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Abstract. This manuscript addresses a methodology for investigating compound synchronization in a class of

commensurate FO chaotic Genesio-Tesi system using DOB adaptive sliding mode control technique among frac-

tional order chaotic systems with unknown bounded disturbances. The unknown disturbances are estimated using

the nonlinear fractional order disturbance observer. Sliding mode technique has been employed by considering a

simple sliding surface among four identical fractional order chaotic systems to achieve the desired synchronization

which is further based on Lyapunov stability theory. The obtained results have been compared with prior published

literature to realize the robustness of the proposed strategy. Finally, some numerical results using MATLAB are

illustrated for visualizing the effectiveness and the correctness of the developed approach on the considered system

in the presence of external disturbances.
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1. INTRODUCTION:

Interestingly, chaos theory has become the most significant research field encompassing the

biological, chemical, physical, meta-physical aspects of science. It involves the qualitative

investigations of immensely complex non linear systems found in nature. Chaotic systems are

dynamical systems that are extremely sensitive to small perturbation in the initial conditions

and system parameters. A small change in the chaotic system can lead to broadly diverging

consequences.Recently, several researches have introduced new chaotic fractional order chaotic

dynamical system involving fractional differential equations. Numerous systems are famously

known to exhibit FO dynamics, for example, dielectric polarization, visco-elastic system, elec-

tromagnetic waves, electrode-electrolyte polarization. Primarily, fractional calculus [18] [6]

[1] [7] is an exciting field of mathematics dealing with derivatives and intgration of fractional

order. The evolutionary record of FC dates back to Leibnitz, a great German mathematician’s

research article in his findings to L’Hospital dated September 30, 1695.

In recent years, the synchronization [17] [15] among FO chaotic system [9] [13] [19] [24]

has been widely explored as a potential emerging research field. Several researchers have

recently proposed very effective and robust techniques of control and synchronization [10] [11]

[16] of chaotic models.Fundamentally, synchronization is an important phenomenon which

occurs when atleast two identical or non-identical chaotic systems are adjusted in a way such

that both exhibit the similar behavior owing to pairing to attain stability. Several techniques

for synchronization and control of chaos have been introduced and studied.It is observed that

in nearly all the previously published literature, the authors have discussed FO chaotic system

without considering unknown parameters and uncertainties whereas in real scenario these are

known to perturb the system.

Essentially SMC [5] [3] [2] approach is a powerful procedure to design control inputs

for both the linear and non-linear dynamical models with unknown inputs. SMC is basic

in designing and has remarkable features such as quick response, good stability, tracking

potential and is capable to check model uncertainties and external disturbances.Considering the
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robustness of SMC method we have investigated compound synchronization using disturbance

based adaptive SMC technique among FO Genesio Tesi systems with unknown bounded

disturbance. To attain the primal goal of compound synchronization [20] [21] [23] [22]

[12] among four identical FO Genesio Tesi systems with unknown bounded disturbance,

FO disturbance observer based adaptive SMC technique has been adopted. It is noted that

the investigated approach may also compensate powerful disturbance signals. We also have

compared over attained results concerning synchronization with the prior published results

in order to demonstrate the robustness and effectiveness of our considered scheme. Finally,

feasibility of the considered technique is also ensured by performing numerical simulations

using MATLAB.

This paper is framed as:

Section 2 presents preliminaries which include basic concepts, definition and some results from

fractional calculus that will be used throughout the paper. Section 3 deals with the description

of chaotic FO Genesio-Tesi system. Section 4 contains the formulation of FODO based for the

FO chaotic Genesio Tesi system including unknown external disturbance. In Section 5, we first

describe an elementary SMS and further we design the sliding mode synchronization controllers

depend on investigated non linear FODO. In Section 6, numerical simulations and discussions

are also presented to show the effectiveness of the proposed strategy using MATLAB. Further,

Section 7 consists of the comparative analysis of the proposed technique. Conclusions are given

in Section 8.

