d(y2m(k),y2n(k))d(y2m(k)+1,y2n(k)−1)

1+d(y2m(k),y2n(k)−1)
,
d(y2m(k),y2m(k)+1)d(y2n(k)−1,y2n(k))

1+d(y2m(k),y2n(k)−1)
,

1+d(y2m(k),y2n(k))+d(y2m(k)+1,y2n(k)−1)

1+ s
(
d(y2m(k),y2m(k)+1)+d(y2n(k)−1,y2n(k))

)d(y2m(k),y2m(k)+1)
}

→ max
{

ε,0,0,
1
2s
(ε + ε),

ε2

1+ ε
,0,0

}
= ε as k→ ∞.(21)
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From condition (20), we have

ε ≤ lim
k→∞

supd(y2m(k)+1,y2n(k))

= lim
k→∞

supd(T x2m(k),Sx2n(k)−1)

≤ lim
k→∞

φ
(
∆1(x2m(k),x2n(k)−1)

)
≤ φ(ε)< ε

which is a contradiction. Hence {yn}n∈N is a Cauchy sequence.

Assume that A(X) is complete. Observe that {y2n}n∈N is a Cauchy sequence in A(X). Con-

sequently there exists (z,v) ∈ A(X)×X with lim
n→∞

y2n = z = Av. It is easy to see

(22) z = lim
n→∞

yn = lim
n→∞

T x2n = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n−1 = lim
n→∞

Ax2n.

Suppose that T v 6= z . Note that (6) and(22) imply

∆1(v,x2n+1) = max
{

d(Av,Bx2n+1),d(Av,T v),d(Bx2n+1,Sx2n+1),

1
2s
[d(Av,Sx2n+1)+d(T v,Bx2n+1)],

d(Av,Sx2n+1)d(T v,Bx2n+1)

1+d(Av,Bx2n+1)
,
d(Av,T v)d(Bx2n+1,Sx2n+1)

1+d(Av,Bx2n+1)
,

1+d(Av,Sx2n+1)+d(T v,Bx2n+1)

1+ s
(
d(Av,T v)+d(Bx2n+1,Sx2n+1)

)d(Av,T v)
}

→ max{d(Av,z),d(Av,T v),d(z,z),
1
2s
[d(Av,z)+d(T v,z)],

d(Av,z)d(T v,z)
1+d(Av,z)

,
d(Av,T v)d(z,z)

1+d(Av,z)
,

1+d(Av,z)+d(T v,z)
1+ s

(
d(Av,T v)+d(z,z)

)d(Av,T v)}

= max{0,d(z,T v),0,
1
2s

d(T v,z),0,0,d(z,T v)}

= d(T v,z) as n→ ∞

which together with (iv), φ ∈Φ, and lemma 1.1 gives

d(T v,z) = lim
n→∞

supd(T v,y2n+2) = lim
n→∞

supd(T v,Sx2n+1)

≤ lim
n→∞

supφ
(
∆1(v,x2n+1)

)
≤ φ

(
d(T v,z)

)
< d(T v,z),



1348 TH. BIMOL SINGH, M.R. SINGH

which is a contradiction. Hence T v = z. It follows from(ii) that there exists a point w ∈ X with

z = Bw = T v. Suppose that Sw 6= z. In light of (6) and (22), we deduce

∆1(x2n,w) = max
{

d(Ax2n,Bw),d(Ax2n,T x2n),d(Bw,Sw),
1
2s
[d(Ax2n,Sw)+d(T x2n,Bw)],

d(Ax2n,Sw)d(T x2n,Bw)
1+d(Ax2n,Bw)

,
d(Ax2n,T x2n)d(Bw,Sw)

1+d(Ax2n,Bw)
,

1+d(Ax2n,Sw)+d(T x2n,Bw)
1+ s

(
d(Ax2n,T x2n)+d(Bw,Sw)

)d(Ax2n,T x2n)
}

→ max
{

d(z,Bw),d(z,z),d(Bw,Sw),
1
2s
[d(z,Sw)+d(z,Bw)],

d(z,Sw)d(z,Bw)
1+d(z,Bw)

