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Abstract. Let G be a (p,q) graph. Let f : V (G)→ {0,1,2,3, . . . ,k−1} be a function where k ∈ N and k >

1. For each edge uv, assign the label f (uv) =
⌈

f (u)+ f (v)
2

⌉
. f is called k-total mean cordial labeling of G if∣∣tm f (i)− tm f ( j)

∣∣≤ 1, i, j∈{0,1,2, . . . ,k−1}, where tm f (x) denotes the total number of vertices and edges labelled

with x, x ∈ {0,1,2, . . . ,k−1}. A graph with admit a k-total mean cordial labeling is called k-total mean cordial

graph.
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1. INTRODUCTION

Graphs in this paper are finite, simple and undirected. Graph labeling was first initiated by

in the name of graceful labeling by Rosa [5]. Subsequently harmonious labeling introduced

by Graham and Solane [3] and cordial labeling by Cahit [1]. In this paper, we introduce k-

total mean cordial graphs and studied the k-total mean cordial behaviour of some graphs and
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investigate 4-total mean cordial labeling behaviour of cycle, complete graph, star, bistar, comb

and crown. Terms are not defined here follow from Harary[4] and Gallian[2].

2. PRELIMINARIES

Definition 2.1. Let G be a (p,q) graph. Let f : V (G)→ {0,1,2,3, . . . ,k−1} be a function

where k ∈ N and k > 1. For each edge uv, assign the label f (uv) =
⌈

f (u)+ f (v)
2

⌉
. f is called k-

total mean cordial labeling of G if
∣∣tm f (i)− tm f ( j)

∣∣≤ 1, i, j ∈ {0,1,2, . . . ,k−1}, where tm f (x)

denotes the total number of vertices and edges labelled with x, x ∈ {0,1,2, . . . ,k−1}. A graph

with admit a k-total mean cordial labeling is called k-total mean cordial graph.

Remark. 2-total mean cordial labeling is a total product cordial labeling.

Remark. 3-total mean cordial labeling is a total mean cordial labeling.

3. MAIN RESULTS

Theorem 3.1. Every graph is a subgraph of a connected k-total mean cordial graph.

Proof. Let G be a (p,q) graph. Consider k-copies of the complete graph Kp and

v(i)1 ,v(i)2 ,v(i)3 , . . . ,v(i)p be the vertices of the ith copy of Kp (1≤ i≤ p).

The super graph G∗ of G is obtained from k-copies of Kp by joining the vertices v(i)1 and

v(i+1)
1 (1≤ i≤ p−1).

Now assign the label 0 to the all the vertices of the first copy of Kp. Next assign the label 1 to

all the vertices of the second copy of Kp. Proceeding like this assign the label k− 1 to the all

the vertices of kth copy of Kp. That is assign the label r to all the vertices of (r+1)th copy of

Kp (0≤ r ≤ k−1).

Clearly tm f (0) =
p(p+1)

2 , tm f (1) = tm f (2) = . . .= tm f (k−1) = p(p+1)
2 +1.

Therefore G∗ is a connected k-total mean cordial graph. �

Theorem 3.2. Any path is k-total mean cordial.

Proof. Let Pn be the path u1u2u3 . . .un and n = kt + r, 0≤ r < n.
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Consider the vertices u1,u2,u3, . . . ,ut . Assign the label k− 1 to the vertices u1,u2, . . . ,ut .

Next assign the label k− 2 to the vertices ut+1,ut+2, . . . ,u2t . We now assign the label k−

3 to the vertices u2t+1,u2t+2, . . . ,u3t . Proceeding like this assign the label 1 to the vertices

u(k−2)t+1,u(k−2)t+2, . . . ,u(k−1)t and 0 to the vertices u(k−1)t+1,u(k−1)t+2, . . . ,u(k)t .

