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Abstract. For a commutative ring R with non-zero identity, let Z∗(R) denote the set of non-zero zero-divisors of

R. The zero-divisor graph of R, denoted by Γ (R), is a simple undirected graph with all non-zero zero-divisors as

vertices and two distinct vertices x,y ∈ Z∗(R) are adjacent if and only if xy = 0. In this paper, the adjacency matrix

and spectrum of Γ (Zpk) are investigated. Also, the implicit computation of the spectrum of Γ (Zn) is described.
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1. INTRODUCTION

let G be a simple graph with vertex set V (G) = {v1,v2, ...,vn}. The adjacency matrix of G is

the n×n matrix A(G) = (auv), where auv is the number of edges joining vertices u and v, each

loop counting as two edges. For a simple graph, A(G) is real and symmetric with entries 0 and

1, where all diagonal entries are zeroes. That is , for a simple graph G, A(G) = (ai j), where

ai j=1 or 0 according as vi ∼ v j in G or not.

The eigenvalues of a square matrix B are the roots of its characteristic polynomial det(B− xI).
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The spectrum of a square matrix B, denoted by σ(B), is the multi set of all the eigenvalues of

B. If λ1,λ2, ...,λr, are the distinct eigenvalues of B with respective multiplicities m1,m2, ...,mr,

then we shall denote the spectrum of B, by ,

σ(B) =

 λ1 λ2 · · · λr

m1 m2 · · · mr

.

The characteristic polynomial of a graph G is the characteristic polynomial of its adjacency ma-

trix; denoted by Φ(G;x) = det(A− xI). Spectrum of a graph, denoted by σ(G) is the spectrum

of the adjacency matrix A(G). Since the adjacency matrix of a graph G is real and symmetric,

algebraic multiplicity of an eigenvalue is same as its geometric multiplicity[12]. The author

refers to [5, 12] for a good introduction to Spectral Graph Theory.

Let R be a commutative ring with nonzero identity. A nonzero element x ∈ R is called a zero

divisor if there exists a nonzero element y ∈ R such that xy = 0. Let Z∗(R) = Z(R) \ (0), be

the set of non-zero zero-divisors of R. In [8], Beck associated to a commutative ring R its

zero-divisor graph G(R) whose vertices are the zero-divisors of R (including 0) and two distinct

vertices a and b are adjacent if and only if ab= 0. In [4], Anderson and Livingston redefined the

concept of the zero divisor graph and introduced the subgraph Γ (R) (of G(R)) as zero divisor

graph whose vertices are the non-zero zero-divisors of R and the authors studied the interplay

between the ring-theoretic properties of a commutative ring and the graph theoretic properties

of its zero-divisor graph.

The zero-divisor graph of R, denoted by Γ (R), is a simple undirected graph with V (Γ (R)) =

Z∗(R) and two distinct vertices x,y ∈ Z∗(R) are adjacent if and only if xy = 0. Thus Γ (R) is the

null graph if R is an integral domain.

The study of zero divisor graph on commutative rings has attracted the attention of many re-

searchers. We refer to [1, 6, 13, 15, 18, 20, 24] for a survey of results regarding both algebraic

and graph parameters of the zero-divisor graphs on certain commutative rings. P. Sharma et.al

[16] studied the adjacency matrix associated with zero-divisor graphs of finite commutative

rings. In [18], R. G. Tirop et. al analysed the adjacency matrices of the zero-divisor graphs of

Galois rings. Pranjali et.al [15] described results regarding the adjacency matrix of the zero-

divisor graph over finite ring of Gaussian integers. The study of the zero-divisor graph of the

ring on integers modulo n can be found in [10, 11, 21].
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This paper aims to describe the spectrum of the zero-divisor graph of the ring of integers mod-

ulo n. The direct computation of the spectrum of Γ (Zn), for n = p3, p4, p2q, where p and q

are distinct primes; is described in sections 3 and 4. The structure of Γ (Zpk) is explored in

section:5. In section:6, we propose an implicit method of computing the spectrum of Γ (Zn),

for n 6= p; a prime and illustrate the comparison between the direct and implicit computations.

The notations and basic definitions in graph theory are standard and are taken from the books

of graph theory such as, e.g.[5 ] ,[9] and [12].

2. PRELIMINARIES

Let G be a graph. G is connected if there is a path between any two distinct vertices. For

distinct vertices x and y of G, let d(x,y) be the length of a shortest path from x to y. Clearly

d(x,x)= 0 and d(x,y)=∞, if there is no path connecting x and y. The diameter of G is defined as

diam(G) = Sup{d(x,y): x and y are vertices of G}. The neighborhood (or open neighborhood)

of a vertex v of G, denoted by N(v), is the set of vertices adjacent to v.

Clique of a graph is a set of mutually adjacent vertices. The maximum size of a clique of a

graph G, called the clique number of G, is denoted by ω(G). A graph G is said to be complete

if any two distinct vertices are adjacent. A complete graph on n vertices is denoted by Kn. The

complement of Kn is a null graph and is denoted by Kn. For a graph G, a stable set is a set of

vertices, no two of which are adjacent. A stable (or independent) set in a graph is maximum if

the graph contains no larger stable set. The cardinality of a maximum stable set in a graph G is

called the stability number, denoted by α(G). The girth of G, denoted by gr(G), is the length

of a shortest cycle in G. (gr(G) = ∞ if G contains no cycles).