,
d(z,z)d(Bw,Sw)

1+d(z,Bw)
,

1+d(z,Sw)+d(z,Bw)
1+ s

(
d(z,z)+d(Bw,Sw)

)d(z,z)
}

= max
{

0,0,d(z,Sw),
1
2s

d(z,Sw),0,0,0
}

= d(z,Sw) as n→ ∞

which together with (iv), φ ∈Φ, and Lemma 1.1 yields

d(z,Sw) = lim
n→∞

supd(y2n+1,Sw) = lim
n→∞

supd(T x2n,Sw)

≤ lim
n→∞

supφ
(
∆1(x2n,w)

)
≤ φ

(
d(z,Sw)

)
< d(z,Sw),

which is impossible, and hence Sw = z. Thus (i) means Az = AT v = TAv = T z and Bz = BSw =

SBw = Sz. Suppose that T z 6= Sz. It follows from (6), (iv), φ ∈Φ and Lemma 1.1 that

∆1(z,z) = max
{

d(Az,Sz),d(Az,T z),d(Bz,Sz),
1
2s
[d(Az,Sz)+d(T z,Bz)],

d(Az,Sz)d(T z,Bz)
1+d(Az,Bz)

,
d(Az,T z)d(Bz,Sz)

1+d(Az,Bz)
,

1+d(Az,Sz)+d(T z,Bz)
1+ s

(
d(Az,T z)+d(Bz,Sz)

)d(Az,T z)
}

= max
{

d(T z,Sz),0,0,
1
2s
[d(T z,Sz)+d(T z,Sz)],

d2(T z,Sz)
1+d(T z,Sz)

,0,0
}

= d(T z,Sz)

and

d(T z,Sz)≤ φ
(
∆1(z,z)

)
= φ

(
d(T z,Sz)

)
< d(T z,Sz),
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which is a contradiction, and hence T z = Sz.

Suppose that T z 6= z. It follows from (6) that

∆1(z,w) = max
{

d(Az,Bw),d(Az,T z),d(Bw,Sw),
1
2s
[d(Az,Sw)+d(T z,Bw)],

d(Az,Sw)d(T z,Bw)
1+d(Az,Bw)

,
d(Az,T z)d(Bw,Sw)

1+d(Az,Bw)
,

1+d(Az,Sw)+d(T z,Bw)
1+ s

(
d(Az,T z)+d(Bw,Sw)

)d(Az,T z)
}

= max
{

d(T z,z),0,0,
1
2s
[d(T z,z)+d(T z,z)],

d2(T z,z)
1+d(T z,z)

,0,0
}

= d(T z,z),

which together with (iv), φ ∈Φ, and Lemma 1.1 implies

d(T z,z) = d(T z,Sw)≤ φ
(
∆1(z,w)

)
= φ

(
d(T z,z)

)
< d(T z,z),

which is impossible and hence T z = z, that is , z is a common fixed point of A,B,S and T .

Suppose A,B,S and T have another common fixed point u ∈ X \ {z}. It follows from (6), (iv),

φ ∈Φ, and Lemma 1.1 that

∆1(u,z) = max
{

d(Au,Bz),d(Au,Tu),d(Bz,Sz),
1
2s
[d(Au,Sz)+d(Tu,Bz)],

d(Au,Sz)d(Tu,Bz)
1+d(Au,Bz)

,
d(Au,Tu)d(Bz,Sz)

1+d(Au,Bz)
,

1+d(Au,Sz)+d(Tu,Bz)
1+ s

(
d(Au,Tu)+d(Bz,Sz)

)d(Au,Tu)
}

= max
{

d(u,z),0,0,
1
2s
[d(u,z)+d(u,z)],

d2(u,z)
1+d(u,z)

,0,0
}

= d(u,z)

and

d(u,z) = d(Tu,Sz)≤ φ
(
∆1(u,z)

)
= φ

(
d(u,z)