Now we consider the vertices ukt+1,ukt+2, . . . ,ukt+r. Assign the even integer 0,2,4, . . . to the

vertices ukt+1,ukt+2, . . .with the condition that even number are≤ k−1. If all the even numbers

(≤ k−1) are exhausted then assign the odd integers k,k− 2,k− 4, . . . if k is odd or k− 1,k−

3,k−5, . . . if k is even consecutively to the remaining non-labelled vertices. It is easy to verify

that this vertex labeling is a k-total mean cordial labeling. �

Theorem 3.3. The cycle Cn is 4-total mean cordial for all n.

Proof. Let Cn be the cycle u1u2u3 . . .unu1.

Case 1. n≡ 0 (mod 4).

Assign the label 0 to the n−4
4 vertices u1,u2, . . . ,u n−4

4
. We now assign the label 1 to the n−4

4

vertices u n
4
,u n+4

4
, . . . ,u n−2

2
. Next assign the label 2 to the n−4

4 vertices u n
2
,u n+2

2
, . . . ,u 3n−12

4
. Now

assign the label 3 to the n−4
4 vertices u 3n−8

4
,u 3n−4

4
, . . . ,un−4. Finally assign the labels 3,0,0,2 to

the non-labelled vertices un−3,un−2,un−1,un.

Case 2. n≡ 1 (mod 4).

Assign the label 0 to the n−1
4 vertices u1,u2, . . . ,u n−1

4
. Next assign the label 1 to the n−1

4 vertices

u n+3
4
,u n+7

4
, . . . ,u n−1

2
. We now assign the label 2 to the n−1

4 vertices u n+1
2
,u n+3

2
, . . . ,u 3n−3

4
. Next

assign the label 3 to the n−1
4 vertices u 3n+1

4
,u 3n+5

4
, . . . ,un−1. Finally assign the label 0 to the

vertex un.

Case 3. n≡ 2 (mod 4).

Assign the label 0 to the n−2
4 vertices u1,u2, . . . ,u n−2

4
. Next assign the label 1 to the n−2

4 vertices

u n+2
4
,u n+6

4
, . . . ,u n−2

2
. We now assign the label 2 to the n−2

4 vertices u n
2
,u n+2

2
, . . . ,u 3n−6

4
. Now

assign the label 3 to the n−2
4 vertices u 3n−2

4
,u 3n+2

4
, . . . ,un−2. Finally assign the labels 2,0 to the
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non-labelled vertices un−1,un.

Case 4. n≡ 3 (mod 4).

Assign the label 0 to the n−3
4 vertices u1,u2, . . . ,u n−3

4
. Next assign the label 1 to the n−3

4 vertices

u n+1
4
,u n+5

4
, . . . ,u n−3

2
. We now assign the label 2 to the n−3

4 vertices u n−1
2
,u n+1

2
, . . . ,u 3n−9

4
. Now

assign the label 3 to the n−3
4 vertices u 3n−5

4
,u 3n−1

4
, . . . ,un−3. Finally assign the labels 2,0,0 to the

non-labelled vertices un−2,un−1,un.

This vertex labeling f is a 4-total mean cordial labeling follows from the Table 1.

Nature of n tm f (0) tm f (1) tm f (2) tm f (3)

n≡ 0 (mod 4) n
2

n
2

n
2

n
2

n≡ 1 (mod 4) n+1
2

n−1
2

n+1
2

n−1
2

n≡ 2 (mod 4) n
2

n
2

n
2

n
2

n≡ 3 (mod 4) n−1
2

n+1
2

n+1
2

n−1
2

TABLE 1

�

The following lemmas will be used for investigation of Complete graph.

Lemma 1. n2 +n+1 is not a perfect square for all n.

Proof. Suppose n2 +n+1 = m2

⇒ 4n2 +4n+4 = 4m2

⇒ (2n+1)2 +3 = (2m)2

⇒ (2m)2− (2n+1)2 = 3

⇒ (2m+2n+1)(2m−2n−1) = 3

⇒ 2m+2n+1 = 3−→ (1)

and 2m−2n−1 = 1−→ (2)

From (1) and (2),⇒ m = 1 and n = 0. �
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Lemma 2. n2 +n+3 is not a square for all n 6= 2.

