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Abstract. The presented paper introduces the concept of relation-theoretic ψ-contractive mappings in cone pen-

tagonal metric space. Some fixed point results for this new class of mappings are proved and illustrated with

suitable examples. The results proved herein generalize the results of Abba Auwalu [2] and Garg et.al. [4].
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1. INTRODUCTION

Ran and Reurings[6] in 2003 established a new version of BCP (Banach contraction princi-

ple) in partially ordered metric spaces. In 2007, Huang and Zhang[5] defined cone metric space.

Inspired by the work of Huang and Zhang[5], Azam et. al.[3] constructed a new space known

as cone rectangular metric space and the famous Banach contraction principle (BCP) is proved.

In 2012, Rashwan and Saleh [7] improved and extended the result of Azam et. al.[3] by elim-

inating the settings of normality. Alam and Imdad [2] established BCP on a complete metric
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space equipped with a binary relation and gave a new approach to prove fixed point theory. Af-

ter that Garg et.al.[4] defined cone pentagonal metric spaces and established the proof of BCP

by supposing the condition of normality of cone. In this paper, we prove Banach contraction

principle using relation theoretic contraction without assuming the normality of cone.

Now recall some definitions from literature which are useful in our work.

2. PRELIMINARIES

Definition 1. [5] Let E be a real Banach space and P ⊂ E is a cone if and only if:

(I): P 6= φ , closed and P 6= {θ}.

(II): if c,d ∈ R,c,d ≥ 0 and y,z ∈ P implies that cy+dz ∈ P.

(III): y ∈ P and −y ∈ P implies that y = θ .

For a given cone P which is a subset of E, we defined a partial ordering � with respect to P

by y � z⇐⇒ z− y ∈ P. We could write y ≺ z which implies y � z but y 6= z while y� z will

imply z− y ∈ int(P) where the int(P) denotes the interior of P. If in a cone P ∃ number k > 0

with ∀ y,z ∈ E

θ � y� z⇒‖ y ‖≤ k ‖ z ‖

then P is called normal cone and normal constant of P is the least positive number k which

satisfy the above.

In our paper we consistently assumed E is a real Banach space, P be a cone with non-empty

interior (solid cone) and � be a partial order with respect to P.

Definition 2. [5] A cone metric space (X ,d) over Banach space E is an ordered pair where X

is a non-empty set. Let d : X×X → E is a map with ∀ r,s, t ∈ X,

(i): θ � d(r,s) and d(r,s) = θ ⇐⇒ r = s;

(ii): d(r,s) = d(s,r);

(iii): d(r,s)� d(r, t)+d(t,s).

Definition 3. [3] A cone rectangular metric space (X ,d1) over Banach space E where X is a

non-empty set. Let d1 : X×X → E is a map with ∀ r,s ∈ X,

(R1): θ � d1(r,s) and d1(r,s) = θ ⇐⇒ r = s;
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(R2): d1(r,s) = d1(s,r);

(R3): d1(r,s) � d1(r,w)+d1(w, t)+d1(t,s)∀r,s ∈ X and ∀ distinct point w, t ∈ X −{r,s}

this characteristic is known as rectangular.

Definition 4. [4] A cone pentagonal metric space (X ,ρ) over Banach space E where X is a

non-empty set. Let ρ : X×X → E is a map with ∀r,s ∈ X,

(i): θ � ρ(r,s) and ρ(r,s) = θ ⇐⇒ r = s;

(ii): ρ(r,s) = ρ(s,r);

(iii): ρ(r,s) � ρ(r, t) + ρ(t,w) + ρ(w,u) + ρ(u,s) ∀r,s, t,w,u ∈ X and ∀ distinct point

t,w,u ∈ X−{r,s} this characteristic is known as pentagonal.

3. CRITERIA OF CONVERGENCE [4]

Definition 5. Let (X ,ρ) be a cone pentagonal metric space, a sequence {um} ∈ X is convergent

and converge to u if for every c ∈ int(P) ∃ a positive integer m0 with ρ(um,u)� c ∀m > m0. In

this case u is called the limit of um, denoted by limm→∞ um = u.

Definition 6. Let (X ,ρ) be a cone pentagonal metric space, a sequence {um} ∈ X is called

Cauchy sequence if ρ(um,un)� c , ∀m,n > m0 and (X ,ρ) is called complete cone pentagonal

metric space if every Cauchy sequence {um} converges to u ∈ X.

