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Abstract: The paper deals with a third order finite difference approach with variable mesh using the non—polynomial
spline for the solution of a problems with singularity in convection-diffusion equation. The problem's discretization
equation is constructed using the continuity condition at the inner nodes for the derivatives of first order of the
non—polynomial spline, which is not valid at singularity. At the singularity, the problem is modified in order to have
a three-term relationship. The method's tridiagonal scheme is interpreted by means of discrete invariant imbedding
algorithm. Error analysis of the method is analyzed and the maximum absolute error in the solution is tabulated. Layer
behaviour is picturized in graphs.
Keywords: singularly perturbed singular boundary value problem; variable mesh, interior nodes; singular point; non-
polynomial spline; boundary layer.
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1. INTRODUCTION

Consider the problem with singularity in convection - diffusion equation
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y'(x) =2y (x) + () + r(x) (1)
with y(0) =7y, y)=n
where 0 < e K 1, q(x),r(x) are continuous functions in (0, 1), and  y, y; are finite

constants. Letp(x) = f If p(x) >M >0 all over the domain, M is a positive constant,

then the layer exists in the neighbourhood of x = 1. If p(x) < N < 0 all over the domain, N

is a negative constant, then the layer will be in the neighborhood of x = 0.

In many areas of the applied mathematics such as quantum mechanics, elasticity, optimal
control, chemical-reactor theory, aerodynamics, fluid mechanics, geophysics, and many other
fields, this class of problems also occurs. Equations of this type show layer solutions; that is, the
problem-solving domain includes narrow areas with extremely large solution derivatives. Due to
the presence of interior or boundary layers, the numerical treatment of these problems gives
significant computational difficulties. A wide range of books and papers have been published,
including [2-8], [11], [13] detailing different methods for solving singularly perturbed boundary
value problems. In [5], authors proposed a B-spline-fitted mesh scheme to solve Eq. (1). Variety
of schemes based on tension spline and spline compression developed by Mohanty et al. [9, 10,
11] for the solution of Eq. (1). Cubic spline solution is used by Rashidinia [13] on a uniform mesh
for the solution of Eq. (1).

In the present paper, a variable mesh non polynomial spline is used to develop a
numerical method for the smooth approximation to the solution for Eq. (1). Parameter w is
introduced in the difference scheme of first order derivative term to achieve third order
convergence. The paper is organized as follows: In section 2, we develop the nonpolynomial spline
method for solving Eq. (1). In section 3, description of the method is given. The error analysis of
the method is considered in section 4. Finally, Maximum absolute errors of the solutions of the

considered examples are given in section 5.

2. NON — POLYNOMIAL SPLINE

Let 0 =x) <xy <+ <x,_1 <x, =1 beasub - division of the region [0, 1], where h; =
Xi—Xi—1, L = 1,2,..,n and h;; = ch;. Let the exact solution be y(x) and y; be an
approximation to y(x; ) achieved by the non — polynomial spline S;(x) passing through

(x; ,y; )and (x;41 ,¥i+1). The spline satisfies interpolatory conditions at x; and x;,, and also
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first derivative continuity at the common nodes (x; ,y; ).
We write S;(x) in the form
Si(x)=a; + b; (x —x;) +¢; sint (x —x;) +d; cost (x —x;),i =0,1,2,...,n (2)
where a;, b; ¢; and d; are constants and T is a free parameter.
The function in Eq. (2) interpolates y(x) at the grid points x;, i = 1,2,...,n, having the
parameter T and as 7 — 0 reduces to cubic spline.

To get the values for the coefficients of Eq. (1) in term of  y;, y;44 M; and M;,; define
Six) =y, Si(xir1 ) = yirr,  S"(x1) = My, S" (x40 ) = Mgy

From algebraic calculations, we get

=y + b Yit1— y1+M1+1_M1 _ Micos—-M;_, d _M; (3)

h; or ! 12sin0 T2

where 6 = th;,; fori = 0,1,2,...,n

Using the first order derivative continuity at (x; ,y; ), that is S;_;(x;) = S/ (x;), we get the

following relations for i =1,2,...,n— 1.