Proof. As in Lemma 1, we get the relations⇒ 2m+2n+1 = 3−→ (1)

and 2m−2n−1 = 1−→ (2)

From (1) and (2)⇒ m = 3 and n = 2

It follows that n2 +n+3 is square for n = 2 only. �

Lemma 3. n2 +n+5 is not a square for all n 6= 4.

Proof. As in the same tecnique in Lemma 1, we get the relations⇒ 2m+2n+1 = 19

and 2m−2n−1 = 1

This implies m = 5 and n = 4. �

Lemma 4. n2 +n+7 is not a square if n /∈ {1,6}.

Proof. As in Lemma 3, we get 2m+2n+1 = 27

and 2m−2n−1 = 1

(or)

2m+2n+1 = 27

and 2m−2n−1 = 1

⇒ m = 7 and n = 6 (or) m = 3 and n = 1

⇒ n = 1 (or) n = 6. �

Lemma 5. If n > 1, n2 +n−1 is not a square.

Proof. As in Lemma 3, we get the relations 2m+2n+1 = 5

and 2n−2m+1 = 1

⇒ m = 1 and n = 1. �

Lemma 6. If n 6= 3, n2 +n−3 is not a square.
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Proof. We get the relations 2m+2n+1 = 13

and 2n−2m+1 = 1

Consequently we have m = 3 and n = 3. �

Lemma 7. If n /∈ {2,5}, n2 +n−5 is not a square.

Proof. Here we have 2m+2n+1 = 7

and 2n−2m+1 = 1

(or)

2m+2n+1 = 21

and 2n−2m+1 = 1

⇒ n = 2 (or) n = 5. �

Theorem 3.4. The complete graph Kn is 4-total mean cordial if and only if n≤ 4

Proof. Suppose f is a 4-total mean cordial label of Kn.

Clearly |V (Kn)|+ |E (Kn)|= n(n+1)
2 .

Suppose s vertices are labelled with 0.

⇒ tm f (0) = s+ s(s−1)
2

= s(s+1)
2 −→ (1)

Case 1. n≡ 0,7 (mod 8).

In this case tm f (0) =
n(n+1)

8 −→ (2)

from (1) and (2),⇒ n(n+1)
8 = s(s+1)

2

⇒ n(n+1)
4 = s(s+1)

⇒ 4s2 +4s−n2−n = 0

⇒ s =
−4±

√
16+16(n2+n)

8

⇒ s = −4±4
√

n2+n+1
8

⇒ s = −1±
√

n2+n+1
2 , a contradiction to Lemma 1
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Case 2. n≡ 2,5 (mod 8). n 6= 2 and n 6= 5.

In this case tm f (0) = n2+n+1
8 (or)

tm f (0) = n2+n−6
8

Subcase 1. tm f (0) = n2+n+2
8

⇒ s(s+1)
2 = n2+n+2

8

⇒ 4s2 +4s−
(
n2 +n+2

)
= 0

⇒ s =
−4±

√
16+16(n2+n)

8

= −1±
√

n2+n+3
2 , a contradiction to Lemma 2.

Subcase 2. tm f (0) = n2+n−6
8

In this case, s = −1±
√

n2+n−5
2 , a contradiction to Lemma 7.

Case 3. n≡ 3,4 (mod 8). n 6= 3 and n 6= 4.

In this case tm f (0) = n2+n−4
8 (or)

tm f (0) = n2+n+4
8

Subcase 1. tm f (0) = n2+n−4
8

Clearly s = −1±
√

n2+n−3
2 , a contradiction to Lemma 6.

Subcase 2. tm f (0) = n2+n+4
8

Here, s = −1±
√

n2+n+5
2 , a contradiction to Lemma 3.

