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Abstract: This article proposes a novel two-step iterative scheme of order three based on fundamental theorem of
calculus and composite Simpson rule for solving nonlinear equations. The efficiency of method is illustrated with the
help of numerical examples and a comparative study is done with some well-known existing iterative methods.
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1. INTRODUCTION

A number of nonlinear equations arises in many problems of applied mathematics and engineering

where determining their roots is of great importance. The nonlinear equation f(x) =0can be

solved by direct and indirect method. Direct methods give the exact root in a finite number of steps
but are not suitable in most of the cases and hence the indirect methods, i.e. iterative methods,
comes into role which gives appropriate approximate solution to a problem. Iterative methods are
based on the successive approximations which starts with one or more initial approximations to
the root and converges to the root after a sequence of iterations, when the desired degree of

accuracy 1s achieved. The convergence of most iterative methods depends on an initial
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approximation and local behavior of the function f (x) near a root. Well-known conventional root

finding methods and their convergence analysis can be found in the literature Ref. [1-2]. In recent
past more emphasis were given on developing many new iterative methods to solve nonlinear

equations Ref. [3-13].

One of the classical method to find roots of nonlinear equation f (x) =0is Newton’s method [1].

L fx)

n+l = “n f '(Xn) (1)

let £ (say) be the root of f(x)=0and f is C? function in the neighbourhood of the ¢ and

| £'(&)[>0.
Another method, which is free from derivative is Steffensen’s method [2].

B UCH) 2

T + T () - F(X,)
Newton’s method and Steffensen’s method, both have quadratic convergence.
2. DESCRIPTION OF THE METHOD
Consider a nonlinear equation
f(x)=0 ®)

If f(x)is continuous at every pointin [a,b]and F(x)is anti-derivative of f(x)in[a, b], then

by Fundamental Theorem of Calculus, we have
b
[ () dx=F(b)-F(a) (4)

which on differentiating both sides, we get
f(x)=1(b)-f(a) (%)
where f(a) and f(b) are derivatives of F(a)and F(b)respectively.

Recall composite Simpson rule i.e.
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n

R FIAN 22 f (%) +4_§2: f (X, 1) + f (b) (6)

J.f(x)d

a

where f e C*[a,b], nbe an even integer,h:b_—a,and X; =a+ihforeach i=0,12,......n.
n

If n=4 in expression(6), we have

_(b-a) a+b 3a+b a+3b |
_[f(x)d — {f() Zf( . j 4f( y j+4f( y j+f(b)_

a

b— a+b (3a+b (a+3b ]
f(x)=— {f (@)+2f ( 5 j +4f ( 2 j+4f ( 2 j+f (b)_ (7
From (5) and (7), we have
b- a+b (3a+b (a+3b ,
f(b)—f(a)=? {f (@)+2f ( 5 j +4f ( 2 j+4f ( 2 J+f (b)} (8)

The following fixed point formula can be derived using equations (3) and (8):

. 12 f (a) ©)

a+b (3a+b (a+3Db .
f'(a)+ 2f( 5 j 4f( A j+4f( 4 )+f(b)

The expression (9) enable us to suggest a new iterative approach for solving nonlinear equations.

The approximate solution x ., by two step iterative scheme, for a given initial approximation

n+1

close to the root of equation (3), is given by

7 =x — ) (10)

« —x 12 f (Xn) (11)

n+1 n
fr(x)+2 f'[X“;Z”J+4f '(3’(“: Z“j+4f '(Xn +432nj+ f'(z,)
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3. CONVERGENCE ANALYSIS

Theorem: Let & el be a simple root of sufficiently differentiable function f:R —R inan open

interval | . If an initial approximation of f is sufficiently close to&, then the iterative method

defined by (11) is of order three and satisfies the following error equation:

€n1 =C26, +O(€])
Proof: Let &be a simple root of f(x)=0 and e, =X, —¢& . Using Taylor series expansion
around x = &, we get

f(x,)=1"() [en +C8° +C,e0 +C,e0 +C8> +.nn. ] (12)

frx)="f '(rf)[1+202 e, +3Ce> +4C,e] +5C.e! +....... ] (13)

where ¢, :m, k=234,....
k1f'(&)

From (12) and (13), we get

f
f -((Xn) =€, —C,€ +2(C; —C;)e; —(4C; —7C,Cy +3C,) €, +.onnnn. (14)
Xn
f
But Zn = Xn _ﬂ
f'(x,)

=&+c,e7-2(c5 —c,)ed +(4cs —7c,c, +3c,)er +.......

