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Abstract. In this article, we study the transmission of (COVID-19) in the human population. We use the compart-

ments model to describe the spread of this infectious disease. We divide the infected people with Covid-19 disease

into three groups because the patients go through different stages, which are: infection, symptoms and serious or

critical complications. We propose a discrete mathematical model with control strategies using three variables of

controls u, v and w that represent respectively: Urging people to wash their hands with water and soap, cleaning

and disinfecting surfaces frequently, urging people to use masks to cover the sensitive body parts and the treatment

of patients infected with (COVID-19) by taking them to hospitals and quarantine sites. Pontryagin’s Maximum

Principle, in discrete time, is used to characterize the optimal controls and the optimality system is solved by an

iterative method. Finally, Numerical simulations are presented with and without controls. Using cost-effectiveness
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analysis, we will show that the control that represents treatment of patients infected with (COVID-19) by taking

them to hospitals and quarantine sites is the most cost-effective strategy to control the disease.

Keywords: COVID-19; discrete mathematical model; Pontryagin’s maximum principle; optimal control; cost-

effectiveness analysis.

2010 AMS Subject Classification: 93A30, 92B05.

1. INTRODUCTION

A new type of coronavirus has emerged in China and has been designated with several names

related to the time and place of the epidemic spread in China such as the new coronavirus

2019–2020, the Corona Wuhan virus. The disease was lately branded (COVID-19) by the World

Health Organization (WHO). COVID-19 is one of the most harmful and pathogenic viruses for

humans and animals affecting the respiratory system. COVID-19 is an infectious virus, which

can be transmitted from an animal to a human or from a human to a human. The virus is trans-

mitted from the infected person to other people through direct contact and by touching surfaces

contaminated with the disease. Then, it affects parts of the body such as the eyes, nose and

mouth. After its spread to China, it moved to the rest of the world, where it spread widely to

Asia, America and Europe. On 11 March, the World Health Organization declared the new

coronavirus a global pandemic. The new coronavirus is a major threat to the health and safety

of people all over the world due to its potentially harmful spreading power. The Moroccan gov-

ernment announces the first case of coronavirus on March 2, 2020 of a person who came from

the Italy. Immediately after the emergence of this case, the Moroccan authorities closed borders

so quickly, suspended travels with all countries, suspended studies in all educational institu-

tions and imposed a state of health emergency. In addition, other measures were implemented

such as creating the Corona Solidarity Fund, establishing field hospitals and adopting the health

protocol proposed by the World Health Organization [1]. Registered cases continue to increase

rapidly in early 2020, with a total of 7,940,451 COVID-19 cases reported worldwide, including

433,931 deaths [2][4]. In Morocco 8,793 cases, including 212 deaths, which is home to more

than 36,839,833 people, according to the Worldometer elaboration of the latest United Nations

data and WHO [3][4]. The picture according to watch the number of infections a day cross in

Morocco until June 14, 2020 (Figure1)[3].
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FIGURE 1. Daily New Cases in Morocco

Over the past few years, a large number of mathematical models have been developed to

simulate, analyse and understand the dynamics of the Coronavirus [6][7][8][9][10][11].

According to the characteristics of transmission of the epidemic at different stages, so this pa-

per uses compartment model to describe the spread of this infectious disease, we divide infected

people with Covid-19 disease into three groups because the patients go through steps, which are

the step of infection, the step of the symptoms and step the serious or critical complications. The

patient can move to the recovery step immediately after one of the previous steps. In this work,

we propose a mathematical model that describes the dynamics of citizens who have COVID-

19. Also, we propose an optimal strategy for the treatment of patients infected with COVID-19

by taking them to hospitals and designated quarantine sites, urging people to wash their hands

with water and soap frequently, cleaning and disinfecting surfaces and using masks to cover

the sensitive body parts. The population is divided in our model into five compartments. The

susceptible individuals (S), the infected individuals without symptoms (Iw), the infected indi-

viduals with symptoms (I), the infected individuals with complications (C) and the recovered

individuals (R). In order to decrease the number of the infected population, we applied the the-

ory of optimal control for our proposed model. The theory of optimal control and the analysis

dynamic systems are a field current research that continues to arouse the interest of scientists.
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It has been widely used in different fields such as engineering, biology, mechanics, medicine,

robotics, and biomedicine. The aim of this theory is to model processes that evolve over time

and to study their behaviours. This study makes it possible, among other things, to predict the

behaviour of the system and to control it in order to get the desired results. In recent years, it

is noted that more and more attention has been paid to the discrete-time models (see, [12] [13]