)
< d(u,z),

which is a contradiction and hence z is a unique common fixed point of A,B,S and T in X .
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Similarly, we conclude that A,B,S and T have a unique common fixed point in X if one of

B(X),S(X) and T (X) is complete. This completes the proof. �

Theorem 2.2. Let {A,B} and {S,T} be self mappings in a b−metric space (X ,d) satisfying

(i)-(iii) and

(23) d(T x,Sy)≤ φ
(
∆2(x,y)

)
,∀x,y ∈ X ,

where φ ∈ Φ and ∆2 is defined by (7) and s > 1 be a real number. Then, A,B,S and T have a

unique common fixed point in X.

Proof. Let x0 ∈ X . It follows from(ii) that there exist two sequences {yn}n∈N and {xn}n∈N0 in

X satisfying (9). Put dn = d(yn,yn+1), ∀n ∈ N.

Now, we prove that (10) holds. In view of (7) and (23), we deduce

(24) d2n = d(T x2n,Sx2n−1)≤ φ
(
∆2(x2n,x2n−1)

)
,∀n ∈ N

and

∆2(x2n,x2n−1) = max
{

d(Ax2n,Bx2n−1),d(Ax2n,T x2n),d(Bx2n−1,Sx2n−1),

1
2s
[d(Ax2n,Sx2n−1)+d(T x2n,Bx2n−1)],

1+d(Ax2n,T x2n)

1+d(Ax2n,Bx2n−1)
d(Bx2n−1,Sx2n−1),

1+d(Bx2n−1,Sx2n−1)

1+d(Ax2n,Bx2n−1)
d(Ax2n,T x2n),

1+d(Ax2n,Sx2n−1)+d(T x2n,Bx2n−1)

1+ s
(
d(Ax2n,T x2n)+d(Bx2n−1,Sx2n−1)

)d(Bx2n−1,Sx2n−1)
}

= max
{

d(y2n,y2n−1),d(y2n,y2n+1),d(y2n−1,y2n),

1
2s
[d(y2n,y2n)+d(y2n+1,y2n−1)],

1+d(y2n,y2n+1)

1+d(y2n,y2n−1)
d(y2n−1,y2n),

1+d(y2n−1,y2n)

1+d(y2n,y2n−1)
d(y2n,y2n+1),

1+d(y2n,y2n)+d(y2n+1,y2n−1)

1+ s
(
d(y2n,y2n+1)+d(y2n−1,y2n)

)d(y2n−1,y2n)
}
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= max
{

d2n−1,d2n,d2n−1,
1
2s

d(y2n+1,y2n−1),
1+d2n

1+d2n−1
d2n−1,d2n,

1+d(y2n+1,y2n−1)

1+ s
(
d2n +d2n−1

) d2n−1
}

= max
{

d2n−1,d2n,
1+d2n

1+d2n−1
d2n−1

}
∀n ∈ N.

Suppose that d2n0−1 < d2n0 for some n0 ∈ N. It follows that

d2n0(1+d2n0−1) = d2n0 +d2n0d2n0−1 > d2n0−1 +d2n0d2n0−1 = d2n0−1(1+d2n0),

that is ,

d2n0 >
1+d2n0

1+d2n0−1
d2n0−1,

which implies ∆2(x2n0,x2n0−1) = d2n0 . By means of (24), φ ∈Φ, and Lemma 1.1, we conclude

d2n0 ≤ φ
(
∆2(x2n0,x2n0−1)

)
= φ(d2n0)< d2n0 ,

which is a contradiction. Consequently, we deduce

(25) d2n ≤ d2n−1 = ∆2(x2n,x2n−1),∀n ∈ N.

Similarly, we have

(26) d2n+1 ≤ d2n = ∆2(x2n,x2n+1),∀n ∈ N.