Definition 7. [7] Let P ⊂ E is a cone defined as above and ϕ be the set of non decreasing

continuous functions ψ : P→ P such that

(a1): θ � ψ(r)≺ r ∀ r ∈ P\{θ}.

(a2): The series ∑n≥0 ψn(r) converge ∀ r ∈ P\{θ}.

From (a1), we have ψ(θ) = θ and from (a2), we have limn−→0 ψn(r) = θ ∀ r ∈ P\{θ}.

Definition 8. [5] Let (X ,d) be a cone metric space and P⊂E is a cone (not necessarily normal)

and for b,d,r,s, t ∈ E, then if

(a1): b� kb and k ∈ [0,1) implies b = θ ;

(a2): θ � r � d for each θ � d, implies r = θ ;

(a3): r � s and s� t implies r � t;
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(a4): d ∈ int(P) and bn→ θ implies ∃ n0 ∈ N: ∀n > n0, bn� d.

Definition 9. [1] Let (X ,ρ) be a complete cone pentagonal metric space and {un} ∈ X be a

Cauchy sequence. Assume that ∃ a natural number N with

(a): un = um ∀ n,m > N.

(b): un,u are distinct points in X ∀ n > N.

(c): vn,v are distinct points in X ∀ n > N.

(d): un −→ u and vn −→ v as n−→ ∞ implies u = v.

Now recall some useful terminologies about relations given by A.Alam. et.al.[2].

Definition 10. Let X 6= φ and T be a binary relation on X. Let R be a self map on X.

(1) s and t are T -comparative if (s, t) ∈T or (t,s) ∈T . This is shown by [s, t] ∈T .

(2) Sequence {sn} ∈ X is said to be T -preserving if (sn,sn+1) ∈T ∀ n ∈ N.

(3) Relation T is said to be R-closed if for every (s, t) ∈T , we have (Rs,Rt) ∈T .

(4) Let C ⊂ X is said to be T -directed if for each s, t ∈ E, ∃ w ∈ X with (s,w) ∈ T and

(t,w) ∈T .

(5) In T a path of length k (where k ∈ N) for s, t ∈ X, from s to t is a finite sequence

{w j}k
j=0 ⊂ X satisfies the following conditions:

• w0 = r and wr = s;

• (w j,w j+1) ∈T for each 0≤ j ≤ k−1.

4. MAIN RESULTS

Definition 11. Let (X ,ρ) be a complete cone pentagonal metric space, T be binary relation

on X is said to be d-self closed if for every T - preserving sequence such that un −→ u ∈ X as

n−→ ∞, then ∃ a subsequence {unk} of {un} with [unk ,u] ∈T ∀ k ∈ N.

Definition 12. Let (X ,ρ) is a complete cone pentagonal metric space over Banach space E, ϕ

be the collection of all cone comparison function on P and T is a binary relation on X. Let

R is the self map on X. Then R is said to be relation theoretic ψ-contractive mapping if ∃ a

comparison function ψ ∈ ϕ such that
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(1) ρ(Ru,Rv)� ψ(ρ(u,v)) f orall u,v ∈ X with (u,v) ∈T

Theorem 1. Let (X ,ρ) be a complete cone pentagonal metric space over Banach space E. Let

R be a relation theoretic ψ-contractive map such that the following conditions are satisfied:

(I): T is R-closed.

(II): ∃ u0 ∈ X with (u0,Rru0) ∈T ∀ r ∈ N

(III): R is continuous on X.

Then R has a fixed point in X.

Proof. Consider u0 ∈ X with (u0,Rru0) ∈T for all r ∈ N. Take a sequence {un} in X as

un+1 = Run ∀ n = 0,1,2, . . .

Therefore (u0,ur) ∈T for all r ∈ N. Therefore, from (I) we get (Ru0,Rur) = (u1,ur+1) ∈T ∀

r ∈ N. By induction we obtain,

(un,ur+n) ∈T for all r,n ∈ N

Assume un = un+1 for some n∈N, it implies that T has a fixed point u = un. Therefore suppose

un 6= un+1 ∀ n ∈ N.

As R is a relation theoretic ψ-contractive mapping, then by (1), it follows,

ρ(un,un+1) = ρ(Run−1,Run)

� ψ(ρ(un−1,un))

� ψ
2(ρ(un−2,un−1))

...

� ψ
n(ρ(u0,u1))(2)
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Here, we can also consider u0 is not a periodic point. Otherwise, when u0 = un for any n ≥ 2,

then

ρ(u0,Ru0) = ρ(un,Run)

= ρ(un,un+1)

= ψ
n(ρ(u0,Ru0))

Since ψ ∈ ϕ therefore limn→∞ ψn(r) = θ for all r ∈ P \ {θ}. So, by above we get that

ρ(u0,Ru0) = θ , so u0 is a fixed point of R. Therefore, consistently considering un 6= um ∀

distinct n,m ∈ N.