Hence,
f'(z,)="1"(¢) [1+ 2c2e? —4(c —c,c,)e’ +(8¢c, —14cic, +3c,c, +3c,cl) el +....+0 (eﬁ)] (15)

Similarly, we have
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3 7
f '(X" o ] =f'(&) {1-% C,e, +(c§ +%)e§ +(— 2c5 +—C§C3 +C—4je§

2 2

n

9 37 5
+(Ec2c4 +C, _ICZZ% +3c? +Ec5je4 S +O(e6)}

2
o X0t ) pre 14 C2e 4| Gy 2TC |2
4 2 2" 16

+(—c§ +11C22C3 + 2;;“ je;:‘ +....+O(ef)}

4 2 E

+(—3c§ +15CTZC3+;—gje§ +....+O(e§)}

2
f '(X“ +3Z”}= f '(5){1+%en +[3&+ 3C3je§

From (13), (15), (16), (17) and (18), we get
f(M)+2f(jn;znj+4f.[3m;kaj+4¢.(xn+3%j

4
+f'(z,) =12[1+c2en +(c22 +c3)e§

—(ch —%cz% +c4je;1 +....+O(ef)}

From (11), (12) and (19), we get
2,3 ; 63 4
X, =X, —| €, +Cye, +| 2C; _ECZCS +5C, |6, 4.

2.3 4
= en+l :Czen +O(en)

Which shows that the proposed method is of order three. This completes the proof.
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4. NUMERICAL EXAMPLES

In this section, the efficiency of the new developed method is illustrated through some numerical
examples. The comparison of performance of new method with Newton‘s method and Steffensen’s
method has been shown. All computations are performed using C. Table 1 shows the comparison
of number of iterations to get a appropiate approximate root.

The used stopping criteria are as under:

i Xpy = Xo|< €
i, | f(x,.)|<e
where £=107".

The following test functions, with initial approximation x,, have been used to show the efficiency
of the method.

f,(X) =cos(X) — X

f, (%) =sin(x) + x -1
f,(x) =e* —3x

f,(x) =X tan(x) +1

f, () =2sin(x) - x
f,(0) =x+sin(x) ~ x°

f, (x) =Cos(x) - xe*
f,(x) =x2 -9

f,(x) =e* —tan*x—-1.5

fo(X) =x>—6x+4
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Table 1: Comparison b/w methods depending upon the number of iterations

1873

f(x) Xo Number of Iterations (NT) Root (5)

NM SM New Method
f () —2 7 6 5 0.739085633 2 15161
f,(x) 1 4 5 3 0.510973429388569
f,(x) 0 5 4 4 0.61906128 6735945
f,(x) 2.5 3 6 3 2.79838604 578389
f.(X) 2.9 5 5 4 1.89549426 703398
fs(X) 1 6 7 4 1.3171629 6100603
f,(x) 1 6 6 4 0.51775736382458
f,(X) 2.5 4 4 3 3
fy (%) 1 5 5 3 0.76765326 6201279
flo(X) 1 5 5 4 0.732050807568677

5. CONCLUSION

In this article, a novel two-step iterative method, based on fundamental theorem of calculus and

composite Simpson rule, has been derived for solving nonlinear equations. Through proof it has

been shown that the rate of convergence of developed method is three. From Table 1, we observe

that the new method is advancement of Newton’s and Steffensen’s method which can be used as

a better substitute to other second and third order convergent methods to solve nonlinear equations.
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