It follows from (25) and (26) that

dn+1 ≤ dn,∀n ∈ N,

which means that the sequence {dn}n∈N is non-increasing and bounded. Consequently, there

exists r ≥ 0 with lim
n→∞

dn = r. Suppose that r > 0. It follows from (24) and (25),φ ∈ Φ, and

Lemma 1.1 that

r = lim
n→∞

supd2n ≤ lim
n→∞

supφ
(
∆2(x2n,x2n−1)

)
= lim

n→∞
supφ(d2n−1)≤ φ(r)< r,

which is a contradiction. Hence r=0, that is (10) holds.

In order to prove that {yn}n∈N is a Cauchy sequence,we need to show that {y2n}n∈N is a Cauchy
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sequence. Suppose that {y2n}n∈N is not a Cauchy sequence. It follows that there exist ε > 0

and two subsequences {y2m(k)}k∈N and{y2n(k)}n∈N of {y2n}n∈N satisfying (14) -(18) and

∆2(x2m(k),x2n(k)−1)

= max
{

d(Ax2m(k),Bx2n(k)−1),d(Ax2m(k),T x2m(k)),d(Bx2n(k)−1,Sx2n(k)−1),

1
2s
[d(Ax2m(k),Sx2n(k)−1)+d(T x2m(k),Bx2n(k)−1)],

1+d(Ax2m(k),T x2m(k))

1+d(Ax2m(k),Bx2n(k)−1)
d(Bx2n(k)−1,Sx2n(k)−1),

1+d(Bx2n(k)−1,Sx2n(k)−1)

1+d(Ax2m(k),Bx2n(k)−1)
d(Ax2m(k),T x2m(k)),

1+d(Ax2m(k),Sx2n(k)−1)+d(T x2m(k),Bx2n(k)−1)

1+ s
(
d(Ax2m(k),T x2m(k))+d(Bx2n(k)−1,Sx2n(k)−1)

)d(Bx2n(k)−1,Sx2n(k)−1)
}

= max
{

d(y2m(k),y2n(k)−1),d(y2m(k),y2m(k)+1),d(y2n(k)−1,y2n(k)),

1
2s
[d(y2m(k),y2n(k))+d(y2m(k)+1,y2n(k)−1)],

1+d(y2m(k),y2m(k)+1)

1+d(y2m(k),y2n(k)−1)
d(y2n(k)−1,y2n(k)),

1+d(y2n(k)−1,y2n(k))

1+d(y2m(k),y2n(k)−1)
d(y2m(k),y2m(k)+1),

1+d(y2m(k),y2n(k))+d(y2m(k)+1,y2n(k)−1)

1+ s
(
d(y2m(k),y2m(k)+1)+d(y2n(k)−1,y2n(k))

)d(y2n(k)−1,y2n(k))
}

→ max
{

ε,0,0,
1
2s
(ε + ε),0,0,0

}
= ε as k→ ∞.(27)

By virtue of (14),(23),(27),φ ∈Φ, and Lemma 1.1, we infer

ε = lim
k→∞

supd(y2m(k)+1,y2n(k)) = lim
k→∞

supd(T x2m(k),Sx2n(k)−1)

≤ lim
k→∞

supφ
(
∆2(x2m(k),x2n(k)−1)

)
≤ φ(ε)< ε,

which is impossible. Hence,{yn}n∈N is a Cauchy sequence.

Assume that A(X) is complete. Observe that {yn}n∈N ⊆ A(X) is a Cauchy sequence. It

follows that there exists (z,v) ∈ A(X)×X with lim
n→∞

y2n = z = Av. It is easy to show that (22)
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holds.