Case 4. n≡ 1,6 (mod 8). n 6= 1 and n 6= 6.

In this case tm f (0) = n2+n−2
8 (or)

tm f (0) = n2+n+6
8
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Subcase 1. tm f (0) = n2+n−2
8

Clearly s = −1±
√

n2+n−1
2 , a contradiction to Lemma 5.

Subcase 2. tm f (0) = n2+n+6
8

In this case, s = −1±
√

n2+n+7
2 , a contradiction to Lemma 4.

Case 5. n ∈ {1,2,3,4}.

A 4-total mean cordial labeling is given in Table 2

n u1 u2 u3 u4

1 0

2 0 2

3 0 2 3

4 0 0 2 3
TABLE 2

Case 6. n = 5.

Suppose tm f (0) = 3

⇒ s(s+1)
2 = 3

⇒ s = 2(or)−3.

s =−3 is not possible.

When s = 2, Assume f (u1) = f (u2) = 0.

Then atleast two vertices receive the label 3.

Assume f (u3) = f (u4) = 3.

If f (u5) = 3, then tm f (2)≥ 5, a contradiction

If f (u5) = 1, then tm f (2)≥ 6, a contradiction

Case 7. n = 6.

Suppose tm f (0) = 6
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⇒ s(s+1)
2 = 6

⇒ s = 3(or)−4.

Clearly s =−4 is not possible.

When s = 3, Assume f (u1) = f (u2) = f (u3) = 0.

If more than one vertex receive the label 3, then tm f (2)≥ 6, a contradiction

Assume f (u4) = 3, this implies tm f (3) = 3, a contradiction. �

Theorem 3.5. The star K1,n is a 4-total mean cordial for all values of n.

Proof. Let u be the centre vertex of the star K1,n. Let ui (1≤ i≤ n) be the pendant vertices

adjacent to u.

Assign the label 1 to the vertex u.

Case 1. n is even.

Consider the vertices u1,u2, . . . ,un. Assign the label 0 to the n
2 vertices u1,u2, . . . ,u n

2
. Next

assign the label 3 to the n
2 vertices u n+2

2
,u n+4

2
, . . . ,un.

Case 2. n is odd.

Assign the label 0 to the n−1
2 vertices u1,u2, . . . ,u n−1

2
. Next assign the label 3 to the n+1

2 vertices

u n+1
2
,u n+3

2
, . . . ,un.

This vertex labeling f is a 4-total mean cordial labeling follows from the Table 3 �

Nature of n tm f (0) tm f (1) tm f (2) tm f (3)

n is even n
2

n+2
2

n
2

n
2

n is odd n−1
2

n+1
2

n+1
2

n+1
2

TABLE 3

Theorem 3.6. The bistar Bn,n is 4-total mean cordial for all n.
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Proof. Let u,v be the centre vertices of the bistar Bn,n. Let ui (1≤ i≤ n) be the pen-

dant vertices adjacent to u and vi (1≤ i≤ n) be the pendent vertices adjacent to v.

E (Bn,n) = {uv}∪{uui,vvi : 1≤ i≤ n}.

Case 1. n is even.

Let n = 2t, t ∈ N.

Assign the labels 0, 2 respectively to the central vertices u,v.

Consider the vertices u1,u2, . . . ,un. Assign the label 0 to the t vertices u1,u2, . . . ,ut . Next

assign the label 1 to the t vertices ut+1,ut+2, . . . ,u2t . We now move to the vertices v1,v2, . . . ,vn.

Assign the label 2 to the t vertices v1,v2, . . . ,vt . Next assign the label 3 to the t vertices

vt+1,vt+2, . . . ,v2t .

Case 2. n is odd.

Let n = 2t +1, t ∈ N.

Assign the labels 1, 2 to the central vertices u,v respectively.

