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1. INTRODUCTION 

A number of nonlinear equations arises in many problems of applied mathematics and engineering 

where determining their roots is of great importance. The nonlinear equation 0)( =xf  can be 

solved by direct and indirect method. Direct methods give the exact root in a finite number of steps 

but are not suitable in most of the cases and hence the indirect methods, i.e. iterative methods, 

comes into role which gives appropriate approximate solution to a problem. Iterative methods are 

based on the successive approximations which starts with one or more initial approximations to 

the root and converges to the root after a sequence of iterations, when the desired degree of 

accuracy is achieved. The convergence of most iterative methods depends on an initial 
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approximation and local behavior of the function )(xf near a root. Well-known conventional root 

finding methods and their convergence analysis can be found in the literature Ref. [1-2]. In recent 

past more emphasis were given on developing many new iterative methods to solve nonlinear 

equations Ref. [3-13]. 

One of the classical method to find roots of nonlinear equation 0)( =xf is Newton’s method [1]. 
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let  (say) be the root of 0)( =xf and f is 2C function in the neighbourhood of the  and 

0)(' f . 

Another method, which is free from derivative is Steffensen’s method [2]. 
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Newton’s method and Steffensen’s method, both have quadratic convergence. 

 

2. DESCRIPTION OF THE METHOD 

Consider a nonlinear equation 

0)( =xf                                                                (3) 

If )(xf is continuous at every point in  ba, and )(xF is anti-derivative of )(xf in  ba, , then 

by Fundamental Theorem of Calculus, we have 

 −=

b

a

aFbFxdxf )()()(                                                     (4) 

which on differentiating both sides, we get 

)()()( afbfxf −=                                                         (5) 

where )(af  and )(bf  are derivatives of )(aF and )(bF respectively. 

Recall composite Simpson rule i.e.  
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where ],[4 baCf  , n be an even integer,
n

ab
h

−
= , and hiaxi += for each ni ,......,2,1,0= . 

If 4=n  in expression )6( , we have 
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From )5(  and )7( , we have 
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The following fixed point formula can be derived using equations )3(  and )8( : 
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The expression (9) enable us to suggest a new iterative approach for solving nonlinear equations. 

The approximate solution 1+nx  by two step iterative scheme, for a given initial approximation 

close to the root of equation )3( , is given by  
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3. CONVERGENCE ANALYSIS 

Theorem: Let I be a simple root of sufficiently differentiable function RRf →:  in an open 

interval I . If an initial approximation of f  is sufficiently close to , then the iterative method 

defined by (11) is of order three and satisfies the following error equation: 

 

)( 432
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Proof:  Let  be a simple root of 0)( =xf  and −= nn xe . Using Taylor series expansion 

around =x , we get 
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From (12) and (13), we get 
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Hence,  

2 2 3 3 4 2 2 4 6
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Similarly, we have 
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From (13), (15), (16), (17) and (18), we get 
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From (11), (12) and (19), we get 
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Which shows that the proposed method is of order three. This completes the proof. 
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4. NUMERICAL EXAMPLES 

In this section, the efficiency of the new developed method is illustrated through some numerical 

examples. The comparison of performance of new method with Newton‘s method and Steffensen’s 

method has been shown. All computations are performed using C. Table 1 shows the comparison 

of number of iterations to get a appropiate approximate root.  

The used stopping criteria are as under: 

−+ nn xxi 1.   

+ )(. 1nxfii  

where 1510−= . 

The following test functions, with initial approximation 0x , have been used to show the efficiency 

of the method. 

                      xxxf −= )cos()(1  

1)sin()(2 −+= xxxf  

xexf x 3)(3 −=  

1)tan()(4 += xxxf  

xxxf −= )sin(2)(5  

3

6 )sin()( xxxxf −+=  

xexxxf −= )cos()(7  

9)( 2

8 −= xxf  

5.1tan)( 1

9 −−= − xexf x  

46)( 3

10 +−= xxxf  
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Table 1: Comparison b/w methods depending upon the number of iterations 

 

)(xf  0x  

 

Number of Iterations (NT) 
Root ( ) 

NM SM New Method  

)(1 xf  2−  7  6  5  151612739085633.0  

)(2 xf  1 4  5  3  856983510973429.0  

)(3 xf  0  5  4  4  735945661906128.0  

)(4 xf  5.2  3  6  3  78389579838604.2  

)(5 xf  9.2  5  5  4  03398789549426.1  

)(6 xf  1 6  7  4  00603163171629.1  

)(7 xf  1 6  6  4  38245865177573.0  

)(8 xf  5.2  4  4  3  3  

)(9 xf  1 5  5  3  201279667676532.0  

)(10 xf  1 5  5  4  686775707320508.0  

 

5. CONCLUSION 

In this article, a novel two-step iterative method, based on fundamental theorem of calculus and 

composite Simpson rule, has been derived for solving nonlinear equations. Through proof it has 

been shown that the rate of convergence of developed method is three. From Table 1, we observe 

that the new method is advancement of Newton’s and Steffensen’s method which can be used as 

a better substitute to other second and third order convergent methods to solve nonlinear equations. 
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