2. PRELIMINARIES:

We here state a few preliminaries that will be used throughout the paper:

Definition 1: The Caputo’s derivative of fractional order ’α’ on function f(t) is given by:

cDα
t f (y) =

1
γ(n−α)

∫ y

c

f n(x)
(y− x)α−n+1 dx

where n−1 < α < n and γ(α) =
∫

∞

0 xα−1e−xdx is the Gamma function.
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Property 1: The Caputo’s fractional derivative satisfies the following condition if function g

is constant

Dαg(t) = 0

Property 2: The Caputo’s fractional derivative satisfies the linear property:

Dα [ag1(t)+bg2(t)] = aDαg1(t)+bDαg2(t), where a & b are constants.

Lemma 1: Suppose ϒ ∈ R be a continuously derivable function and 0 < α < 1.Then, for any

time t ≥ t0.

1
2

Dα
ϒ(t)2 ≤ ϒ(t)Dα

ϒ(t)

Lemma 2: For the equation

DαH(t)≤−b0H(t)+b1

there exists a constant t1 > 0 for which for all t ∈ (t1,∞) satisfies the condition

H(t)≤ 2b1

b0

where H(t) is state variable of the system,b0 > 0 and b1 > 0 are constants

Assumption 1:In this paper we assumed the the Caputo’s derivative of the unknown external

disturbances to be bounded i.e |Dqϒi(t)| ≤ |ai| where ϒi(t) are unknown external disturbances

and ai > 0 are positive constant.

3. SYSTEM DESCRIPTION:

Here Compound synchronization has been performed where we have taken 3 master systems

and 1 slave system described as follows:

First Master System:

Dαu11(t) = u12

Dαu12(t) = u13(1)

Dαu13(t) =−β1u11−β2u12−β3u13 +β4u2
11
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This system shows chaotic behaviour for different set of parameter values and ini-

tial conditions.In [14] author shows the chaotic behaviour for parameter values

(β1,β2,β3,β4)=(1.0,1.1,0.4,1.0) with initial conditions (−0.3,0.,−0.2) and (−0.5,0.4,−0.3)

and fractional order α = 0.99.Also in [4] author describes the chaotic behaviour and

dynamical properties for the set of parameter values (β1,β2,β3,β4)=(6.0,2.92,1.2,1.0)

with initial conditions (0.7,1.3,1) and (0.2,−0.3,0.1) for fractional order α = 0.94.

Also we have seen that in [8] the system (1) shows the chaotic behaviour for two set

of parameter values (β1,β2,β3,β4)=(1.0,1.1,0.15,1.0) for fractional order α = 0.9 and

(β1,β2,β3,β4)=(1.0,1.1,−0.232,1.0) for fractional order α = 0.8. The Fig.1 and Fig.2 shows

the chaotic attractors for two set of parameter values.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u
11

u
1
2

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

u
11

u
12

u
1
3

Fig.1: Chaotic attractors for parameter values (β1,β2,β3,β4)=(1.0,1.1,0.4,1.0) with initial conditions

(−0.3,0.,−0.2) and α = 0.99
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Fig.2: Chaotic attractors for parameter values (β1,β2,β3,β4)=(6.0,2.92,1.2,1.0) for α = 0.94

Second Master System:

Dαu21(t) = u22

Dαu22(t) = u23(2)

Dαu23(t) =−β1u21−β2u22−β3u23 +β4u2
21
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Third Master System:

Dαu31(t) = u32

Dαu32(t) = u33(3)

Dαu33(t) =−β1u31−β2u32−β3u33 +β4u2
31

Slave System:

Dαv1(t) = v2 + cos3t +C1

Dαv2(t) = v3 + sin5t +C2(4)

Dαv3(t) =−β1v11−β2v12−β3v13 +β4v2
11 + sin4t +C3

Here ψ1 = cos3t,ψ2 = sin5t,ψ3 = sin4t are the external bounded disturbance of the system

and C1,C2,C3 are the controllers of the system.