Suppose that T v 6= z. Note that (7),(22),(23), and φ ∈Φ imply

∆2(v,x2n+1) = max
{

d(Av,Bx2n+1),d(Av,T v),d(Bx2n+1,Sx2n+1),

1
2s
[d(Av,Sx2n+1)+d(T v,Bx2n+1)],

1+d(Av,T v)
1+d(Av,Bx2n+1)

d(Bx2n+1,Sx2n+1),

1+d(Bx2n+1,Sx2n+1)

1+d(Av,Bx2n+1)
d(Av,T v),

1+d(Av,Sx2n+1)+d(T v,Bx2n+1)

1+ s
(
d(Av,T v)+d(Bx2n+1,Sx2n+1)

)d(Bx2n+1,Sx2n+1)
}

→ max
{

d(Av,z),d(Av,T v),d(z,z),
1
2s
[d(Av,z)+(T v,z)],

1+d(Av,T v)
1+d(Av,z)

d(z,z),

1+d(z,z)
1+d(Av,z)

d(Av,T v),
1+d(Av,z)+d(T v,z)

1+ s
(
d(Av,T v)+d(z,z)

)d(z,z)
}

= max
{

0,d(z,T v),0,
1
2s

d(T v,z),0,d(z,T v),0
}

= d(T v,z) as n→ ∞

which together with (23), φ ∈Φ, and Lemma 1.1 gives

d(T v,z) = lim
n→∞

supd(T v,y2n+2) = lim
n→∞

supd(T v,Sx2n+1)

≤ lim
n→∞

supφ
(
∆2(v,x2n+1)

)
≤ φ

(
d(T v,z)

)
< d(T v,z),

which is a contradiction. Hence T v = z.

Since T (X)⊆ B(X), it follows that there exists a point w ∈ X such that z = Bw = T v.

Suppose that Sw 6= z. In light of (7) and (22), we obtain

∆2(x2n,w) = max
{

d(Ax2n,Bw),d(Ax2n,T x2n),d(Bw,Sw),
1
2s
[d(Ax2n,Sw)+(T x2n,Bw)],

1+d(Ax2n,T x2n)

1+d(Ax2n,Bw)
d(Bw,Sw),

1+d(Bw,Sw)
1+d(Ax2n,Bw)

d(Ax2n,T x2n),

1+d(Ax2n,Sw)+d(T x2n,Bw)
1+ s

(
d(Ax2n,T x2n)+(Bw,Sw)

)d(Bw,Sw)
}
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→ max
{

d(z,z),d(z,z),d(z,Sw),
1
2s
[d(z,Sw)+d(z,Bw)],

1+d(z,z)
1+d(z,z)

d(z,Sw),
1+d(z,Sw)
1+d(z,z)

d(z,z),

1+d(z,Sw)+d(z,z)
1+ s

(
d(z,z)+d(z,Sw)

)d(z,Sw)
}

= max
{

0,0,d(z,Sw),
1
2s

d(z,Sw),d(z,Sw),0,d(z,Sw)
}

= d(z,Sw) as n→ ∞

which together with (23), φ ∈Φ, and Lemma 1.1 yields

d(z,Sw) = lim
n→∞

supd(y2n+1,Sw) = lim
n→∞

supd(T x2n,Sw)

≤ lim
n→∞

supφ
(
∆2(x2n,w)

)
≤ φ

(
d(z,Sw)

)
< d(z,Sw),

which is impossible, and hence Sw = z. Clearly, (i) yields Az = AT v = TAv = T z and Bz =

BSw = SBw = Sz. Suppose that T z 6= Sz. It follows from (7) that

∆2(z,z) = max
{

d(Az,Bz),d(Az,T z),d(Bz,Sz),
1
2s
[d(Az,Sz)+d(T z,Bz)],

1+d(Az,T z)
1+d(Az,Bz)

d(Bz,Sz),
1+d(Bz,Sz)
1+d(Az,Bz)

d(Az,T z),

1+d(Az,Sz)+(T z,Bz)
1+ s

(
d(Az,T z)+d(Bz,Sz)

)d(Bz,Sz)
}

= max
{

d(T z,Sz),0,0,
1
2s
[d(T z,Sz)+d(T z,Sz)],0,0,0]

}
= d(T z,Sz).

Taking account of (23), φ ∈Φ, and Lemma 1.1 , we conclude

d(T z,Sz)≤ φ
(
∆2(z,z)

)
= φ

(
d(T z,Sz)

)
< d(T z,Sz),
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which is a contradiction, and hence T z = Sz.

