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Abstract. In this paper, we introduce the i-th derivative of the p-analogue of the exponential integral function
and further establish some analytical inequalities involving the function. We employ the Holder and Minkowski’s

inequalities for integral.
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1. INTRODUCTION

The exponential integral function and its analogues and extensions have been an area of seri-
ous research, it has been used by many mathematicians and scientist in various aspects or areas.
This function is applied in areas like, non equilibrium ground water-flow in the Theis solution
(called a well function), time dependent heat transfer and evaluation of exchange integrals oc-
curring in quantum mechanics [1] among others.

The focus of this paper is on the usual exponential integral function defined by Schloemich in
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[2] as

(1) E,(x) = /lmt”e”‘ dt x>0, neN,
and the i-th derivative of (1) is given by

2) EY (x) = (—1)’ /1 Tie gy, e N,

This special function has been investigated in diverse ways (see [3], [4], [5], [6], [7], [8], [9]
and the related references therein).

The p-analogue of the exponential integral function, E, , (x) is defined for x > 0, p > 1 and
n € Ny by [3]

p
3) E,p(x)= /1 t"A M,

where, E, ,(x) — E,(x) as p —>ccand A, = (1 + %)p.
The objective of this paper is to introduce the i-th derivative of (3) and to establish some an-
alytical inequalities involving the function. The Holder and the Minkowski’s inequalities for

integrals were used to generate the results.

2. PRELIMINARIES

We begin with the following well known results (see for instance [10], [11], [12] or [13]).

Lemma 2.1. (Holder’s Inequality ) Let u,v > 1 and %—l—% = 1. If f and g are continuous

real-valued functions on [a,b), then the inequality

@ [ ostojar< (['irora)” ([ isora)”

holds. With equality when |g(t)| = c|f(¢)|*~". If u = v = 2, the inequality becomes Schwarz’s
inequality.

Lemma 2.2. (Minkowski’s Inequality) Let u > 1. If f and g are continuous real-valued func-

tions on [a,b], then the inequality

5) (/ () +glx “dx)z (/ £(x) ”dx)i+(/ab!g(x>\”dx>i,

holds.
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3. MAIN RESULTS

Proposition 3.1. Let x >0, p > 1, n € Ny, i € N such that i > n. Then, the i-th derivative of (3)

is given by

: i [P .
©) By () = (ina, ")’ [,

where, E,(lll),, (x) — EY (x) as p — oo.
Proof. This is obtained by differentiating (3) i number of times.

Lemma 3.2. The function

E,(,lg, (x)’ is decreasing for all i € N and x > 0.

Proof. Let 0 < x <y. Then,

Ep ()| -

Er(zf%(y)) — ‘(lnA;l)l‘ /lpti—n (A;xl _A;yt) dt
= ylnAp|"/1pz"—” (A=A ) dt

>0

Y

since Ap > 1. This completes the proof.

Theorem 3.3. Let n € Ny and i € N. Then the inequality

==

(7) E\)(uy)

Y

. 1
Ep ()|

Ef ()| <

holds forx > 1,y >1,n > 1, %—{—ﬁ:landx—kygxy.
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Proof. Using (6), the decreasing property of

E,gl;, (x) ‘ and the Holder’s inequality for integrals,

we obtain

Ef ()| <

Ef(x+)

;[P

= (InA, ")’ / finA, ) gy

1
1 1

= (lnAljl)i(ﬁ+ﬁ> /Pti(;l*lli)_"(%+/11)A—(x+y)ldt
1

= (lnA;I)% (1nA;1)ﬁ /lpt’;_gApx’tﬁi_ZApy’dt

which completes the proof.

Theorem 3.4. Let mn € Ny, ¢ € N, p > 1 and i € N. Then the inequality

1
a

RI—

®) (|| [0 0)* < |eho|” + |

holds for x,y > 0.

Proof. Using (6), the Minkowski’s inequality for integrals and the fact that a® +b% < (a+b)%,

for a,b > 0 and @ € N, we obtain

. 1 . . i |
E,%(y)‘) "t = ((lnAgl)’ /] pt’_mA;”dt—l— (InA, ") /1 g ,t—nA;yrd,>

i P/ iim _2\Q AN @
:(lnA;I)"‘(/l [(taA,,“) +(taApoc> }dt)

R

(‘E,Si)p(x)’ +
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715' p ﬂf%a é D i;ni%a o
< (ina,") /l[taAp}dt + /1 1EA, | dr

1
crD . o . rp . o
— ((lnA;I)’ /1 t"’”A;x’dt) + ((lnAlj])l /1 t""A;y’dt>

ES)(y)

SIE
QI

+

Y

= ’Ergj?p (x)

which completes the proof.

Theorem 3.5. Let p > 1, i € N and m,n € Ny such that nm, un € Ng. Then the inequality

1
u

(€)) ;

1
i Xy i gl
s (53| < ot [0

holds for x,y >0, n > 1 and%—f—ﬁ =1.

Proof. Using (6) and the Holder’s inequality for integrals, we obtain

(i) XN o [P i R
Em+n7p(ﬁ+ﬁ>‘—(lnApl)/lt (+>A,,(" “dt

% p TR u ﬁ
) (7))
1

AN
—_
=
b

S|

—
=)~

—

—

=

b

S |
—
=~
N
—
S
N

-~

S|

3

N
<
Slg
~__
=

L

~

which completes the proof.
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Corollary 3.6. Let m,n € Ny, p > 1 and i be an even integer such that i > m+n. Then the

inequality
0 (VY 2 g0 (el
1 1 1
(10) (Em—i-n,p <T)) < E2m,p(x)E2n.,p(y)7
holds for x,y > 0.
Proof. This follows from Theorem 3.5 by letting n = u = 2.

Theorem 3.7. Let p > 1, m,n € Ny such that % + ﬁ € Ng. Then the inequality

1
u

(i) X Y (i) (i)
(1) E%Jrﬁ,p (7? + E) ‘ < ‘Em,p(x) Enp()|
holds forn > 1,x,y >0, -+ = 1.

Proof. Using (6) and Holder’s inequality for integrals, we obtain

) (% i [P (en) G
£ (—+H>':(lnAPI)/]t (i) 4, G

m n
ntuP n

a5 [
1

1 1
_ ((mA;I)i /1 pri—'"A;X’dz> ' ((mA;I)’ /1 pr"—"A;yfdr)“

which completes the proof.
Corollary 3.8. Let m,n € Ny, p > 1. Then the inequality

2
i X+ i i
a2 e, (57| <Bh@Es o)

holds for x,y > 0.

Proof. This follows from Theorem 3.7 by letting n = u = 2.
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