4. PROBLEM FORMULATION:

In this section we design the FODO based adaptive sliding mode compound synchronization

method. Next we design a Fractional Order Disturbance Observer to estimate the unknown

bounded disturbances and using the sliding mode control technique to design the controllers

to achieve the desired synchronization. To estimate the external unknown disturbances in the

response system, we design the non linear fractional order disturbance observer as:

ω1(t) = ψ1(t)−ρ1y1(t)

ω2(t) = ψ2(t)−ρ2y2(t)(5)

ω3(t) = ψ3(t)−ρ3y3(t)

where ρ1,ρ2,ρ3 are non zero positive constants to be determined later.

Differentiating the above system and using (4), we get:
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Dα
ω1(t) = Dα

ψ1(t)−ρ1(v2 +ω1 +ρ1v1)−ρ1C1

Dα
ω2(t) = Dα

ψ2(t)−ρ2(v3 +ω2 +ρ2v2)−ρ2C2(6)

Dα
ω3(t) = Dα

ψ3(t)−ρ3(−β1v1−β2v2−β3v3 +β4v2
1 +ω3 +ρ3v3)−ρ3C3

To calculate the disturbance estimates, the estimates of ωi(t)(i = 1,2,3) are described as:

Dα
ω̂1(t) =−ρ1(v2 +ρ1v1)−ρ1ω̂1(t)−ρ1C1

Dq
ω̂2(t) =−ρ2(v3 +ρ2v2)−ρ2ω̂2(t)−ρ2C2(7)

Dα
ω̂3(t) =−ρ3(−β1v1−β2v2−β3v3 +β4v2

1 +ρ3v3)−ρ3ω̂3(t)−ρ3C3

where ω̂i(t) are the estimates of ωi(t).

From (5) the disturbances ψi(t) can be estimated as

ψ̂i(t) = ω̂i(t)+ρivi(8)

Consider

ψ̃i(t) = ψi− ψ̂i,(i = 1,2,3)

Using equations (5) and (8), we have

ω̃i(t) = ωi(t)− ω̂i(t) = ψi(t)− ψ̂i(t) = ψ̃i(t)(9)

Using equations (8) and (9), the Caputo fractional derivatives of ω̃i(t),(i= 1,2,3) can be written

as

Dα
ω̃i(t) =−ρiω̃i(t)+Dα

ψi(t)(10)

To analyse the convergence of disturbance estimate error ψ̃i(t)(i = 1,2,3), we consider the

Lyapunov function as

Vψi(t) =
1
2

ψ̃i
2(t) =

1
2

ω̃i
2(t),(i = 1,2,3)
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Using Lemma 1, the Caputo’s derivative of Vψi can be written as

DαVψi(t)< ω̃i(t)Dα
ω̃i(t)(11)

After substituting (10) in (11),we obtain

DαVψi(t)≤ ω̃i(t)(−ρiω̃i(t)+Dα
ψi(t))

≤−ρi(ω̃i(t))2 + ω̃i(t)Dα
ψi(t))(12)

Using (ω̃i−Dαψi(t))2 ≥ 0 we have

ω̃i(t)Dα
ψi(t))< 1/2(ω̃i)

2 +1/2(Dα
ψi(t))2(13)

Using (13) & Assumption 1 in equation (12) we obtain

DαVψi(t)≤−ρiω̃i
2(t)+

1
2

ω̃i
2(t)+

1
2

ϑi
2

≤−(ρi−
1
2
)ω̃i

2(t)+
1
2

ϑi
2

= N0Vψi(t)+N1(14)

where N0 = 2ρi−1 and N1 =
1
1ϑ 2

i . We choose control gain ρi such that ρi > 0.5, to ensure

the estimation of error bounded. Using Lemma 2 and (14),we have

|Vψi(t)| ≤
ϑi

2

2(ρi−0.5)
(15)

|ψ̃i(t)| ≤

√
ϑi

2

(ρi−0.5)
(16)

