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Abstract. The main aim of this paper is to study LCD codes. Linear codes with complementary dual (LCD) are

those codes which have their intersection with their dual code as {0}. In this paper we will give rather alternative

proof of Massey’s theorem [8], which is one of the most important characterization of LCD codes. Let LCD[n,k]3

denote the maximum of possible values of d among [n,k,d] ternary LCD codes. In [4], authors have given upper

bound on LCD[n,k]2 and extended this result for LCD[n,k]q, for any q, where q is some prime power. We will

discuss cases when this bound is attained for q = 3 and see some new constructions of LCD codes.
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1. INTRODUCTION

A linear code with complementary dual (or LCD code) was first introduced by Massey[8] in

1964. Afterwards, LCD codes were extensively studied and applied in different fields. Recently,

Dougherty et al.[4] gave a linear programming bound on the largest size of an LCD code. In

2015, Carlet and Guilley [1] have given different types of constructions of LCD codes. Further

in 2017, Galvez et al.[4] gave bounds on LCD codes in binary case.
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Let GF(q) be a finite field with q elements[6, 9], where q = pk, for some prime p and k ∈Z+.

By (GF(q))n , we mean a cartesian product of GF(q) with itself n number of times, which is

a vector space of dimension n over GF(q). A k−dimensional vector subspace of (GF(q))n

over GF(q) is called as [n,k]q-linear code[9, 10, 11]. For a linear code C, its (minimum)

distance[9] is denoted by d = d(C) and defined as min{d(x,y) : x 6= y,x,y ∈C}, where d(x,y)

is usual Hamming distance between two codewords in C. These values of n,k,d are called as

parameters of corresponding code. A generator matrix[9] for a code C is denoted by matrix G

whose row vectors form a basis for C, whereas a parity check matrix[9] H for code C is a matrix

whose rows form a basis for dual code C⊥. Also, v∈C⇐⇒ vHT = 0 and v∈C⊥⇐⇒ vGT = 0.

A linear code of distance d is u-error-detecting[9]⇐⇒ d ≥ u+1, whereas a code C is v-error-

correcting[6, 9]⇐⇒ d ≥ 2v+ 1, where u,v ∈ Z+. Hence t =
⌊
(d−1)

2

⌋
, is the error correcting

capability of a code. For practical purposes we should have linear codes with distance as large

as possible.

2. PRELIMINARIES

Here, we will see a brief introduction of LCD codes.

Definition 2.1([4, 8]): A linear code with complementary dual is a code C, for which we have

C∩C⊥ = {0}.

Example 2.1: C = {00,01} ⊆ (GF(2))2.

There are some linear codes which are not LCD. For example: C = {0000,1010,0101,1111}⊆

(GF(2))4 is not a LCD code, because for this code, we have C⊥ = {0000,1010,0101,1111}

and hence, their intersection is non trivial.

Note that, if C is LCD code, then so is C⊥. Let us state an important theorem given by

Massey in [8] and give its alternate proof, which is new to the best of our knowledge, as we

haven’t made any use of idea of orthogonal projector, which has been used by Massey.

3. MAIN RESULTS

Theorem 2.1([8]).: Let G be a generator matrix of a linear code over GF(q). Then G generates

an LCD code if and only if GGT is invertible matrix.
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Proof. Suppose det(GGT ) 6= 0. We need to prove that C is an LCD code. Suppose C is not LCD

code. Therefore there exists a non zero vector v ∈ C∩C⊥. Hence, we get v ∈ C and v ∈ C⊥.

Since v ∈C, therefore ∃ u 6= 0 in (GF(q))k such that v = uG, where G is given to be a generator

matrix for C. Next since v ∈ C⊥, as a result of which, we get that vGT = 0. Consequently,

uGGT = 0. Call GGT as A. But by hypothesis A ∈ GL(k,GF(q)). Hence we get homogeneous

system uA = 0, post-multiplying both sides by A−1, we get u = 0 and therefore we have, v = 0,

which is a contradiction to the hypothesis. Therefore, whenever GGT is invertible, then linear

code generated by G must be LCD code.