Sabidussi [19, p. 396] has defined the X-join of a set of graphs, {Yx}x∈X , indexed by V (X),

as the graph Z with V (Z) = {(x,y) : x ∈ X ,y ∈ Yx}. and E(Z) = {((x,y),(x′,y′)) : (x,x′) ∈ E(X)

or else x = x′ and (y,y′) ∈ E(Yx)}. Let G be a finite graph with vertices labeled as 1,2, ...,n

and let H1,H2, ...,Hn be a set of n graphs. The generalised join of H1,H2, ...Hn, denoted by

G[H1,H2, ...,Hn] is obtained by replacing each vertex i of G by the graph Hi and inserting all or

none of the possible edges between Hi and H j depending on whether or not i and j are adjacent

in G.
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For a natural number n, φ(n) is the number of positive integers less than n and relatively

prime to n. Mn(F) denotes the vector space of all square matrices of size n× n with entries

from a field F. A circulant matrix of size n×n, with entries a and b, where a,b ∈R, denoted by

C(a,b,n), is of the form

C(a,b,n)=



a b . . . . . . b

b a b . . . b

b b a . . . b
...

...
... . . . ...

b b b . . . a


n×n

The complexity of computing the characteristic polynomial of a n× n block matrix is often

reduced to some extent by means of the circulant matrices defined above in section:4.

3. ADJACENCY MATRIX AND SPECTRUM OF Γ (Zp3) AND Γ (Zp4)

D. F. Anderson and P. S. Livingston[4] gave several fundamental results regarding Γ (R) of a

commutative ring R. For any commutative ring R, Γ (R) is connected[4]. The zero divisor of Zn

is a simple, connected and undirected graph. For an idempotent element x, x.x = 0, but x is not

adjacent with itself in a zero divisor graph.

In any finite commutative ring with unity, every non-zero element is either a unit or a zero-

divisor.

Proposition 3.1. [14] The number of non-zero zero-divisors of Zn is n−φ(n)−1

B. Surendranath Reddy et.al[23] have studied the spectrum of Γ (Zp3) and Γ (Zp2q), where

the graph Γ (Zn) is not simple. But following the traditional system of considering Γ (Zn) as

simple, connected graphs, the adjacency matrix of Γ (Zn) has to be reformed. We incorporate

this modification and compute the spectrum of these respective graphs in two different ways in

the next two sections.

3.1. The adjacency matrix of Γ (Zp3).

Theorem 3.1. The adjacency matrix of Γ(Zn) for n = p3, where p is a prime integer, , is
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A(Γ (Zn))=

 O(p2−p) J(p2−p)×(p−1)

J(p−1)×(p2−p) J− I(p−1)


where J is a matrix of all ones and I is an identity matrix.

The size of this matrix is p2−1.

Proof. Let n = p3. By Proposition 3.1, the number of non-zero zero-divisors of Γ(Zp3) is

p2−1. These p2−1 non-zero zero-divisors are partitioned as follows.

P1 = {k1 p : k1 = 1,2, ...p2−1,where p - k1 }.

P2 = {k2 p2 : k2 = 1,2, ...p−1,where p - k2}.

Using elementary number theory, it can be easily seen that the cardinality of P1 is |P1|= p2− p.

Similarly,

|P2|= p−1. We also observe that,

(1) xy 6= 0,∀x,y ∈ P1.

(2) xy = 0,∀x ∈ P1 and ∀y ∈ P2.

(3) xy = 0,∀x,y ∈ P2.

These simple observations gives rise to the partitioned structure of the adjacency matrix of

Γ(Zp3). The non-zero zero divisors of n are rearranged such that the elements of P1 appear first

and then P2. Since no two vertices in P1 are adjacent, it is an independent set in Γ(Zp3) and

hence it corresponds to a block of zeroes in the adjacency matrix. Also since all vertices of P1

are adjacent to every vertex of P2, it corresponds to a block of all ones and so on. Note that

the zero-divisor graph of a commutative ring is a simple undirected graph. Hence, even though

xx = 0,∀x,∈ P2, x is not adjacent with x. Thus the adjacency of vertices among P2 corresponds

to the block J− I. Thus the adjacency matrix of Γ(Zp3) is a 2× 2 block matrix consisting of

blocks of zeros and ones in the following form,

(1) A(Γ (Zp3)) =

 O(p2−p) J(p2−p)×(p−1)

J(p−1)×(p2−p) J− I(p−1)


The size of this matrix is |P1|+ |P2|= p2−1. �
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3.2. Spectrum of Γ (Zp3). The size of the adjacency matrix of Γ (Zp3) is p2− 1. Since the

direct computation of the characteristic polynomial is tedious for large n, we adopt some tools

of matrix theory among which schur complement and coronal plays vital role.

Lemma 3.1. [7] Let M,N,P,Q be matrices and let M be invertible. Let S =

 M N

P Q

,

then detS = detM. det(Q−PM−1N).

(Q−PM−1N) is called the Schur complement of M in S.

Definition 3.1. [3] Let 1n denote an all-one vector. The coronal of a matrix A, denoted by

ΓA(x), is defined as the sum of the entries of the matrix (xI−A)−1.

That is, ΓA(x) = (1n)
T .(xI−A)−1.1n

Lemma 3.2. [22] Let G be a r-regular graph on n vertices, with adjacency matrix A. Then

ΓA(x) =
n

x− r
.