From (16) we have the disturbance estimation error ω̃i(t) bounded above. Therefore the external

disturbances ψi(t)(i = 1,2,3) and the disturbance approximation error ψi(t) satisfy |ψ̃i(t)| ≤ ki

, where ki > 0 is unknown positive constant. As in actual practice it is not easy to determine

the upper bound of | ψ̃i(t) | , therefore we introduce the estimated value η̃i of ηi(i = 1,2,3).
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From the above we have that the disturbance estimated error of the proposed fractional order

Genesio-Tesi chaotic system is bounded using FODO.

5. ADAPTIVE SLIDING MODE COMPOUND SYNCHRONIZATION

To achieve the compound synchronization between the identical fractional order Genesio

Tesi systems with different initial conditions in presence of unknown bounded disturbance, we

define the error as:

e1(t) = v1−u11(u21 +u31)

e2(t) = v2−u12(u22 +u32)(17)

e3(t) = v3−u13(u23 +u33)

The error dynamics can then be written as:

Dαe1(t) = Dαv1−Dαu11(u21 +u31)−u11(Dαu21 +Dαu31)

Dαe2(t) = Dαv2−Dαu12(u22 +u32)−u12(Dαu22 +Dαu32)(18)

Dαe3(t) = Dαv3−Dαu13(u23 +u33)−u13(Dαu23 +Dαu33)

Substituting the values of the derivatives, we get:

Dαe1(t) = e2 +(u22 +u32)(u12−u11)−u12(u21 +u31)+ cos3t +C1

Dαe2(t) = e3 +(u23 +u33)(u13−u12)−u13(u22 +u32)+ sin5t +C2(19)

Dαe3(t) = β1(−v1 +u11(u23 +u33)+u13(u21 +u31))+β2(−v2 +u12(u23 +u33)

+u13(u22 +u32))−β3e3 +β3u13(u23 +u33)+β4(v2
1−u2

11(u23 +u33)

−u13(u2
21 +u2

31))+ sin4t +C3

To study the stability of fractional order synchronization error dynamical system, we introduce

a simple sliding mode surface as:

si(t) = ei(t)(20)

implying

Dαsi(t) = Dαei(t)
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Using the adaptive sliding mode approach, we design the controllers as:

C1(t) =−e2− (u22 +u32)(u12−u11)+u12(u21 +u31)−σ1s1− η̂1sign(s1(t))− ψ̂1

C2(t) =−e3− (u23 +u33)(u13−u12)+u13(u22 +u32)−σ2s2− η̂2sign(s2(t))− ψ̂2(21)

C3(t) = β3e3−β1(−v1 +u11(u23 +u33)+u13(u21 +u31))−β2(−v2 +u12(u23 +u33)

+u13(u22 +u32))−β3u13(u23 +u33)−β4(v2
1−u2

11(u23 +u33)−u13(u2
21 +u2

31))

−σ3s3− η̂3sign(s3(t))− ψ̂3

Here σi are non zero positive constants. Substituting the controllers we get the error dynamical

system as:

Dαe1(t) =−σ1s1− η̂1sign(s1(t))+ψ1− ψ̂1

Dαe2(t) =−σ2s2− η̂2sign(s2(t))+ψ2− ψ̂2(22)

Dαe3(t) =−σ3s3− η̂3sign(s3(t))+ψ3− ψ̂3

The update laws of the estimated value η̂i are given by:

Dα
η̂1 = φ1(|s1(t)|− η̂1)

Dα
η̂2 = φ2(|s2(t)|− η̂2)(23)

Dα
η̂3 = φ3(|s3(t)|− η̂3)

where φi > 0 are constants.

The sliding mode surface si(t) is stable and bounded for the designed controllers (21) and hence

the error system is bounded and stable.