Conversely, suppose C is LCD code. We need to prove that det(GGT ) 6= 0. Suppose det(GGT )=

0. Therefore GGT is a singular linear transformation, hence there exists non zero vector u ∈

(GF(q))k such that uGGT = 0. Let v = uG, which implies v 6= 0 and we get vGT = 0, hence

v ∈ C⊥. Now it remains to show that v ∈ C. Since we had taken v to be a non zero vector in

(GF(q))n such that v = uG, we get v ∈C. Therefore ∃ v 6= 0 in C∩C⊥. �

Elementary bounds:
Dougherty et al.[3] introduced a concept of LCD[n,k] over binary fields. Recently Galvez et

al.[4] had given an upper bound on LCD[n,k] in binary case and also given some exact values

for k = 2 and for any n. They also extended this result for arbitrary values of q. Here we

will obtain exact values of LCD[n,k] in ternary case. Determination of values of LCD[n,k] is

analogous to determination of Aq(n,d), where in the former case we used to concentrate on d

and in a later case we used to concentrate on size of a code. Firstly, let us have some definitions.

Definition 2.2: For fixed values of n and k, we have

(1) LCD[n,k] := max{d : there exists a binary [n,k,d] LCD code}.

(2) LCD[n,k]3 := max{d : there exists a ternary [n,k,d] LCD code}.

Now we state a remark , which was a consequence of Lemma 2 from [4].

Remark 2.1: LCD[n,k]q ≤
⌊

n.qk−1

qk−1

⌋
, for k ≥ 1.

As a consequence of it, for q = 3 and k = 2, we have LCD[n,2]3 ≤
⌊3n

8

⌋
.

Now based on bound given above, we can obtain exact values of LCD[n,2]3.

Theorem 2.2: Let n≥ 2. Then LCD[n,2]3 =
⌊3n

8

⌋
, for n≡ 3,4(mod 9).
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Proof. Our aim is to show the existence of LCD codes with minimum distance achieving the

bound in above remark.

(1) Let n≡ 3(mod 9), i.e. n = 9m+3, for some m ∈ Z+. Consider the linear code with the

following generator matrix.

G =

 1 . . .1 2 . . .2 0 . . .0

0 . . .0︸ ︷︷ ︸
3m

0 . . .0︸ ︷︷ ︸
3m+2

2 . . .2︸ ︷︷ ︸
3m+1

 .

This code has minimum weight 3m+ 1 =
⌊

3(9m+3)
8

⌋
and GGT =

1 0

0 2

. Hence

det(GGT ) = 2 6≡ 0(mod 3) and therefore this matrix is invertible. By theorem 2.1

above, this code is an LCD code.

(2) Let n≡ 4(mod 9), i.e. n = 9m+4, for some m ∈ Z+. Consider the linear code with the

following generator matrix.

G =

 1 . . .1 2 . . .2 0 . . .0

0 . . .0︸ ︷︷ ︸
3m+1

0 . . .0︸ ︷︷ ︸
3m+2

2 . . .2︸ ︷︷ ︸
3m+1

 .

This code has minimum weight 3m+ 1 =
⌊

3(9m+4)
8

⌋
and GGT =

2 0

0 2

. Hence

det(GGT ) = 4 6≡ 0(mod 3) and therefore this matrix is invertible. By theorem 2.1

above, this code is an LCD code.

�

Now we will give one construction of ternary LCD codes from primary constructions of linear

codes. As far as we know, this construction have not yet been studied in the literature of LCD

codes.

Definition 2.3([9]): Let q be odd. Let Ci be an [n,ki,di] linear code over GF(q), for i = 1,2.

Define C1 G C2 := {(c1 + c2,c1− c2) : c1 ∈ C1,c2 ∈ C2}. Then C1 G C2 is a linear code over

GF(q). This code is [2n,k1 + k2]-linear code over GF(q).
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Remark 2.2: If G1 and G2 is generator matrix of C1 and C2 respectively, then generator matrix

G of C1 GC2 is given by G =

G1 G1

G2 −G2

.

Theorem 2.3: Let Ci be [n,ki] LCD codes over GF(3), for i = 1,2. Then C1 GC2 is also a LCD

code over GF(3).