[14] [15] [16] [17] [18] [19] [20] and the references cited therein). The reasons are as the statis-

tic data is collected at discrete times (day, week, month, or year). So it is more direct, more

convenient, and more accurate to describe the phenomena by using the discrete-time models

than the continuous-time models. Kermack et all were the first researchers on mathematical

epidemiology to suggest the susceptible infected-removed (SIR) model that describes the rapid

explosion of an infectious disease for a short time [22]. In this context, many researchers have

developed specific mathematical models which represent dynamics. In this work and based on

the model they proposed, we offer a new approach taking into account the use of theoretical

results provided by Balatif et al [19], where authors implemented a discrete-time model that

describes the dynamics of voters and they proposed an optimal control strategy. The same idea

and strategy were applied by Labzai et al [20], in order to model and control smoking. Kouidere

et al [21], suggested a model of evolution from prediabetes to diabetes with an optimal control

approach. Other models from optimal control problems, population dynamics and Discrete Dy-

namics in Nature and Society can be found in [23–27]. This paper is organized as follows. In

Section 2, we explain the methods of disease transmission. In Section 3, we present our discrete

mathematical model that describes the dynamics of a population infected with (COVID-19). In

Section 4, we present the optimal control problem for the proposed model where we give some

results concerning the existence of the optimal controls and the characterization of these opti-

mal controls using Pontryagin’s Maximum Principle in discrete time. Numerical simulations

through MATLAB and the cost-effectiveness analysis are given in Section 5. Finally, we con-

clude the paper in Section 6.
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2. METHODS OF SPREAD OF CORONAVIRUS IN HUMANS, ACCORDING TO THE WORLD

HEALTH ORGANIZATION

People can get COVID-19 from others who have the virus. The disease spreads mainly from

person to person through small droplets of the nose or mouth, which are expelled when a person

with COVID-19 coughs, sneezes or speaks. These droplets are relatively heavy, do not travel

far and sink rapidly to the ground. Studies have shown that the COVID-19 virus can survive up

to 72 hours on plastic and stainless steel, less than 4 hours on copper and less than 24 hours on

cardboard. People can catch COVID-19 if they breathe these droplets from a person infected

with the virus. Some reports have indicated that people without symptoms can transmit the

virus. That’s why it’s important to stay at least one metre away from the others. These droplets

can land on objects and surfaces around the person such as tables, handles, etc. People can

become infected by touching these objects or surfaces and then touching their eyes, nose or

mouth. WHO is evaluating ongoing research on the subject and will continue to share updated

[5]. Based on this data, we will discuss in this work three factors of transmission of the virus to

a healthy person by touching infected surfaces or approaching an infected symptomless person

or approaching an infected person showing symptoms.

3. A MATHEMATICAL MODEL OF COVID-19

3.1. Description of the Model. We consider a discrete mathematical model SIwICR that de-

scribes the dynamics of a population having COVID-19 disease. We divide the population into

five compartments. The following illustration will illustrate disease trends the type of COVID-

19 disease in the compartments make statements. These trends will be represented by vector

arrows in Figure 2.
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FIGURE 2. Illustration of movement between compartments

The susceptible people subjected to COVID-19

”S” refers to people who are likely to have COVID-19 disease. This compartment is in-

creased by the recruitment rate denoted Λ1. It is decreased by a natural mortality rate µ . Also

it is decreased by an effective contact with ”Iw” at rate β1 (the rate of patients who become

infected with COVID-19 due to contact with the infected people who do not show symptoms)

and with ”I” at rate β2 (the rate of patients who become infected with COVID-19 due to contact

with the infected people with symptoms). Also it is decreased by α3 (the rate of people who

have been infected with the virus as a result of touching infected areas).

The infected people without symptoms

The compartment of ”Iw” is refers to the infected people with COVID-19 without symptoms.

It is increased by the incidence rate of immigrants and carriers of the disease without symptoms

denoted Λ2, and also this compartment is increased by β1, β2 and α3.

the compartment ”Iw” decreased by natural mortality rate µ and by α1 which represent a rate of

the infected people without symptoms. Also it is decreased by γ1 the rate of the infected people

without symptoms and who become recovered.

The infected people with symptoms

The compartment ”I” refers to the infected people with symptoms of COVID-19 disease. It is

increased by the incidence rate of infected immigrants and carriers without symptoms denoted
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Λ3. Also it is increased by α1. This compartment is decreased by natural mortality rate µ and

α2 which represent the rate of the infected people with symptoms who have become infected

with complications. Also, it is decreased by γ2 that represents the rate of the infected people

with symptoms who have become recovered individuals.

The infected people with complications

The compartment ”C” refers to people who have infected with complications of (COVID-19)

disease. It is increased by α2. The compartment ”C” decreased by natural mortality rate µ

and mortality rate due to COVID-19 disease denoted δ . Also it is decreased by the rate of the

infected people with complications who have become recovered individuals denoted γ3.

The recovered individual population

”R” is the number of recovered individuals. It is increased by γ3 ,γ2 and γ1 and decreased by

natural mortality rate µ .