For α ∈ (0,1),the sliding surface as in (20) in presence of external bounded disturbance approx-

imated by using the designed non linear fractional order disturbance observer (5) and (7), the

compound synchronization error is ultimately bounded and stable under the adaptive sliding

scheme.

We now summarize the above in the form of the following theorem:

Theorem 1: For the compound synchronization error system (19) with 0 < αi < 1, if the
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sliding mode surface is designed according to (20) and external unknown bounded disturbance

is approximated by using the scheme non-linear FODO (7) and (8). Then, compound error is

bounded and stable under the adaptive sliding mode control scheme as (21) and (23).

Proof The Lyapunov function V(t) is selected for the convergence of synchronization error

e(t) as:

V (t) =
3

∑
i=1

1
2

si(t)2 +
3

∑
i=1

1
2

ω̃i(t)2 +
3

∑
i=1

1
2
(

1√
φi
(η̂i−ηi))

2(24)

Differentiating (24), we get

DαV (t) =
1
2
(

3

∑
i=1

Dαisi(t)2 +
3

∑
i=1

Dαiω̃i(t)2 +
3

∑
i=1

Dαi(
1√
φi
(η̂i−ηi))

2)(25)

using η̃i = η̂i−Ki and Lemma 1 in equation (25) can be written as

DαV (t)≤
3

∑
i=1

1
2

si(t)Dαisi(t)+
3

∑
i=1

1
2

Dαiω̃i
2(t)

+
3

∑
i=1

1√
φi

η̃iDαi(
1√
φi

η̃i)(26)

On applying property 2 in equation (26), we obtain

DαV (t)≤
3

∑
i=1

si(t)Dαisi(t)+
3

∑
i=1

1
2

Dαiω̃i(t)2 +
3

∑
i=1

1
φi

η̃iDαiη̃i(27)

Using (20) and substituting (22) into (27), we obtain

DαV (t)≤
3

∑
i=1

si(t)(−σisi + ω̃i(t)− η̂isign(si(t)))+
3

∑
i=1

1
2

Dα
ω̃i

2(t)

+
3

∑
i=1

1
φi

η̃iDαiη̃i(28)
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Applying Property 1 and using η̃i = η̂i−ηi,(i=1,2,3), we obtain

Dα
η̃i = Dαiη̂i(29)

where K j is a constant parameter

Using (23) and (29), we have

3

∑
i=1

1
φi

η̃iDαiη̃i =
3

∑
i=1

η̃i(|si(t)|− η̂i)

=
3

∑
i=1

η̃i|si(t)|−
3

∑
i=1

η̃i(η̃i +ηi)

=
3

∑
i=1

η̃i|si(t)|−
1
2

3

∑
i=1

η̃
2
i −

1
2

3

∑
i=1

η̃i
2−

3

∑
i=1

η̃iηi

≤
3

∑
i=1

η̃i|si(t)|−
1
2

3

∑
i=1

η̃i
2 +

1
2

3

∑
i=1

ηi
2(30)

After substituting (30) into (28), we get

DαV (t)≤
3

∑
i=1

si(t)(σisi(t)+ ω̃i(t)− η̂isign(si(t)))+
1
2

3

∑
i=1

Dαiω̃i
2(t)

+
3

∑
i=1

η̃i|si(t)|−
1
2

3

∑
i=1

η̃i
2 +

1
2

3

∑
i=1

ηi
2(31)

Equation (31) can be rewritten as

DαV (t)≤−
3

∑
j=1

σis2
i (t)+

3

∑
i=1
|si(t)|ω̃i|+

3

∑
i=1

η̃i|si(t)|−
3

∑
i=1

1
2

η̃i
2 +

3

∑
i=1

1
2

ηi
2

−
3

∑
i=1

η̂i|si(t)|+
3

∑
i=1

1
2

Dαiω̃i
2(t)(32)

Using |ω̃i(t)|< ηi and ∑
3
i=1 η̃i|si(t)|−∑

3
i=1 η̂i|si(t)|=−∑

3
i=1 ηi|si(t)| , equation (32) can be

written as:

DαV (t)≤−
3

∑
j=1

σis2
i (t)−

3

∑
i=1

1
2

η̃i
2 +

3

∑
i=1

1
2

η
2
i +

3

∑
i=1

1
2

Dα
ω̃i

2(t)(33)

From equation (14) and (33), we have
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Fig. 3: The synchronized trajectories of the master and slave systems
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Fig. 4: The synchronization error shows the convergence at time t=0.1second

DαV (t)≤−
3

∑
i=1

σis2
i (t)−

3

∑
i=1

1
2

η̃i
2 +

3

∑
i=1

1
2

η
2
i

+
3

∑
i=1
−(σi−

1
2
)σ̃i

2(t)+
3

∑
i=1

1
2

ϑ
2
i ≤−N2V (t)+N3(34)

where N2 = min(2σi,1,2σi−1) and N3 = ∑
3
i=1

1
2ϑ 2

i +∑
3
i=1

1
2η2

i .

On selecting the value of parameters σi > 0 and ρi > 0.5, we have the error bounded. Using

Lemma 2 in (34),we get
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|V (t)| ≤ 2N3

N2

=
∑

3
i=1 ϑ 2

i +∑
3
i=1 η2

i
N2

(35)

(35) implies that
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Fig. 5:Estimates of External Disturbances

‖s(t)‖ ≤

√
2(∑3

i=1 ϑ 2 +∑
3
i=1 η2

i )

N2
(36)

From (35) and (36), it is clear that the sliding surface si(t) and synchronization error ei(t) are

bounded as t → ∞.Thus error dynamical system (19) is bounded and stable implying that the

synchronization between master systems and slave system has been achieved.
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Fig. 6: Synchronized Disturbance observer errors shows the convergence at time t=0.1second

6. NUMERICAL SIMULATIONS & DISCUSSIONS

Here we have considered the values of the parameters ˆω1(0), ˆω2(0), ˆω3(0)) =

(.2, .2, .2),( ˆη1(0),

ˆη2(0), ˆη3(0)) = (.1, .1, .1),(ρ1,ρ2,ρ3) = (110,110,110),(φ1,φ2,φ3) = (.1, .1, .1),(σ1,σ2,σ3) =

(80,80,80). We have considered the disturbance ψ1 = cos3t,ψ2 = sin5t,ψ3 = sin4t. The syn-

chronized trajectories of the master and slave systems are displayed in Fig. 3 and Fig.4 rep-

resents the synchronization error. Also Fig.5 and Fig 6 represents the disturbance observer

estimates and disturbance error converging which is converging to zero.

7. COMPARISON WITH THE PREVIOUS PUBLISHED LITERATURE

In this manuscript, we compare our obtained results with the already published work for

compound synchronization of chaotic systems using a different technique. In [22] the author has

investigated compound synchronization of Lorenz and Chen chaotic systems and they achieved

the error tending to zero at t= 4 sec (approx). In [21], the author has investigated compound

synchronization of identical memristor chaotic system and its error converges to zero at t=3 sec

(approx.). In [23], the author has investigated compound synchronization of the same identical

memristor chaotic systems using different technique technique and error converges to zero at

t=4 sec (approx.).

However in our case we have also considered external disturbance in the slave system and using



1478 L. JAHANZAIB, P. TRIKHA, H. CHAUDHARY, NASREEN, S. HAIDER

the technique of disturbance observer based sliding mode control and got our synchronization

error at t=0.1 sec(approx.) which is far better than the previously published literature. Thus our

technique and designed controllers prove more efficient than the previous one.

8. CONCLUSION

In this paper compound synchronization among four identical fractional order Genesio Tesi

chaotic systems arising from different initial conditions has been achieved in presence of un-

known bounded disturbances. A non linear fractional order disturbance observer has been used

to estimate the disturbances. The synchronization has been achieved using the adaptive sliding

mode control technique.
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