Proposition 3.2. [25] Let A be an n×n matrix and Jn×n denote an all one matrix. Then,

det(xIn−A−αJn×n) = (1−αΓA(x)).det(xIn−A),

where α is a real number.

Let G =Γ (Zp3) and M = A(Γ (Zp3)). The vertex set of G is partitioned into P1 and P2, where

P1 induces the null subgraph K p2−p and P2 induces a complete subgraph Kp−1 both of which

are regular of degree 0 and p−2 respectively.

Theorem 3.2. Let G = Γ(Zp3) and let λ be an eigenvalue of G. Then λ = 0 and λ = −1 are

eigenvalues of G with multiplicities p2− p−1 and p−2 respectively. If λ 6= 0, λ 6= −1, then

λ satisfies φ(λ ) = λ 2− (p−2)λ − p(p−1)2 = 0.

Proof. Let the adjacency matrix of G = Γ (Zp3) be denoted by M. From equation (1),

M =

 O(p2−p) J(p2−p)×(p−1)

J(p−1)×(p2−p) J− I(p−1)

=

 A1 A2

A3 A4

.

Clearly A1 and A2 are the adjacency matrices of the induced subgraphs K p2−p and Kp−1 of G
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respectively. By Lemma 3.2, ΓA1(x) =
p2− p

x
and ΓA4(x) =

p−1
x− p+2

.

The eigenvalues of G are given by det(xI−M) = 0.

By Lemma 3.1 ,

(2) det(xI−M) = det(xI−A1).det
[
(xI−A4)−A3

T .(xI−A1)
−1.A2

]
,

where

det(xI−A1) = xp2−p

and

det(xI−A4) = (x− p+2).(x+1)p−2.

Also, det
[
(xI−A4)−A3

T .(xI−A1)
−1.A2

]
= det

[
(xI−A4)−ΓA1(x).Jp−1×p−1

]

= det
[
(xI−A4)− (

p2− p
x

).Jp−1×p−1

]

=

(
1− (

p2− p
x

)ΓA4(x)
)
.det(xI−A4)

=

(
1− (

p2− p
x

)(
p−1

x− p+2
)

)
.(x− p+2).(x+1)p−2,

by Lemma 3.2 and Proposition3.2.

Applying these steps in equation(2), the characteristic polynomial of G is given by,

Φ(G;x) = xp2−p−1.(x+1)p−2.
(
x2− (p−2)x− p(p−1)2)

Thus the spectrum of Γ (Zp3) is

 0 −1
(p−2)+

√
4p3−7p2 +4
2

(p−2)−
√

4p3−7p2 +4
2

p2− p−1 p−2 1 1

 �
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3.3. Adjacency matrix and eigenvalues of Γ (Zp4). Partitioning the zero-divisors of Zp4 into

multiples of p, p2, p3 and labeling the vertices of the zero-divisor graph Γ (Zp4) properly, we

see that,

A(Γ (Zp4)) =


Op2(p−1) Op2(p−1)×p(p−1) Jp2(p−1)×(p−1)

Op(p−1)×p2(p−1) J− Ip(p−1) Jp(p−1)×(p−1)

J(p−1)×p2(p−1) J(p−1)×p(p−1) J− I(p−1)


Computing the characteristic polynomial as in section 3.1, we arrive at the following corollary.

Corollary 3.1. Let G = Γ(Zp4) and let λ be an eigenvalue of G. Then λ = 0 and λ = −1 are

eigenvalues of G with multiplicities p3− p2−1 and p2−3 respectively. If λ 6= 0, λ 6=−1, then

λ satisfies φ(λ ) = λ 3− (p2−3)λ 2− (p4−2p3 +2p2−2)λ + p2(p−1)2(p2− p−1) = 0.

4. ADJACENCY MATRIX AND EIGENVALUES OF Γ (Zp2q)

P. M. Magi et.al[14] have studied the structure of Γ (Zp2q2) by partitioning the vertex set into

7 classes and computed the characteristic polynomial by employing Gaussian elimination and

other matrix operations. In this section Let n = p2q where p and q are prime integers with p < q

and let G = Γ (Zp2q). By proposition 3.1, n has p(p+ q− 1)− 1 non-zero zero-divisors. As

in the previous section, the non-zero zero-divisors of n are partitioned into four disjoint sets as

given below.

E1 = {k1 p : k1 = 1,2, ...pq−1,where p - k1 and q - k1 }.

E2 = {k2q : k2 = 1,2, ...p2−1,where p - k2 }.

E3 = {k3 pq : k3 = 1,2, ...p−1}.

E4 = {k4 p2 : k4 = 1,2, ...q−1}.

Clearly, |E1|= (p−1)(q−1), |E2|= p(p−1), |E3|= (p−1), |E4|= (q−1).

The adjacency matrix of G is given by ,

(3)

A(Γ (Zp2q))=


O(p−1)(q−1) O(p−1)(q−1)×p(p−1) J(p−1)(q−1)×(p−1) O(p−1)(q−1)×(q−1)

Op(p−1)×(p−1)(q−1) Op(p−1) Op(p−1)×(p−1) Jp(p−1)×(q−1)

J(p−1)×(p−1)(q−1) O(p−1)×p(p−1) J− I(p−1) J(p−1)×(q−1)

O(q−1)×(p−1)(q−1) J(q−1)×p(p−1) J(q−1)×(p−1) O(q−1)


Remark 4.1. The stability number α(G) = |E1|+ |E2|= (p−1)(p+q−1).
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Remark 4.2. The clique number ω(G) = |E3|= p−1.