0yi-1 — (L4 0)yi + Vi1 = hiyilaiMiy + fM; + a;Miy4] 4)
-1 1 -1 1 -1 1 "
where  a; = 72h? + th;si n(rhi)"gi T 12n? + th;sin(th;)’ 2 =92 + fsino’ M=y (xj)'

j=iix1land 0 = th;,,.

3. NUMERICAL SCHEME

At the mesh points X; , the Eq. (1) may be written as

ey; x) =p(x)y +qx)y; +1; where p(x;) = xE

i

and using spline’s second derivatives, we have

eM; = p(xj)yj’(x) + q(xj)yi(xj) + ri(xj) forj=i—-1,i+1 (5)
Using Eq. (5) in Eq. (4) with the following approximations for the first derivative
, 1 [20+1 o?
Yi+1 Em[0+ 1 ]Yi+1 — (o + Dy, +m Yi-1

[ ] (c+1) 2+0
Viog = h 0'(0'+1) Yiv1 T pn Vi 0'+1yi_1
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!

Vi

IR

o(o+ 1)h;

+ ((Ga;lil) ) (1-!—70) [Piy1 + Pi—1])3’i

(ot w(1l+ o)h?q;_, — wh; [opiz1 + 2 + 0)pi_1] '
(+ Dk Vi1

1 <1 + wh?o(o + 1)qip1 + wh; [(20 + Dp;q + pi_1]>
E i+1

+ wh; [ri41 —Ti-1],

(6)
we get the tri-diagonal system
Ei 1Yi1+tFiyi+Giyisi=H; i=23,...,n-1 (7)
where
2 _~3
Ei_,=—-e0—a;pi_4 hi ( 61 had ) + .B pl ((a+(;)h +— “ [Upl+1 + (20 + 1)pl 1]
2h h; h 2
wa n;q;— 1) + ayDit1 (( +1)) +a1qi1 (0 )
F;=e(1+0) +a pioy hi(o +0%) + B pihi (((r i~ @(@® + )Py +pic 1])
— aypis1hi(0 + 02) + B q;hi(0?)
Giy1 = —€—ay pi—q by ( ) + B plhz ((0_,_01)}!1, + (1+0) [(20 + 1)p1+1 +Di 1] + wthIl+1J )

+a,piv1hi ( - +G) + aZQl+1h (0'2)

Hy = hisal(en = @B pihdrios + B 11+ (@ + 0B pihi)1is] (8)
where h; 4 = 0 h;.

For i = 1, the coefficients y;_;,y; and y;,, are not defined in Eq. (7), thus we need to develop
an equation for this case. By using L-Hospital rule, from Eq. (5), we get

" qiYitr . _ qiyitry
yi =50 gives M, = 1200 9)

e
Again using Eq. (4), we get the following boundary formula for i = 1

2 2
a1 h2qq B hz‘h a; h3q,
l—a+ E—kl 0+I(1+a)+ kly1+l—a+ |2

_ K2

= ﬁ [kl TO + kz Tl + k3 7"2] (10)

We solve the tri-diagonal system Eq. (7) together with the Eq. (10) for
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i=23,...,n—1 to get the approximations Yy;¥,,,...,¥,—1 of the solution y(x) at

X1, X2y eeer Xp_q-

4. ERROR ANALYSIS
Using the approximations for first order derivative of y in Eq. (6), we get

32—1 =y (xi—1) — y,i—l

_ (9742041 2 (3) 0%-30-2\ ;3 (4) o*+40+3 4.5 (=@
- ( 6(1+0) )hiy (e + (z4(1+a))hiy Ceo) + (120(1+0)) hi'y (El ) (11)

eir1 =Y (Xir1) = Y;q

_ (93+20%+0) 1 2. (3) 20%430%-0 ;3 (4) 30°+40*+a 4.5 (=@
_( 6(1+0) )hiy (xi)+( 24(1+0) )hiy (xi)+( 120(140) )hly (EZ) (12)

we(1-a?)