Assign the label 0 to the 2t + 1 vertices u1,u2, . . . ,u2t+1. We now assign the label 2 to the t

vertices v1,v2, . . . ,vt . Next assign the label 3 to the t +1 vertices vt+1,vt+2, . . . ,v2t+1.

This vertex labeling f is a 4-total mean cordial labeling follows from the Table 4

�

Nature of n tm f (0) tm f (1) tm f (2) tm f (3)

n = 2t 2t +1 2t +1 2t +1 2t

n = 2t +1 2t +1 2t +2 2t +2 2t +2
TABLE 4

Theorem 3.7. The comb Pn�K1 is 4-total mean cordial for all values of n.

Proof. Let Pn be the path u1u2 . . .un.

Let V (Pn�K1) =V (Pn)∪{vi : 1≤ i≤ n} and E (Pn�K1) = E (Pn)∪{uivi : 1≤ i≤ n}.
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Case 1. n is odd.

Consider the vertices u1,u2, . . . ,un. Assign the label 0 to the n+1
2 vertices u1,u2, . . . ,u n+1

2
. Next

assign the label 1 to the next n−1
2 vertices u n+3

2
,u n+5

2
, . . . ,un. We now move to the vertices

v1,v2, . . . ,vn. Assign the label 3 to the n vertices v1,v2, . . . ,vn.

Case 2. n is even.

Assign the label 0 to the n
2 vertices u1,u2, . . . ,u n

2
. Next assign the label 1 to the n

2 vertices

u n+2
2
,u n+4

2
, . . . ,un. Finally assign the label 3 to the n vertices v1,v2, . . . ,vn.

This vertex labeling f is 4-total mean cordial labeling follows from the Tabel 5

Nature of n tm f (0) tm f (1) tm f (2) tm f (3)

n is odd n n−1 n n

n is even n−1 n n n
TABLE 5

�

Theorem 3.8. The crown Cn�K1 is 4-total mean cordial for all n.

Proof. Let Cn be the cycle u1u2 . . .unu1. Let V (Cn�K1) = V (Cn) ∪ {vi : 1≤ i≤ n} and

E (Cn�K1) = E (Cn)∪{uivi : 1≤ i≤ n}.

Case 1. n is odd.

Clearly assign the vertex labeling as in Case 1 of Theorem3.7 is also a 4-total mean cordial

labeling.

Case 2. n is even.

Consider the vertices u1,u2, . . . ,un. Assign the label 0 to the n
2 vertices u1,u2, . . . ,u n

2
. Next

assign the label 3 to the vertex u n+2
2

. We now assign the label 1 to the non-labelled vertices
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u n+4
2
,u n+6

2
, . . . ,un. We now move to the vertices v1,v2, . . . ,vn. Assign the label 2 to the vertex

v1. Next assign the label 3 to the vertices v2,v3, . . . ,vn−1. Finally assign the label 0 to the vertex

vn.

This vertex labeling f is 4-total mean cordial labeling follows from the Tabel 6

Nature of n tm f (0) tm f (1) tm f (2) tm f (3)

n is odd n n n n

n is even n n n n
TABLE 6

�

Theorem 3.9. The Book with triangular pages, K2 +mK1 is 4-total mean cordial if and only if

m≡ 0,1,2,4,5,6 (mod 8).

Proof. Let V (K2 +mK1) =
{

u,v,u j : 1≤ j ≤ m
}

and

E (K2 +mK1) =
{

uv,uu j,vu j : 1≤ j ≤ m
}

.

Note that the order and size of K2 +mK1 are m+2 and 2m+1 respectively. Assign the labels

0, 2 respectively to the vertices u, v.

Case 1. m≡ 0 (mod 8).

Let m = 8r, r ∈ N.

Now we consider the vertices u1,u2, . . . ,ur. Assign the label 0 to the 3r vertices u1,u2, . . . ,u3r.