Suppose that T z 6= z.It follows from (7) that

∆2(z,w) = max
{

d(Az,Bw),d(Az,T z),d(Bw,Sw),
1
2s
[d(Az,Sw)+d(T z,Bw)],

1+d(Az,T z)
1+d(Az,Bw)

d(Bw,Sw),
1+d(Bw,Sw)
1+d(Az,Bw)

d(Az,T z),

1+d(Az,Sw)+d(T z,Bw)
1+ s

(
d(Az,T z)+d(Bw,Sw)

)d(Bw,Sw)
}

= max
{

d(T z,z),0,0,
1
2s
[d(T z,z)+d(T z,z)],0,0,0

}
= d(T z,z),

which together with (23), φ ∈Φ, and Lemma 1.1 means

d(T z,z) = d(T z,Sw)≤ φ
(
∆2(z,w)

)
= φ

(
d(T z,z)

)
< d(T z,z),

which is impossible, and hence T z = z, that is, z is a common fixed point of A, B, S and T.

Suppose that A, B, S and T have another common fixed point u ∈ X \{z}. It follows from (7)

that

∆2(u,z) = max
{

d(Au,Bz),d(Au,Tu),d(Bz,Sz),
1
2s
[d(Au,Sz)+d(Tu,Bz)],

1+d(Au,Tu)
1+d(Au,Bz)

d(Bz,Sz),
1+d(Bz,Sz)
1+d(Au,Bz)

d(Au,Tu),

1+d(Au,Sz)+d(Tu,Bz)
1+ s

(
d(Au,Tu)+d(Bz,Sz)

)d(Bz,Sz)
}

= max
{

d(u,z),0,0,
1
2s
[d(u,z)+d(u,z)],0,0,0

}
= d(u,z)

which together with (23), φ ∈Φ , and Lemma 1.1 ensures

d(u,z) = d(Tu,Sz)≤ φ
(
∆2(u,z)

)
= φ

(
d(u,z)

)
< d(u,z),
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which is a contradiction, and hence z is a unique common fixed point of A, B, S and T in X.

Similarly we conclude that A, B, S and T have a unique common fixed point in X if one of

B(X),S(X), and T (X) is complete. This completes the proof. �

Similar to the proofs of Theorems 2.1 and 2.2, we have the following result and omit its proof.

Theorem 2.3. Let {A,B} and {S,T} be self mappings in a b−metric (X ,d) satisfying (i)-(iii)

and

(28) d(T x,Sy)≤ φ
(
∆3(x,y)

)
,∀x,y ∈ X ,

where φ ∈ Φ and ∆3 is defined by (8) and s > 1 is a real number. Then A,B,S and T have a

unique common fixed point in X.

Example 2.1. Let X = [0,1] be endowed with the Euclidean metric d(x,y) = |x− y|2,∀x,y ∈ X

and s = 2. Let A,B,S,T : X → X and φ : R+→ R+ be defined by

Ax = x2, Bx =
1
2

x2, Sx = 0, ∀ x ∈ X , T x =

 0, ∀x ∈ [0,1),
1
4
, x = 1

φ(t) =


16t2, ∀t ∈ [0,

1
4
),

8t−1, ∀t ∈ [
1
4
,+∞),

It is easy to see that (i) -(iii) hold, φ ∈ Φ and φ(R+) ⊂ [0, 1
4). Let x,y ∈ X. In order to verify

(iv), we have to consider two possible cases as follows:

Case 1: x ∈ X \{1}. It is clear that

d(T x,Sy) = 0≤ φ
(
∆1(x,y)

)
;

Case 2: x = 1. It follows that

∆1(1,y) = max
{∣∣1− y2

2

∣∣2, 9
16

,
y4

4
,
1
4
(1+ |1

4
− y2

2
|)2,

|14 −
y2

2 |
2

1+ |1− y2

2 |2
,

(3
4 .

y2

2 )
2

1+ |1− y2

2 |2
,

1+1+ |14 −
y2

2 |
2

1+2
(
(3

4)
2 +(y2

2 )
2
) . 9

16

}
≥ 9

16

and

d(T 1,Sy) = d(
1
4
,0) =

1
16
≤ φ(

9
16

)≤ φ
(
∆1(1,y)

)
.
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That is (iv) holds. It follows from Theorem 2.1 that the mappings A,B,S and T have a unique

common fixed point 0 ∈ X.