Remark 4.3. Since E3 induces a complete subgraph of order p−1, the girth gr(G) = 4 if p = 2

and gr(G) = 3, if p≥ 3.

In this section we expose the direct computation of characteristic polynomial of the zero-

divisor graph Γ (Zp2q) using block diagonal matrix and certain circulant matrix.

Definition 4.1. [17] A matrix A ∈ Mn(F), where F is a field of numbers(real or complex); of

the form

A=


A11 O . . . O

O A22 . . . O
... . . . ...

O . . . Ann

 in which Aii ∈ Mni(F), i = 1,2, ...k, Σk
i=1ni = n, and all blocks

above and below the block diagonal are the zero blocks, is called a block diagonal matrix.

Thus A=A11⊕A22...⊕Akk =
⊕k

i=1 Aii , is the direct sum of matrices A11,A22, ...Akk.

Lemma 4.1. [17] det(
⊕k

i=1 Aii) = ∏
k
i=1 det(Aii).

In particular, if A11 ∈Mn(F) and A22 ∈Mm(F), then det

 A11 O

O A22

= det(A11) ·det(A22).

Lemma 4.2. [17] If A11 ∈Mn(F) and A22 ∈Mm(F) are non singular,

then

 A11 O

O A22

−1

=

 A−1
11 O

O A−1
22



Proposition 4.1. [14] Let C(a,b,n)=



a b . . . . . . b

b a b . . . b

b b a . . . b
...

...
... . . . ...

b b b . . . a


n×n

be a circulant matrix of size n×n;

with entries a and b.

Then detC(a,b,n); denoted by δ , is given by δ = (a+(n−1)b)(a−b)n−1.
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Proposition 4.2. [14] If C(a,b,n) is nonsingular, then its inverse is given by

C−1
(a,b,n) =

1
δ


δn−1 ∆n−1 . . . ∆n−1

∆n−1 δn−1 . . . ∆n−1
... . . . ...

∆n−1 . . . δn−1

 =
1
δ

C(δn−1,∆n−1,n),

where δn−1 = (a+(n−2)b)(a−b)n−2 and ∆n−1 =−b · (a−b)n−2.

Theorem 4.1. Let G = Γ (Zp2q) and let λ be an eigenvalue of G. Then λ = 0 and λ = −1

are eigenvalues of G with multiplicities (p−1)(p+q−1)+ (q−4) and p−2 respectively. If

λ 6= 0, λ 6=−1, then λ satisfies,

φ(λ ) = λ 4−(p−2)λ 3−2p(p−1)(q−1)λ 2+ p(p−1)(p−2)(q−1)λ + p(p−1)3(q−1)2 =

0.

Proof. Let M = A(Γ (Zp2q)). The eigenvalues of G are given by

(4) det(M−λ I) = 0

M−λ I =

 A B

BT C

, where A =


−λ 0 · · · 0

0 −λ 0
... . . . ...

0 · · · · · · −λ


(p−1)(p+q−1)

,

B =



1 · · · · · · 1 0 · · · 0
...

...
...

...

1 · · · · · · 1 0 · · · 0

0 · · · · · · 0 1 · · · 1
...

...
...

...

0 · · · · · · 0 1 · · · 1


(p−1)(p+q−1)×(p+q−2)

,
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and C =



−λ 1 · · · 1 1 · · · · · · 1

1 −λ 1
...

...
... . . . ...

...
...

1 · · · · · · −λ 1 · · · · · · 1

1 · · · · · · 1 −λ 0 · · · 0
...

... 0 −λ · · · 0
...

...
... . . . ...

1 · · · · · · 1 0 · · · · · · −λ


p+q−2

If λ 6= 0, then A is invertible and by Proposition 4.1 and Proposition 4.2

(5) detA = (−λ )(p−1)(p+q−1)

and A−1 =
−1
λ

I.

Also BT A−1B =
−1
λ

 (p−1)(q−1)Jp−1 O(p−1)×(q−1)

O(q−1)×(p−1) p(p−1)Jq−1

,

where J denotes a matrix of all ones.

Now, the schur complement of A in C is given by

(6) C−BT A−1B =

 A11 A12

A21 A22

 ,
where A11 =C(

−λ+
(p−1)(q−1)

λ
, 1+ (p−1)(q−1)

λ
, p−1

) ,

A12 = J(p−1)×(q−1) ,

A21 = J(q−1)×(p−1) and

A22 =C(
−λ+

p(p−1)
λ

,
p(p−1)

λ
, q−1

). Thus by lemma 3.1,

(7) det(M−λ I) = detA. det(C−BT A−1B)

Applying Lemma 3.1 once again ,

(8) det(C−BT A−1B) = detA11. det(A22−A21A−1
11 A12)

By Proposition 4.1 it can be seen that,

(9) detA11 =
h(λ )

λ
(−λ −1)p−2
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where h(λ ) =−λ 2 +(p−2)λ +(p−1)2(q−1).