Proof. It is given that C1 and C2 both are LCD codes over GF(3). Suppose G1 is generator

matrix of C1 and G2 is generator matrix of C2. Therefore by theorem 2.1 above, we have

det(G1GT
1 ) 6≡ 0(mod 3) and det(G2GT

2 ) 6≡ 0(mod 3). Therefore, we have,

GGT =

G1 G1

G2 −G2

GT
1 GT

2

GT
1 −GT

2

. As a result of it, we get GGT =

2G1GT
1 0

0 2G2GT
2

. Now

it remains to show that matrix GGT is invertible. Here det(GGT ) = det(2G1GT
1 ).det(2G2GT

2 ) =

2k1det(G1GT
1 ).2

k2det(G2GT
2 )= 2k1+k2 .det(G1GT

1 ).det(G2GT
2 ). In this expression both the terms

at the end are not divisible by 3 and 3 - 2k1+k2 . Therefore by Euclid’s lemma, we get 3 -

2k1+k2 .det(G1GT
1 ).det(G2GT

2 ) and consequently C1 GC2 is ternary LCD code. �

Lemma 2.1: For n and k integers greater than 0, LCD[n+1,k]3 ≥ LCD[n,k]3.

Proof. Proof follows on similar lines as that of Lemma 3.1 from [3]. �

Theorem 2.4: (i) If n is an integer such that 3 - n, then LCD[n,1]3 = n and LCD[n,n−1]3 = 2.

(ii) If n is an integer such that 3 - (n−1), then LCD[n,1]3 = n−1 and LCD[n,n−1]3 = 2.

Proof. (i) Consider ternary repetition code C = {0 . . .0︸ ︷︷ ︸
n

,1 . . .1︸ ︷︷ ︸
n

,2 . . .2︸ ︷︷ ︸
n

}. This code is [n,1,n]3

code, which have largest possible minimum distance. There are two choices for its generator

matrices say G1 and G2. Suppose G1 =
[
1 1 . . . 1

]
and G2 =

[
2 2 . . . 2

]
respectively.

Then det(G1GT
1 ) = n and det(G2GT

2 ) = 22n. Since, 3 - n, we have det(G1GT
1 ) 6≡ 0(mod 3) and

det(G2GT
2 ) 6≡ 0(mod 3). Hence by Theorem 2.3 above, rows of these generator matrices will

generate LCD codes. Thus we get, LCD[n,1]3 = n. Also, we know that if C is LCD then so its

dual C⊥. In this case dual code is LCD code having dimension as n−1. If (c1,c2, . . . ,cn) ∈C⊥,

then c1 + · · ·+ cn ≡ 0(mod 3) and hence we will have a choice of codeword (1,2,0, . . . ,0),

whose weight is minimum. Therefore, we get LCD[n,n−1]3 = 2.

(ii) If 3 | n, then ternary repetition code C of length n having generator matrix G =
[
1 . . .1

]



ON SOME TERNARY LCD CODES 2013

will not be a LCD code, since in this case, det(GGT ) = n. So we must try for another ternary

code C̃ having a basis as B = {01 . . .1︸ ︷︷ ︸
n−1

}. Then we get C̃ = {00 . . .0︸ ︷︷ ︸
n−1

,01 . . .1︸ ︷︷ ︸
n−1

,02 . . .2︸ ︷︷ ︸
n−1

}. Note

that, this code C̃ have maximum possible minimum distance amongst all ternary linear codes,

besides ternary repetition code. In present case, there are two choices for its generator matrices,

say G1 =

[
0 1 . . .1︸ ︷︷ ︸

n−1

]
and G2 =

[
0 2 . . .2︸ ︷︷ ︸

n−1

]
. As a result of which, we get G1GT

1 = n− 1 and

G2GT
2 = 22.(n−1). Consequently, det(G1GT

1 ) = n−1 and det(G2GT
2 ) = 22.(n−1). Hence by

theorem 2.1 above, G1 and G2 will generate ternary LCD code C̃ if and only if 3 - (n−1).

Further, we know that if C̃ is LCD then so its dual C̃⊥. In this case, dual code is LCD code

having dimension as n− 1. If (c1,c2, . . . ,cn) ∈ C̃⊥, then c2 + · · ·+ cn ≡ 0(mod 3) and hence

we will have a choice of codeword (0,0, . . . ,1,2) whose weight is minimum. Therefore, we get

LCD[n,n−1]3 = 2.

�

4. CONCLUSION

In this paper, we have given new construction of ternary LCD codes, by using some primary

constructions. Also, we have discussed some cases where the bound on LCD[n,k]3 is attained.

In a future study, we will try to generalize this result for any prime power q.
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