2+ )y
_h? [w£(16+a3) y(s) (Egi)) n Eloy@) (eii)) _ w(11-|;;3) pi(eéi))yM) (Géi)) _

w(o3+a62+o+1) p{(Eéi))yi(S) (Eg))] (13)

@ @ @ @ O O
152 753 154 165166 < Xi

e;=y(x)—y, =—h (% +(1+ O')Ea)) y(x) + h; (

where x; <&
Substituting eM; = p(x;)yj(®) + q(x;)y(x;) + r(x;), j = i,i +1,in Eq. (4), we get

e0y;_1 — (L + )y, + eyip = hi [ (Dic1yig + qioayicg +1im) +
By + qiyi + 1) + a@ir1Vivr + QuerYier + Tir1)] (14)
Putting exact solution in (14), we get
eoy(x;i1) — (L + 0)y(x) + ey(xip1) = hiq[ar(pio1y’ (imy) + ey (i) +1i20) +
By (x) + qiy(x) + 1) + a2 (Pir1Y' Kig1) + Qi1 Y (xig1) + 1)1 + Ti(hy) (15)

where T;(h;) = [—%(1 +0) +d%(a; + B+ az)] ygz)hiz + [—g(—l + 02) — o%(a; —

2 2
aaz)]y?)h? + [—%(1 +03) + % (g + azaz)] yPhi + [—%(—1 +0*) == (a1 -

030(2)] ygs)h? +0 (h6)
Subtracting Eq. (14) from Eq. (15) and substituting e; = y(x;) — y;,j =1i+1 with the help of

Eqg. (11) - Eq. (13) we get
(0 — o®hiaiq;_1)ei—y + (—=(1 + 0)e — 0*hifq;)e; + (e — 0*hiazqiv)ei =
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h} [al (M) pi—1— B (%3 + (0% + 03)2(4)) pita, (M) Pi+1] y®(x)

6(1+0) 6(1+0)
3 5-30%-202 20%+30°%-03 (4)
Thi [a1 ( 24(1+0) )pi‘l —B ( (0* -0 )pl (W) Pi+1] y () +
O(hlé) + T;(h) (16)
Let Py =pi+hipapi + ”1291(2) (Tlf)), Di-1 = pi — hip} + =+ p(z) (ng)) where
xii1 <0000 <«

Substituting these expressions in Eq. (16) and simplifying, we get

(ea — azhizalqi_l) ei_1— ((1 + 0)e+ azhzﬁqi) e; + (e — azhizazqiﬂ) eip1 = Ti(h) (17)
Where
T(h) _ h4 o*+203+02 _ 03+ 2 + 3 + o +20%+a3 (4)( )+

V= al( 6(1+0) ) p (F (* +o )w‘g) Y\ Tewra )| PY Wi

it {[—a (550) + e () + [ (FE5) + A (S 0 o + 50 +
o, (22272 py® + [0 ~ Do + 220 + DIy} + 0 )

24(1+0)

It can be noticed easily, that
(i)  Ti(h) =0(h{) for the choice of

_ 1+0-0? a __o%*+o-1 a _ 03+40%+40+1
17 126 7727 1202 '3 7 1202

and any value w

(i) Ti(h) = O(h)for the choice of

1+0-0? o%+0-1 034+40%+40+1
Ly = a3 =227 and w = —
120 1202 1202 6e

Let J=trid [ce —(1+ 0)e ¢], D =trid[o?a; o’f c’ay], are (n—1)xMm-—1)

0(1=

i[ (03+0%+0) ]

(1+0)(0%2430+1)

tri-diagonal matrices and Q = (q4,qz, ., qn-1)t and E = (ej, ey, ...,e, ;)" are (n—1)

component vectors.