Also by Proposition 4.2,

(10) A−1
11 =

1
h(λ )(λ +1)

C(λ 2−(p−3)λ−(p−1)(q−1)(p−2)), λ+(p−1)(q−1), p−1)

Also,

(11) A22−A21A−1
11 A12 =C(

−λ+
p(p−1)

λ
− λ (p−1)

h(λ ) ,
p(p−1)

λ
− λ (p−1)

h(λ ) ), q−1
)

(12)

det(A22−A21A−1
11 A12) = (−1)q−1

λ
q−2 λ 2h(λ )−h(λ )p(p−1)(q−1)+λ 2(p−1)(q−1)

λh(λ )

Applying these in equation(7), the characteristic equation of Γ (Zp2q) is obtained as

(13) λ
(p−1)(p+q−1)+q−4(λ +1)p−2

φ(λ ) = 0

where φ(λ ) = λ 4−(p−2)λ 3−2p(p−1)(q−1)λ 2+ p(p−1)(p−2)(q−1)λ + p(p−1)3(q−

1)2

Hence λ = 0 and λ =−1 are eigenvalues of G with multiplicities (p−1)(p+q−1)+(q−4)

and p−2 respectively. Also if λ 6= 0, λ 6=−1, then λ satisfies,

φ(λ ) = λ 4−(p−2)λ 3−2p(p−1)(q−1)λ 2+ p(p−1)(p−2)(q−1)λ + p(p−1)3(q−1)2 =

0 �

5. ADJACENCY MATRIX OF Γ (Zpk), k ≥ 3

By a proper divisor of n, we mean a positive divisor d such that d/n , 1 < d < n. Let s(n)

denote the number of proper divisors of n. Then, s(n) = σ0(n)−2, where σk(n) is the sum of k

powers of all divisors of n, including n and 1.

If n = pn1
1 · p

n2
2 · · · pnr

r , where p1, p2, ..., pr are distinct primes,

s(n) =
r

∏
i=1

(ni +1) −2.

Let S(d) = {k ∈ Zn : gcd(k,n) = d}. See[21]. Then
{

S(d1),S(d2), ...,S(ds(n))
}

is an equitable

partition for the vertex set of Γ (Zn) such that S(di)∩S(d j) = φ , i 6= j, and any two vertices in

S(di) have the same number of neighbours in S(d j) for all divisors di,d j of n.
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Proposition 5.1. [11,prop2.1] |S(di)|= φ(
n
di
), for every i = 1,2, ...s(n).

Also the subgraphs induced by S(di) is either Kdi or Kdi . For example, in Γ (Zp3), S(p)

induces K p(p−1) and S(p2) induces Kp−1. In Γ (Zp2q), S(p),S(q),S(p2) induce K(p−1)(q−1),

K p(p−1),Kq−1 respectively while S(pq) induces Kp−1; which is visible from the diagonal blocks

0,J− I in the adjacency matrices of respective graphs. See equation(1) and equation(3).

In this section, we analyse the adjacency matrix of Γ (Zpk),k ≥ 3. Since Zp is an integral

domain for any prime p, Γ (Zp) is a null graph. Hence to avoid triviality, we assume k ≥ 2.

Also for k = 2, Γ (Zp2) is a complete graph on p−1 vertices; whose spectrum is known. Hence

we assume k≥ 3. Also we note that the proper divisors of pk are p, p2, ..., pk−1 and the number

of non-zero zero-divisors of pk is pk−1−1, by Proposition 3.1.

The structure of Γ (Zp4), Γ (Zp5), Γ (Zp6), Γ (Zp7), which motivated us to some interesting

results, are given below.(See Figure:1, Figure:2, Figure:3, Figure:4)

S (p) S
(

p2) S
(

p3)


S (p) O O J

S
(

p2) O J− I J

S
(

p3) J J J− I

FIGURE 1. Γ (Zp4)

S (p) S
(

p2) S
(

p3) S
(

p4)


S (p) O O O J

S
(

p2) O O J J

S
(

p3) O J J− I J

S
(

p4) J J J J− I

FIGURE 2. Γ (Zp5)

Remark 5.1. As illustrated in section 3.1, the adjacency matrix of Γ (Zpk) contains blocks of

all zero matrices, blocks of all one matrices and identity-matrix blocks.
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S (p) S
(

p2) S
(

p3) S
(

p4) S
(

p5)



S (p) O O O O J

S
(

p2) O O O J J

S
(

p3) O O J− I J J

S
(

p4) O J J J− I J

S
(

p5) J J J J J− I

FIGURE 3. Γ (Zp6)

S (p) S
(

p2) S
(

p3) S
(

p4) S
(

p5) S
(

p6)



S (p) O O O O O J

S
(

p2) O O O O J J

S
(

p3) O O O J J J

S
(

p4) O O J J− I J J

S
(

p5) O J J J J− I J

S
(

p6) J J J J J J− I

FIGURE 4. Γ (Zp7)

If all vertices of S(pi) are adjacent to every vertex of S(p j), we write S(pi) ∼ S(p j). Clearly,

S(pi)∼ S(p j) iff i+ j≥ k. Also, S(pi)∼ S(pi), indicates that every vertex of S(pi) is adjacent to

every other vertex of S(pi) and clearly the equivalent condition of adjacency of vertices among

S(pi) is that; S(pi)∼ S(pi) iff i ≥ d k
2e. Thus, the adjacency matrix of Γ (Zpk) is obtained as in

Figure: 5 and Figure: 6.

