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1. INTRODUCTION 

In the recent years the concept of multiplicative metric space (MMS) was introduced by 

Bashirove et al.[1]. Ozavsar and cevikel [7] proved some fixed point theorems of multiplicative 

contraction mappings in MMS. Also M.R singh and Y.M singh [5] proposed the notion of 

compatible mappings of type-E in 2007. Further this mapping is divided into G-compatible of 
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type –E and H-compatible of type –E. Moreover weak reciprocally continuous (WRC) mappings 

are weaker than reciprocally continuous (RC) mappings and hence weaker than continuity. The 

fixed point theorems on   multiplicative contraction mappings and generalizations are seen in 

[2], [4] and [8]. In this paper we split WRC mapping into G-WRC and H-WRC mappings and 

generate a common fixed point theorem on a multiplicative metric space and also justified our 

result with a suitable example.  

1.1 Definition: 

Let X ≠ϕ, a multiplicative metric is a mapping δ: 𝑋 × 𝑋 → ℝ+holding the following conditions: 

(i) δ(𝛼, 𝛽) ≥ 1 ,α, β∈ X and δ(𝛼, 𝛽) = 1⇔α= 𝛽; 

(ii) δ(𝛼, 𝛽) = δ(𝛽, 𝛼),α, β∈ X; 

(iii) δ(𝛼, 𝛽)   ≤ δ(𝛼, γ). δ(γ, 𝛽)α, β, γ∈ X. 

Mapping δ together with X, (𝑋, δ) is called (MMS). 

1.2 Definition: 

Let (𝑋, δ)be aMMS, and then a sequence {𝛼𝑘} is assumed as  

i. A multiplicative convergent if for any multiplicative open ball 𝐵∈  (α) = {𝛽/

  δ(𝛼, 𝛽 ) < ∈}, ∈ > 1,  there exists Nϵℕ such that 𝛼𝑘ϵ 𝐵∈  (x)  𝑘 ≥ ℕ ℎ𝑜𝑙𝑑𝑠.  

That is 𝛿(𝛼𝑛 , 𝛼) → 1 as 𝑘 → ∞. 

ii. A multiplicative Cauchy sequence if  ϵ > 1, N∈ ℕ such that δ(α𝑘, α𝑙) < 𝜖 k,l≥

ℕ ℎ𝑜𝑙𝑑𝑠. That is δ(α𝑘, α𝑙) → 1     𝑎𝑠   𝑘, 𝑙 → ∞ . 

iii. In MMS, if every multiplicative Cauchy sequence is convergent, then it is called 

complete. 

1.3 Definition: 

Let f be a mapping of MMS and if the existence of a number 𝜆𝜖[0, 1) such that δ(𝑓𝛼, 𝑓𝛽)≤ 

δ𝜆(𝛼, 𝛽)α,β 𝜖 X holds, then  f  is known as multiplicative contraction. 

1.4. Definition: 

We define mappings G and I of a MMS as compatible if →= k as   1),(  IG kGI k , whenever 

{𝛼𝑘} is a sequence in X such that . X  somefor   k  as   →==  I kG k  
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1.5. Definition: 

We define mappings G and I of a MMS in which if  𝐺µ = 𝐼µ for some  µ𝜖𝑋 such that GIµ =

𝐼𝐺µ  holds then 𝐺   and I are known as weakly compatible mappings. 

1.6. Definition:  

We mean two mappings G and I of a MMS are G-WRC, if we can find a sequence k in X such 

that for some X  GGI k =with , and I-WRC if .k as  →=  I
k

IG  

Now we give an example to discuss about G-WRC and I-WRC mappings. 
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RC.  as  ),(pair theproving

k as  
4

3
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1.7. Definition: 

If  k is a sequence in MMS such that    == kk IG for some X and if 

→== k  as  ,holds  IGIGG kk
, then  G and I  are known as G-Compatible of type (E) 

and I-Compatible of type (E) if .k as →==  GIGII kk  

Now we give an example to discuss about G-compatible of type –E and I-compatible of type–E 

mappings. 
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Further

1 1 1 12
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Now we prove a theorem on MMS. 

2. THEOREM 

Suppose in a complete MMS (X,d), there are four mappings G, H, I and J holding the conditions 
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(C3) (G, I) will be G-Compatible of type-E and G-WRC 

(C4) (H, J) will be H-Compatible of type-E and H-WRC. 

Then the above mappings have a unique common fixed point. 

Proof: 

Begin with using the condition (C1), there is a point ∝0єX such that G∝0=I∝1=  0. 