Example 2.2. Let X = [−1,1] be endowed with the Euclidean metric d(x,y) =
∣∣x−y

∣∣2,∀x,y∈X

Let A,B,S,T : X → X and φ : R+→ R+ be defined by

Ax =
x2

2
, T x = 0, ∀x ∈ X , Bx =

 0, ∀x ∈ [−1,1),
1
2 , x = 1,

,Sx =

 0, ∀x ∈ [−1,1),
1
8 , x = 1,

and

φ(t) =

 64t3, ∀t ∈ [0, 1
4),

32t2−1, ∀t ∈ [1
4 ,∞),

Clearly, (i) -(iii) holds and φ ∈ Φ. In order to verify (23), we have to consider two possible

cases as follows:

Case 1: y ∈ X \{1}.Obviously

d(T x,Sy) = d(0,Sy) = 0≤ φ
(
∆2(x,y)

)
;

Case 2: y=1. It follows that

∆2(x,1) = max
{∣∣1− x2

2

∣∣2, x4

4
,

9
64

,
1
2s

(∣∣x2

2
− 1

8

∣∣2 + 1
4
)
,

1+ x4

4

1+ |1−x2

2 |2
.

9
64

,
1+ 9

64

1+ |1−x2

2 |2
.
x4

4
,
1+ |x2

2 −
1
8 |

2 + 1
4

1+ s
(x4

4 + 9
64

) .
9

64
}
≥ 9

64

and

d(T x,S1) = d(0,
1
8
) =

1
64

<
9

64

d(T x,S1)≤ φ
(
∆2(x,1)

)
= φ(

9
64

) = 64
( 9

64
)3

That is, (23) holds. Consequently, Theorem 2.2 guarantees that the mappings A,B,S and T

have a unique common fixed point 0 ∈ X.

Example 2.3. Let X = R+ be endowed with the Euclidean metric d(x,y) =
∣∣x− y

∣∣2,∀x,y ∈ X.

Let A,B,S,T : X → X be defined by

Ax = x3, Sx = 1, ∀x ∈ X .
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Bx = x2, ∀x ∈ X and T x =

 1, ∀x ∈ R+−{ 1
32},

15
16 , x = 1

32

φ(t) =

 16t, ∀t ∈ [0, 1
16)

512t2−1, ∀t ∈ [ 1
16 ,∞)

Clearly, (i) - (iii) holds and φ ∈ Φ. In order to verify (28), we have to consider two possible

cases as follows :

Case (1) : x ∈ X \
{ 1

32
}
.

d(T x,Sy) = d(1,1) = 0≤ φ
(
∆3(x,y)

)
.

Case (2) : x = 1
32 . It follows that

∆3
( 1

32
,y
)

= max
{∣∣ 1

323 − y2∣∣2, ∣∣ 1
323 −

15
16

∣∣2, ∣∣y2−1
∣∣2, 1

2s

[∣∣ 1
323 −1

∣∣2 + ∣∣15
16
− y2∣∣2]}

≥
∣∣15
16
− 1

323

∣∣2 > ( 1
16
)2

=
1

256

d(T
1

32
,Sy) = d(

15
16

,1) =
∣∣15
16
−1
∣∣2 = ( 1

16
)2 =

1
256

and

d
(
T

1
32

,Sy
)
≤ φ

(
∆3(

1
32

,y)
)
= φ(

1
256

) = 16× 1
256

=
1

16

That is, (28) holds. Thus, the conditions of Theorem 2.3 are satisfied. It follows from Theorem

2.3 that the mappings A,B,S and T have a unique common fixed point 1 ∈ X.
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