5.1. Some graph parameters of Γ (Zpk). The above analysis of the structure of Γ (Zpk) leads

to some results regarding the stability number, clique number and girth of Γ (Zpk). As the

matrix narrates the adjacency between S(pi) and S(p j), for i, j = 1,2, ...,k−1 and the adjacency

among the vertices of each S(pi), i = 1,2, ...,k− 1, it is clear that, any principal sub matrix of

zero blocks corresponds to an independent set in Γ (Zpk).

Theorem 5.1. Let G = Γ (Zpk), k ≥ 3. Then, α(G) = pk−1− pb
k
2 c

Proof. From the structure of the adjacency matrix of Γ (Zpk), it is clear the , the maximum

size of a principal sub matrix of zero blocks is |S(p)|+ |S(p2)|+ ...+ |S(pd
k
2e−1)|. Thus by
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S(p) S(p2) · · · S(pd
k
2e−1) S(pd

k
2e) · · · · · · S(pk−1)



S(p) O · · · · · · O O · · · O J

S(p2)
... . . . ...

... O J J
...

... . . . ...
...

...
...

S(pd
k
2 e−1) O · · · · · · O O J · · · · · · J

S(pd
k
2 e) · · · · · · O J− I J · · · · · · J

...
... · · · O J J J− I J · · · J
...

...
... . . . ...

... O J · · · J
... . . . J

S(pk−1) J J · · · J J J · · · · · · J− I

FIGURE 5. Γ (Zpk); when k is even

S(p) S(p2) · · · S(pd
k
2e−1) S(pd

k
2e) · · · S(pk−1)



S(p) O · · · · · · O O O · · · O J

S(p2)
... . . . ... O

... · · · J J
...

... . . . ...
... J · · · ...

...

S(pd
k
2 e−1) O · · · · · · O J J · · · · · · J

S(pd
k
2 e) O O · · · J J− I J · · · · · · J

... O · · · J J J J− I J · · · J
...

...
...

... . . . ...

O J · · · J
... . . . ...

S(pk−1) J J · · · J J J · · · · · · J− I

FIGURE 6. Γ (Zpk); when k is odd

Proposition.5.1,

α(G) = φ( pk

p )+φ( pk

p2 )+ ...+φ( pk

pd
k
2 e−1

)

= φ(pk−1)+φ(pk−2)+ ...+φ(pk−d k
2 e+1)

= pk−1− pb
k
2 c.
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�

Theorem 5.2. Let G = Γ (Zpk), k ≥ 3.Then,

ω(G) =


p

k
2 −1; if k is even,

pb
k
2 c; k is odd.

Proof. A clique of a graph G is a subset of V (G) which induces a complete subgraph in G. Thus

the maximum size of a clique in Γ (Zpk) is |S(pd
k
2e)|+ |S(pd

k
2 e+1)|+ ...+ |S(pk−1)| ; if k is even

and one more than this number if k is odd.

|S(pd
k
2e)|+ |S(pd

k
2e+1)|+ ...+ |S(pk−1)|= φ( pk

pd
k
2 e
)+ ...+φ( pk

pk−1 )

= φ(p)+ ...+φ(pb
k
2c)

= pb
k
2 c−1.

Thus, ω(G) =


p

k
2 −1; if k is even,

pb
k
2c; if k is odd.

�

Theorem 5.3. Let G = Γ (Zpk), k ≥ 3 for any prime p. Then, gr(G) = 3 except that

gr(Γ (Z8)) = ∞

Proof. Consider k ≥ 3.

If k is even, from the above theorem, we see that ω(G)≥ 3, for any prime p.

If k is odd, ω(G) ≥ 3, for any prime p ≥ 3. Thus the length of the shortest cycle is 3 in these

cases. Also for p = 2 and k = 3, we see that the zero divisor graph contains no cycle. �

5.2. The eigenvalues λ = 0 and λ = −1 of Γ (Zpk). Matrix theory is a mode of conveying

very important information regarding both structural and algebraic parameters of a graph. Here,

from the point of view of Linear Algebra, the multiplicities of the eigenvalues 0 and −1 are

calculated.

Theorem 5.4. Let G = Γ (Zpk),k ≥ 3. Then λ = 0 and λ = −1 are eigenvalues of G with

multiplicities pk−1− pb
k
2c−d k

2e+1 and pb
k
2c−b k

2c−1 respectively.
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Proof. The adjacency matrix of Γ (Zpk) contains repeated rows. Hence the determinant is zero.

This indicates that λ = 0 is an eigenvalue. Since the adjacency matrix of any simple graph

is real and symmetric, it follows that the algebraic multiplicity of λ = 0 is the nullity of the

adjacency matrix, which is exactly the number of dependent rows in the adjacency matrix of

Γ (Zpk).See Figure:5 and Figure:6. If M = A(Γ (Zpk)), then in each of the first d k
2e−1 blocks

of M , all but one, are dependent rows. Thus,

nullity(M) = |S(p)|+ |S(p2)|+ ...+ |S(pd
k
2e−1)|− (d k

2e−1)

= φ( pk

p )+φ( pk

p2 )+ ...+φ( pk

pd
k
2 e−1

)− (d k
2e−1)

= pk−1− pb
k
2c−d k

2e+1

Thus multiplicity of λ = 0 is pk−1− pb
k
2 c−d k

2e+1.