It again follows,

ρ(un,un+2) = ρ(Run−1,Run+1)

� ψ(ρ(un−1,un+1))

� ψ
2(ρ(un−2,un))

...

� ψ
n(ρ(u0,u2))(3)

Again we have,

ρ(un,un+3) = ρ(Run−1,Run+2)

� ψ(ρ(un−1,un+2)) = ρ(Run−2,Run+1)

� ψ
2(ρ(un−2,un+1))

...

� ψ
n(ρ(u0,u3))(4)

In a similar manner, for k = 1,2,3, . . .,

ρ(un,un+3k+1) = ψ
n(ρ(u0,u3k+1))(5)

ρ(un,un+3k+2) = ψ
n(ρ(u0,u3k+2))(6)

ρ(un,un+3k+3) = ψ
n(ρ(u0,u3k+3))(7)
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By using (2) and pentagonal property,we have

ρ(u0,u4) � ρ(u0,u1)+ρ(u1,u2)+ρ(u2,u3)+ρ(u3,u4)

� ρ(u0,u1)+ψ(ρ(u0,u1))+ψ
2(ρ(u0,u1))+ψ

3(ρ(u0,u1))

�
3

∑
i=0

ψ
i(ρ(u0,u1))

Similarly,

ρ(u0,u7) � ρ(u0,u1)+ρ(u1,u2)+ρ(u2,u3)+ρ(u3,u4)+ρ(u4,u5)+ρ(u5,u6)+ρ(u6,u7)

� ρ(u0,u1)+ψ(ρ(u0,u1))+ψ
2(ρ(u0,u1))+ψ

3(ρ(u0,u1))

+ ψ
4(ρ(u0,u1))+ψ

5(ρ(u0,u1))+ψ
6(ρ(u0,u1))

�
6

∑
i=0

ψ
i(ρ(u0,u1))

Now, from induction for each k = 1,2,3, . . .,

ρ(u0,u3k+1) �
3k

∑
i=0

ψ
i(ρ(u0,u1))(8)

Also, by using (2), (3) and by pentagonal property, we have

ρ(u0,u5) � ρ(u0,u1)+ρ(u1,u2)+ρ(u2,u3)+ρ(u3,u5)

� ρ(u0,u1)+ψ(ρ(u0,u1))+ψ
2(ρ(u0,u1))+ψ

3(ρ(u0,u2))

�
2

∑
i=0

ψ
i(ρ(u0,u1))+ψ

3(ρ(u0,u2))

Similarly,

ρ(u0,u8) � ρ(u0,u1)+ρ(u1,u2)+ρ(u2,u3)+ρ(u3,u4)+ρ(u4,u5)+ρ(u5,u6)+ρ(u6,u8)

� ρ(u0,u1)+ψ(ρ(u0,u1))+ψ
2(ρ(u0,u1))+ψ

3(ρ(u0,u1))

+ ψ
4(ρ(u0,u1))+ψ

5(ρ(u0,u1))+ψ
6(ρ(u0,u2))

�
5

∑
i=0

ψ
i(ρ(u0,u1))+ψ

6(ρ(u0,u2))

Again from induction for each k = 1,2,3, . . .,

ρ(u0,u3k+2) �
3k−1

∑
i=0

ψ
i(ρ(u0,u1))+ψ

3k(ρ(u0,u2))(9)
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Also, by using (2), (4) and by pentagonal property, we have

ρ(u0,u6) � ρ(u0,u1)+ρ(u1,u2)+ρ(u2,u3)+ρ(u3,u6)

� ρ(u0,u1)+ψ(ρ(u0,u1))+ψ
2(ρ(u0,u1))+ψ

3(ρ(u0,u3))

�
2

∑
i=0

ψ
i(ρ(u0,u1))+ψ

3(ρ(u0,u3))

Similarly,

ρ(u0,u9) � ρ(u0,u1)+ρ(u1,u2)+ρ(u2,u3)+ρ(u3,u4)+ρ(u4,u5)+ρ(u5,u6)+ρ(u6,u9)

� ρ(u0,u1)+ψ(ρ(u0,u1))+ψ
2(ρ(u0,u1))+ψ

3(ρ(u0,u1))