For this point ∝1 then there exists ∝2єX such that H∝1=J∝2= 
1 . 

Continuing this process it is possible to construct a Sequence { k } in X  

Such that ,  for 0.
2 2 2 1 2 1 2 1 2 2
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k k k k k k
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We now prove {βk} is a Cauchy sequence. 

Consider 
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 =Hthatimpliesthis . 

μJωHω Hence ==
.  

→= k as  
2

get    weJ)(H,pair    theof WRC-H by the Now  H
k

HJ .
 

Again by the H-Compatible mapping of Type- E, we have HHα2k=HJα2k=Jµ as k→∞. 
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.that impliesthis  =H . 

Therefore J µ =H µ =G µ =I µ =μ. 

Proving the existence of common fixed point  for the four mappings G,H,I and J. 

For Uniqueness 

Suppose µ and ϕ( µ ≠ ϕ) are common fixed points of G,H,I and J. 

Substitute α= µ and β= ϕ in the inequality (C2) 
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Now we substantiate our result with an example. 

3. EXAMPLE 

  
βα

eβ)δ(α,          with(0,1)XLet 
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== α, β ∈ X. 
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Therefore kGI = kGG = →k  as  I .This establishes G-Compatible mapping of type –E.   

Similarly kHJ = kHH = →k  as  J .This establishes H-Compatible mapping of type –E.  
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Also since →== k as   GIIIG kk this proves that the pair (G,I) is G-WRC. 

Similarly  →== k as   HJJJH kk  this proves that the pair (H,J) is H-WRC. 

1
Also since   as k

2
k kG I = = →

. 

1
Similarly    as k

2
k kH J = = →  
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Showing that the compatibility condition is not fulfilled. 

We now establish that the mappings G,H,I and J satisfy the Condition(C2) . 
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009.069.0066.0 = ee 
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Hence the condition (C2) is satisfied.  
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)1,1()2,
3

2
(

,
)2,1(1

)2,1()1,
3

2
(

max)1,
3

2
(

 































++++


e

ee

e

ee

e

ee

e

ee
e

1

033.0

,
1

133.1

,
1

033.1

,
1

133.0

max
33.0

 































++++


e

e

e

e

e

e

e

e
e

1

33.0

,
1

33.2

,
1

33.1

,
1

33.1

max
33.0

 

  7.0
,

33.1
,

33.0
,

33.0
max

33.0 −
 eeeee

 
33.133.0

ee  . 

Therefore 24.03.1033.0 = ee 









2

1
,0  where

.
 

 Hence the condition (C2) is satisfied. 

Case 3: 



1397 

A RESULT ON MULTIPLICATIVE METRIC SPACE 

If 
1

0,
2


 

 
 

 and 
1

,1
2


 

 
 

, ),(  HG =
 HG

e
−

 

Putting 
3

2
,

3

1
==   in the equality (C2) gives 































































++

++


),(1

),(),(
,

),(1

),(),(

,
),(1

),(),(
,

),(1

),(),(

max,),(

JI

IHIG

JI

JHJG

IJ

HIJG

JI

JHIG

HG  





















































++++



)
5

7
,

3

2
(1

)
3

2
,

5

4
()

3

2
,

12

5
(

,

)
5

7
,

3

2
(1

)
5

7
,

5

4
()

5

7
,

12

5
(

,

)
5

7
,

3

2
(1

)
5

4
,

3

2
()

5

7
,

12

5
(

,

)
5

7
,

3

2
(1

)
5

7
,

5

4
()

3

2
,

12

5
(

max)
5

4
,

12

5
(

 































++++


73.0

1

13.025.0

,
73.0

1

6.098.0

,
73.0

1

13.098.0

,
73.0

1

6.025.0

max
38.0

e

ee

e

ee

e

ee

e

ee
e

 































++++


73.0

1

38.0

,
73.0

1

58.1

,
73.0

1

11.1

,
73.0

1

85.0

max
38.0

e

e

e

e

e

e

e

e
e

 

  35.0
,

85.0
,

38.0
,

12.0
max

38.0 −
 eeeee  











2

1
,0  where 

 .
 44.0

85.038.0
= 


ee .

 

Hence the condition (C2) is satisfied. It can be observed that 
2

1
is the unique common fixed 

point for the four mappings. 

 

4. CONCLUSION 

In this paper we established a common fixed point theorem in multiplicative metric space using 

the conditions compatible mapping of type –E and weak reciprocally continuous mappings and 

an example is given to justify our theorem. 
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