Also, we can see that det(M+ I) = 0. Hence λ =−1 is an eigenvalue of M and multiplicity of

λ =−1 is the nullity of M+ I. In each of the last b k
2c blocks of M+ I, all but one, are dependent

rows. Thus nullity of M+ I is given by,

nullity(M+ I) = |S(pd
k
2e)|+ |S(pd

k
2e+1)|+ ...+ |S(pk−1)|−b k

2c

= pb
k
2c−b k

2c−1.

Thus multiplicity of the eigenvalue λ =−1 is pb
k
2c−b k

2c−1. �

The other eigenvalues of Γ (Zpk) are computed in section:6.

6. EIGENVALUES OF Γ (Zn),n 6= p, FOR ANY PRIME p.

Sriparna Chattopadhyay et.al have studied the structure of Γ (Zn) and found that it is a gen-

eralised join of certain regular graphs. [21]

Let n = pn1
1 pn2

2 ...pnr
r , where p1, p2, ..., pr are distinct primes and d1,d2, ...,ds(n) be the proper

divisors of n. let Γ(S(di)), i = 1,2, ...,s(n); denote the subgraph of Γ (Zn), induced by S(di);

which are either Kφ( n
di
) or its complement Kφ( n

di
). It is obvious that Γ(S(di)) is regular for each

i = 1,2, ...,s(n).
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18
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4

FIGURE 7. ϒ36

Proposition 6.1. [21] Let ϒn denote the simple graph associated with Γ (Zn) with vertices

labeled as d1,d2, ...,ds(n) Then, the vertices di and d j are adjacent in ϒn if and only if n/did j.

Example 6.1. For example, consider Γ (Z36). The number of proper divisors of 36 is

s(36) = 7. They are precisely 2,3,4,6,9,12,18. The non-zero divisors of Γ (Z36) is par-

titioned into 7 classes as follows. S(2) = {2,10,14,22,26,34}, S(3) = {3,15,21,33},

S(4) = {4,8,16,20,28,32}, S(6) = {6,30}, S(9) = {9,27}, S(12) = {12,24},

S(18) = {18}.

The graphs Γ (Z36) and ϒ36 are given in Figure:7 and Figure:8, where the dotted lines indicate

the join of graphs. Note that Γ(S(6)), Γ(S(12)) and Γ(S(18))) are complete subgraphs, while

the others are null graphs.

The following theorems are very crucial in this section.

Theorem 6.1. [21] Γ (Zn) = ϒn
[
Γ(S(d1)),Γ(S(d2)), ...,Γ(S(ds(n)))

]
The above theorem explains that the zero-divisor graph of Γ (Zn) is a generalised join of its

subgraphs Γ(S(di)), for i = 1,2...s(n).

Definition 6.1. [2] Let V1,V2, ...Vm be an equitable partition of a graph G, with |N(v)∩Vj| =

ti j,1≤ i, j ≤ m, for all v ∈Vi, then, T = [ti j] is called the matrix associated with the partition.
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S(6)

S(12)
S(3)

S(18)
S(2)

S(9)
S(4)
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4
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b
24

3
6

3
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4
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4
27

5
18 6
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6
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634

7
4

7 8

7 16
7
20

728

732

FIGURE 8. Γ (Z36)

A.J. Schwenk [2] has described the spectrum of the generalised join of regular graphs.

Theorem 6.2. [2] Let G be a graph on p vertices. If Hi,1≤ i≤ p are all ri-regular graphs, then

V1∪V2∪ ...∪Vp is an equitable partition of G[H1,H2, ...Hp]. Let T denote the matrix associated

with this partition, then the characteristic polynomial of the generalised composition is

Φ(G[H1,H2, ...Hp];x) = Φ(T ;x).
p

∏
i=1

Φ(Hi;x)
(x− ri)

.

The above theorem leads to a very exciting way of computing the eigenvalues of Γ (Zn).

First, we determine T , the matrix associated with the partition S(d1)∪S(d2)∪ ...∪S(ds(n)). of

the graph Γ (Zn). Let |N(v)∩ S(d j)| = ti j,1 ≤ i, j ≤ s(n), for all v ∈ S(di). Note that S(di) ∼

S(d j) if and only if n/did j and S(di) induces a complete subgraph in G, if and only if n/d2
i and

a null graph if and only if n - d2
i . Thus T = [ti j]s(n)×s(n) is defined as follows.



1662 P.M. MAGI, SR. MAGIE JOSE, ANJALY KISHORE

ti j =


φ( n

d j
); if n / did j; i 6= j

φ( n
di
)−1; if n / d2

i ; i = j

0; otherwise

(14)

This description completely determines T and subsequently Φ(T ;x). Now we explore the char-

acteristic polynomial of Γ (Zn) in a very convenient manner.

Theorem 6.3. Let G = Γ (Zn),n 6= p, for any prime p. Then the characteristic polynomial of G

is Φ(G;x) = Φ(T ;x).∏n/d2
i
(x+1)φ( n

di
)−1

.∏n-d2
i

xφ( n
di
)−1, where T = [ti j],

ti j =


φ( n

d j
); if n / did j; i 6= j

φ( n
di
)−1; if n / d2

i ; i = j

0; otherwise

Proof. Let n = pn1
1 pn2

2 ...pnr
r , where p1, p2, ..., pr are distinct primes and assume that n is not

a prime (to avoid triviality). Let d1,d2, ...ds(n) be the proper divisors of n. Let mi denote the

cardinality of S(di), i = 1,2, ...,s(n). Thus mi = φ( n
di
), i = 1,2, ...,s(n). It is already seen that

Γ(S(di)); the subgraph induced by S(di) is either Kmi or Kmi which are regular of order mi−1

or 0 respectively; accordingly as n divides d2
i or not.