+ ψ
4(ρ(u0,u1))+ψ

5(ρ(u0,u1))+ψ
6(ρ(u0,u3))

�
5

∑
i=0

ψ
i(ρ(u0,u1))+ψ

6(ρ(u0,u3))

From induction for each k = 1,2,3, . . .,

ρ(u0,u3k+3) �
3k−1

∑
i=0

ψ
i(ρ(u0,u1))+ψ

3k(ρ(u0,u3))(10)

Now, from (5)and (8)for k = 1,2,3, . . ., implies

ρ(un,un+3k+1) � ψ
n(ρ(u0,u3k+1))

� ψ
n

3k

∑
i=0

ψ
i(ρ(u0,u1))

� ψ
n[

3k

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))]

� ψ
n[

∞

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))](11)
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Similarly for k = 1,2,3, . . ., using inequalities (6)and (9)

ρ(un,un+3k+2) � ψ
n(ρ(u0,u3k+2))

� ψ
n[

3k−1

∑
i=0

ψ
i(ρ(u0,u1))+ψ

3k(ρ(u0,u2))]

� ψ
n[

3k

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))

+ ψ
3k(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))]

� ψ
n[

3k

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))]

� ψ
n[

∞

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))](12)

Again for k = 1,2,3, . . ., using inequalities (7)and (10)

ρ(un,un+3k+3) � ψ
n(ρ(u0,u3k+3))

� ψ
n[

3k−1

∑
i=0

ψ
i(ρ(u0,u1))+ψ

3k(ρ(u0,u3))]

� ψ
n[

3k

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))

+ ψ
3k(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))]

� ψ
n[

3k−1

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))]

� ψ
n[

∞

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))](13)

Thus, by inequality (11), (12), (13) we have, for each m,

ρ(un,un+m) � ψ
n[

∞

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))](14)

As from definition 6, ∑
∞
i=0 ψ i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3)) converges, where ρ(u0,u1)+

ρ(u0,u2)+ ρ(u0,u3) ∈ P \ {θ}. Definition of P implies that ∑
∞
i=0 ψ i(ρ(u0,u1)+ ρ(u0,u2)+

ρ(u0,u3)) ∈ P\{θ}. Hence

(15) lim
n−→∞

ψ
n[

∞

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))]
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Then, for given c� 0, ∃ positive number N1 with,

(16) ψ
n[

∞

∑
i=0

ψ
i(ρ(u0,u1)+ρ(u0,u2)+ρ(u0,u3))]� c,∀n≥ N1

Thus, from (14) and (16), we have

ρ(un,un+m) � c f orall n≥ N1

Therefore {un} ∈ X is a Cauchy sequence. By the completeness of X , ∃ a point u ∈ X with

limn−→∞{un}= limn−→∞ Run−1 = u.

Now to prove that fixed point of R is u.

From the continuity of R, we have un+1 = Run −→ Ru as n−→∞.. Since limit is unique in cone

pentagonal metric space, so it implies that u = Ru, i.e., fixed point of R is u. �

The following theorem is independent from continuity of R.

Theorem 2. Let (X ,ρ) is a complete cone pentagonal metric space over Banach space E. Let

R (self map on X) be a relation theoretic ψ-contractive map satisfying following settings:

(I’): T is R-closed.

(II’): ∃ u0 ∈ X with (u0,Rru0) ∈R ∀ r ∈ N

(III’): T s is d-self-closed.

As a result, ∃ u ∈ X with Ru = u.

Proof. By using the similar proof as in above theorem, implies {un} ∈ X is a Cauchy sequence.

And (un,ur+n) ∈T ∀ r,n ∈N. By completeness of X , ∃ u ∈ X with un −→ u as n−→∞. From

hypothesis ∃ a subsequence {unk} with (unk ,u) ∈T s ∀ k ∈ N.

Now using (1), (2) and hypothesis (III’), we obtain

ρ(Ru,u) = ρ(Ru,Runk)+ρ(Runk ,Runk−1)+ρ(Runk−1,Runk−2)+ρ(Runk−2,u)

� ψ(ρ(u,unk)+ρ(unk+1,unk)+ρ(unk ,unk−1)+ρ(unk−1,u))

≺ ρ(u,unk)+ρ(unk+1,unk)+ρ(unk ,unk−1)+ρ(unk−1,u)

Since un −→ u as n −→ ∞ for every c ∈ P such that θ � c. We can choose natural numbers