Next assign the label 1 to the r vertices u3r+1,u3r+2, . . . ,u4r. We now assign the label 2 to

the r vertices u4r+1,u4r+2, . . . ,u5r and finally assign the label 3 to the remaining 3r vertices

u5r+1,u5r+2, . . . ,u8r.
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Case 2. m≡ 1 (mod 8).

Let m = 8r+1, r ≥ 0.

As in Case 1 assign the label to the vertices ui (1≤ i≤ 8r). Finally assign the label 3 to the

vertex u8r+1.

Case 3. m≡ 2 (mod 8).

Let m = 8r+2, r ≥ 0.

Label the vertices ui (1≤ i≤ 8r+1) as in Case 2. Next assign the label 0 to the vertex u8r+2.

Case 4. m≡ 4 (mod 8).

Let m = 8r+4, r ≥ 0.

In this case assign the label for the vertices ui (1≤ i≤ 8r+2) as in Case 3. We now assign the

labels 1,3 to the vertices u8r+3,u8r+4.

Case 5. m≡ 5 (mod 8).

Let m = 8r+5, r ≥ 0.

Assign the label for the vertices ui (1≤ i≤ 8r+4) as in Case 4. Now assign the label 0 to the

vertex u8r+5.

Case 6. m≡ 6 (mod 8).

Let m = 8r+6, r ≥ 0.

As in Case 5 assign the label to the vertices ui (1≤ i≤ 8r+5). Finally assign the label 3 to the

vertex u8r+6.

Thus this vertex labeling f is 4-total mean cordial labeling follows from the Tabel 7

Case 7. m≡ 3 (mod 8).

Let m = 8r+3, r ≥ 0.

⇒ tm f (0) = tm f (1) = tm f (2) = tm f (3) = 6r+3.
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Nature of m tm f (0) tm f (1) tm f (2) tm f (3)

m = 8r 6r+1 6r+1 6r+1 6r

m = 8r+1 6r+1 6r+1 6r+2 6r+2

m = 8r+2 6r+3 6r+2 6r+2 6r+2

m = 8r+4 6r+3 6r+4 6r+4 6r+4

m = 8r+5 6r+5 6r+5 6r+4 6r+4

m = 8r+6 6r+5 6r+5 6r+5 6r+6
TABLE 7

Subcase (i). f (u) = f (v) = 0

In this case, 3 is the label of the vertices only.

Assume f (ui) = 3, 1≤ i≤ 6r+3.

This implies tm f (2)≥ 6r+3+6r+3 = 12r+6, a contradiction.

Subcase (ii). f (u) = 0, f (v) = 2

As in Subcase (i), tm f (2)≥ 12r+6, a contradiction.

Subcase (iii). f (u) = 0, f (v) = 1

Here also, tm f (2)≥ 12r+6, a contradiction.

Subcase (iv). f (u) = 0, f (v) = 3

Clearly 3r + 1 vertices receive the label 3. Without loss of generality assume f (u) = 3,

1 ≤ i ≤ 3r + 1. Similarly 3r + 1 vertices receive the label 3 and assume f (ui) = 0,

3r+2≤ i≤ 6r+2.

For the label 1,
[6r+3

2

]
vertices receives 1.

This implies tm f (2)≥ 6r+3, a contradiction.

Case 8. m≡ 7 (mod 8).

Let m = 8r+7, r ≥ 0.
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⇒⇒ tm f (0) = tm f (1) = tm f (2) = tm f (3) = 6r+6.

Similar to Case 7, a contradiction. �

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] I. Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars Combin. 23 (1987),

201-207.

[2] J.A. Gallian, A Dynamic survey of graph labeling, Electron. J. Comb. 19 (2016), #DS6.

[3] R.L. Graham, N.J.A. Solane, On additive bases and Harmonious graphs, SIAM J. Algebraic Discrete Meth-

ods, 1 (1980), 382-404.

[4] F. Harary, Graph theory, Addision wesley, New Delhi, 1969.

[5] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, Internat. Sympos., ICC Rome

1966, Paris, Dunod (1967), 349-355.