Thus, Φ(Γ(S(di));x) = Φ(Kmi;x) = (x+1)mi−1.(x−mi +1); if n / d2
i and

Φ(Γ(S(di));x) = Φ(Kmi;x) = xmi; if n - d2
i .

Thus the conclusion follows from Theorem 6.1 and Theorem 6.2 .

�

Example 6.2. Consider n = p2q, where p and q are distinct primes p < q. The proper divisors

of p2q are d1 = p, d2 = q, d3 = p2 and d4 = pq. Note that S(d) = {x ∈ Zn : gcd(x,n) = d}.

S(d1) = {k1 p : k1 = 1,2, ...pq−1; p - k1,q - k1.}

S(d2) = {k2q : k2 = 1,2, ...p2−1; p - k2.}

S(d3) = {k3 p2 : k3 = 1,2, ...q−1.}

S(d4) = {k4 pq : k4 = 1,2, ...p−1.}
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Clearly, |S(d1)|= (p−1)(q−1), |S(d2)|= p(q−1), |S(d3)|= q−1, and |S(d4)|= p−1.

These sets form an equitable partition for the vertex set of Γ (Zn) as we have seen in section 3.1.

Also, the matrix of partition,

T =


0 0 0 p−1

0 0 q−1 0

0 p(p−1) 0 p−1

(p−1)(q−1) 0 q−1 p−2

 .

The characteristic polynomial of this matrix is given by, Φ(T ;x) = det(T − xI). Thus,

Φ(T ;x) = x4− (p−2)x3−2p(p−1)(q−1)x2 + p(p−1)(p−2)(q−1)x+ p(p−1)3(q−1)2.

Let Gi = Γ(S(di)), i = 1,2,3,4.. Note that G1, G2, G3 are null graphs of order (p− 1)(q− 1),

p(p− 1) and q− 1 respectively and G4 is a complete graph of order p− 1 which is regular of

degree p−2. Thus,

Φ(G1;x) = x(p−1)(q−1)

Φ(G2;x) = xp(p−1)

Φ(G3;x) = xq−1

Φ(G4;x) = (x+1)p−2(x− p+2).

Hence the characteristic polynomial of Γ (Zp2q) is,

Φ(Γ (Zp2q;x)) = (x+1)p−2.x(p−1)(p+q−1)+(q−4).Φ(T ;x);

where Φ(T ;x) = x4−(p−2)x3−2p(p−1)(q−1)x2+ p(p−1)(p−2)(q−1)x+ p(p−1)3(q−

1)2.

Remark 6.1. In the above example, the order of the zero divisor graph Γ (Zp2q) is p2 + pq−

p− 1, by Proposition 3.1. Theorem 6.3 reduces the inconvenience of handling a huge matrix

of order p2 + pq− p−1 in finding the eigenvalues, by means of a 4×4 matrix of partition and

thereby serves the purpose of bypassing the tedious traffic of direct computation using matrix

operations.

Corollary 6.1. The characteristic polynomial of Γ (Zpk),k ≥ 2 is given by

Φ(Γ (Zpk);x) = Φ(T ;x). ∏
i<d k

2 e
x(p−1)p(k−i−1)

. ∏
i≥d k

2e
(x+1)(p−1)p(k−i−1)

,
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where T = [ti j](k−1)×(k−1) ,

ti j =


(p−1)pk− j−1; if i+ j ≥ k; i 6= j

(p−1)pk− j−1−1; if i+ j ≥ k; i = j

0; otherwise

Proof. S(di) induces a complete subgraph in Γ (Zn) if and only if n/d2
i ; and a null graph oth-

erwise. hence if n = pk;k ≥ 2, S(pi) induces a complete subgraph of order pk−i−1(p− 1) if

i≥ d k
2e or a null graph otherwise. �

Example 6.3. For G = Γ (Zp4), it can be seen from section 3.1 that the matrix of partition of

the vertex set of G is given by,

T =


0 0 p−1

0 p(p−1)−1 p−1

p2(p−1) p(p−1) p−2

 .

Thus Φ(T ;x) is obtained as,

Φ(T ;x)= x3−(p2−3)x2−(p4−2p3+2p2−2)x+ p2(p−1)2(p2− p−1). Applying Corollary

6.1, we see that the characteristic polynomial of Γ (Zp4) is,

Φ(Γ (Zp4);x) = (x+1)p2−3.xp3−p2−1.Φ(T ;x),

where Φ(T ;x) = x3− (p2−3)x2− (p4−2p3 +2p2−2)x+ p2(p−1)2(p2− p−1)

Thus Theorem 6.3 and Corollary 6.1 are the generalisation of results in section:3 and sec-

tion:4.

CONCLUSION

This paper is an attempt to explore the spectrum of the zero-divisor graphs on the ring of

integers modulo n. In this paper, the characteristic polynomial of the adjacency matrix of the

zero-divisor graph Γ (Zn) is investigated so that the spectrum of this graph can be found for any

natural number using numerical methods. Zero-divisor graphs are used to model networks of

communication , network flow and clique problems.
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