N2,N3,N4, with ρ(u,unk)�
c
4
,∀n≥N2, ρ(unk+1,unk)�

c
4
,∀n≥N3 and ρ(unk−1,u)�

c
4
,∀n≥



1630 SHISHIR JAIN, POOJA CHAUBEY

N4. As un 6= um ∀ n 6= m, Hence,

ρ(Ru,u) � c
4
+

c
4
+

c
4
+

c
4
= c,∀n≥ N,

Where N = max{N2,N3,N4}. As c is arbitrary therefore ρ(Ru,u)� c
m
,∀m ∈ N. As

c
m
−→

θ as m −→ ∞. It implies that
c
m
− ρ(Ru,u) −→ −ρ(Ru,u) as m −→ ∞. Since P is closed,

−ρ(Ru,u) ∈ P. Hence ρ(Ru,u) ∈ P
⋂
−P, by definition of cone we get ρ(Ru,u) = θ , and so

Ru = u. Therefore, R has a fixed point u ∈ X .

�

Now to prove that fixed point is unique, introduced given settings:

(A): ∀ u,v ∈ X , ∃ w ∈ X with (u,w) ∈T s and (v,w) ∈T s.

Theorem 3. By including (A) in the settings of theorem 1(and theorem 2) uniqueness of the

fixed point of R is obtained.

Proof. Assume u∗ and v∗ are two distinct fixed point of R. By (A), ∃ w ∈ X with (u∗,w) ∈ T s

and (v∗,w) ∈ T s. Assume u∗ 6= w and v∗ 6= w. As R is a relation theoretic ψ-contractive

mapping, using R-closedness of T , we obtain

ρ(u∗,Rnw) = ρ(Ru∗,Rnw)

= ρ(Ru∗,RRn−1w)

� ψ(ρ(u∗,Rn−1w))

Repetition the process as above and by the characteristic of ψ , implies

ρ(u∗,Rnw) � ψ
n(ρ(u∗,Rn−1w))

Since limn−→∞ ψn(ρ(u∗,Rn−1w)) = θ , by definition of cone, for every c∈ int(P), ∃ n0 ∈N with

ρ(u∗,Rnw)� c ∀ n > n0. Therefore, Rnw−→ u∗ as n−→ ∞.

With a similar process we can obtain Rnw −→ v∗ as n −→ ∞. So we obtain u∗ = u∗. This

contradiction proves the uniqueness of fixed point of R. �

The below corollary is revised form of [4].
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Corollary 1. Let (X ,d) be a complete cone pentagonal metric space and P ⊂ E be a cone

(solid). Assume that the self map R on X fascinate given settings

ρ(Ru,Rv)� sρ(u,v) ∀ u,v ∈ X.

with s ∈ P and s ∈ (0,1], implies that R has a unique fixed point in X and furthermore, the

iterative sequence {Rnu} converges to the fixed point.

Proof. Define T = X×X , that is the universal relation and ψ(u) = su ∀ s ∈ P then by theorem

1 corollary is follow. �

Example 1. Assume X = {5,6,7,8,9}, E = R2, P = {(u,v) : u,v ≥ 0} cone in E. Assign

ρ : X×X → E such that:

ρ(5,7) = ρ(7,5) = ρ(7,8) = ρ(8,7) = ρ(6,7) = ρ(7,6) = ρ(6,8) = ρ(8,6) = ρ(5,8) =

ρ(8,5) = (1,2)

ρ(5,6) = ρ(6,5) = (4,8)

ρ(5,9) = ρ(9,5) = ρ(6,9) = ρ(9,6) = ρ(7,9) = ρ(9,7) = ρ(8,9) = ρ(9,8) = (3,6).

Clearly, (X ,ρ) is a cone pentagonal metric space. Assign R a self map on X with:

R(u) =

 8, if u 6= 9;

6, if u = 9;

A binary relation T on X is defined as T = {(5,5),(8,8),(8,6),(6,8),(7,6),(9,6)}. It implies

that R is a relation theoretic ψ contractive map where ψ(u,v) = (u+1,v+1) ∀ (u,v) ∈ P and

by T is R-closed. Here R is not continuous. And for each u ∈ X =⇒ (u0,Rru0) ∈ T . Since X

is a closed subset of R, therefore T is d-self-closed. Clearly, it can be see that 8 is the unique

fixed point.

CONCLUSION

The present work shows that we can prove Banach contraction principle in cone pentagonal

metric space by another approach i.e. using realtion theoretic contraction principle. By this

approach the contractions condition becomes weakend than the ordinary contraction condition,
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since it requires to keep only on those point which are belong to the relation. We belief that

outcomes of present work will be useful in fixed point theory.
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