Hence, Eq. (17) can be written in matrix vector form as
(J—h’DQ)E = Ti(h) (18)
Following [3], it can be shown that, for sufficiently small h,

[ Y Tl P
Hence, NEN < | = h2DQ)IT;(R)].
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Therefore,

IE]| = O0(h?) for the choice of a4, B, @, (mentioned above (i)) and any value of ®, gives a
second - order method and

IE]| = O(h?) for the choice of a4, 8, @, (mentioned above (ii)), gives a third - order
method.

5. NUMERICAL ILLUSTRATIONS

In order to demonstrate the proposed method on a computational basis, we consider three problems
of type Eqg. (1). The mesh ratio o is chosen based on the location of the boundary layer. We
choose the starting value of the step length given by:

h, = ;N 11 for ¢ > 1 gives more mesh points near the leftend x = 0 and

h, = 11__:1\1 for 0 <1 gives more mesh points near right end x = 1.
Example 1. -ey' + (i)y' +(1+x)y=f(x), 0<x<1.

The exact solution is  y(x) = e**, Maximum errors in the solution are shown in Table 1 for
different values € and h.
Example 2. ey + G)y’ =f(x), 0<x<1.

The exact solution to this is y(x) = x sinhx.

Maximum errors are shown in Table 2 for different values ¢ and h.
Example3. ey + G) y +y=0, 0<x<1.
with boundary conditions  y(0) = 0,y(1) = e(_Tl)

whose exact solution is not known. The numerical results are shown in Table 4 for different

values e and h using double mesh principle.

6. DISCUSSIONS AND CONCLUSION

In this paper, variable mesh non - polynomial spline scheme is suggested for a class of
singularly perturbed two-point singular boundary value problems. The discretization equation is
developed with the continuity condition especially for the first order derivatives of the non -

polynomial spline at the internal nodes. A three-term relationship is achieved by modifying the
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boundary value problem at the singularity zero. Using this, the problem'’s discretization equation
is solved with discrete invariant imbedding algorithm. A parameter w is introduced in this method
to achieve the third order convergence. Maximum errors in the solution of the standard examples
selected from the literature are tabulated in order to demonstrate the method. It is observed based
on the numerical results and graphs, that the suggested scheme yield good results for smaller values

of¢.
Table 1. Maximum absolute errors for Example 1

el N- 2° 2° 28

274 1.96e-004 1.45e-005 1.05e-006 7.58e-008 5.35e-009
275 2.80e-004 2.17e-005 1.64e-006 1.21e-007 8.73e-009
276 4.16e-004 3.40e-005 2.66e-006 2.02e-007 1.49e-008
277 6.25e-004 5.45e-005 4.44e-006 3.45e-007 2.60e-008
278 8.89e-004 8.75e-005 7.45e-006 5.98e-007 4.60e-008
Table 2. Maximum absolute errors for Example 2

el N- 2% 2° 28 27 28

274 7.98e-005 5.92e-006 4.27e-007 3.03e-008 2.12e-009

275 1.20e-004 9.33e-006 6.95e-007 5.05e-008 3.59e-009

276 1.83e-004 1.52e-005 1.17e-006 8.73e-008 6.33e-009

277 2.65e-004 2.50e-005 2.01e-006 1.53e-007 1.13e-008

278 3.50e-004 3.97e-005 3.45e-006 2.72e-007 2.04e-008

Table 3. Maximum absolute errors for Example 3

el N-o 2° 2° 28 27 28

274 1.06e-004 8.36e-006 5.60e-007 0.61e-008  1.08e-007

275 2.11e-004 1.72e-005 1.25e-006 8.35e-008 1.08e-007

276 3.82e-004 3.21e-005 2.50e-006 1.01e-007  1.05e-007

277 6.34e-004 5.76e-005 4.67e-006 2.71e-007 0.88e-008

2-8 9.38e-004 9.77e-005 8.39e-006 5.80e-007 8.88e-008
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—exact
251 O approximate .
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Fig 2. Example 2 with n=64 and ¢ =103
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