3.2. Model Equations. By adding the rates at which the steps of COVID-19 disease enters

the compartment and also by subtracting the rates at which people leave a compartment, we

obtain a difference equation for the rate at which patients change in each compartment during

separate times. Therefore, we present the COVID-19 disease model with the following system

of difference equations:

(1)



S(k+1) = Λ1 +(1−µ−α3)S(k)−β1
S(k)Iw(k)

N
−β2

S(k)I(k)
N

Iw(k+1) = Λ2 +α3S(k)+(1−µ−α1− γ1)Iw(k)+β1
S(k)Iw(k)

N
+β2

S(k)I(k)
N

I(k+1) = Λ3 +(1−µ−α2− γ2)I(k)+α1Iw(k)

C(k+1) = α2I(k)+(1−µ−δ − γ3)C(k)

R(k+1) = γ3C(k)+ γ2I(k)+ γ1Iw(k)+(1−µ)R(k)

where S(0)≥ 0, Iw(0)≥ 0, I(0)≥ 0,C(0)≥ 0, and R(0)≥ 0 are given initial states.

4. THE OPTIMAL CONTROL PROBLEM

So far, there is no treatment or vaccination for COVID-19. For this reason, scientists insist

some strategies for combating this disease and to reduce the risk of infection of this virus. These
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strategies aim at preventing infection and avoiding exposure to this virus by following a pre-

vention protocol: covering the mouth and nose, washing hands with water and soap,cleaning

and disinfecting surfaces, objects and goods frequently, also, putting people in quarantine areas

to reduce the risk of infection for a new population and to subject these people to specific pro-

grams especially the immunodeficiency people.

Our objective in this proposed control strategy is to minimize the number of infected people

without symptoms ”Iw”; the Infected people with symptoms ”I” and infected people with com-

plications ”C”. So, in the model (1), we include controls u = (u0,u1, .........,uT−1) which rep-

resents the effort to comply with appropriate sanitary controls, which are washing hands with

soap and water and disinfecting surfaces and objects frequently, v = (v0,v1, .........,vT−1) which

represents the effort to urge people useding masks to cover the sensitive parts of the body and

w = (w0,w1, .........,wT−1) which represents the treatment of patients infected with COVID-19

by taking them to hospitals and designated quarantine sites.

Thus, the controlled mathematical system is given by the following system of difference

equations:

(2)



S(k+1) = Λ1−α3(1−uk)S(k)+(1−µ)S(k)−β1(1− vk)
S(k)Iw(k)

N
−β2(1− vk)

S(k)I(k)
N

Iw(k+1) = Λ2 +α3(1−uk)S(k)+(1−µ−α1− γ1−wk)Iw(k)+β1(1− vk)
S(k)Iw(k)

N
+β2(1− vk))

S(k)I(k)
N

I(k+1) = Λ3 +(1−µ−α2− γ2−wk)I(k)+α1Iw(k)

C(k+1) = α2I(k)+(1−µ−δ − γ3−wk)C(k)

R(k+1) = γ3C(k)+ γ2I(k)+ γ1Iw(k)+(1−µ)R(k)+(Iw(k)+ I(k)+C(k))wk

where S(0) ≥, Iw(0) ≥, I(0) ≥,C(0) ≥, and R(0) ≥ are given initial states. Then, the problem

is to minimize the objective functional:

(3)

J(u,v,w) = AT Iw(T )+BT I(T )+FTC(T )+Σ
T−1
k=0 (AkIw(k)+BkI(k)+FkC(k)+

Dku2
k

2
+

Ekv2
k

2
+

Gkw2
k

2
)

where the parameters:

Ak > 0,Bk > 0,Fk > 0,Dk > 0, Ek > 0 and Gk > 0 for k ∈ 0,1,2, .......,T are the cost coefficients.

They are selected to weigh the relative importance of Iw(k), I(k), C(k), uk, vk and wk at time k .
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T is the final time. In other words, we seek the optimal controls u, v and w such that :

(4) J(u∗,v∗,w∗) = min
(u,v,w)∈Uad

J(u,v,w)

where Uad is the set of admissible control defined by Uad = {(u,v,w) : u= (u0,u1, .........,uT−1),

v= (v0,v1, .........,vT−1) and w= (w0,w1, .........,wT−1)/ 06 uk 6 1 , 06 vk 6 1 and 06wk 6 1

; k ∈ {0,1,2, .......,T −1}} the sufficient condition for the existence of optimal controls u, v and

w for problems (2) and (3) come from the following theorem .

Theorem 1: there exist the optimal controls u∗,v∗ and w∗ such that

(5) J(u∗,v∗,w∗) = min
(u,v,w)∈Uad

J(u,v,w)

subject to the controls system (2) with initial conditions.

Proof : Since the coefficients of the state equations are bounded and there are a finite

number of time steps. S = (S(0),S(1), ........,S(T )); Iw = (Iw(0), Iw(1), ........, Iw(T );

I = (I(0), I(1), ........, I(T ))C = (C(0),C(1), ........,C(T )) and R=(R(0),R(1),........,R(T))

are uniformly bounded for all (u,v,w) in the controls set Uad and thus J(u,v,w) is bounded

for all (u,v,w)∈Uad , since J(u,v,w) is bounded, inf(u,v,w)∈Uad
J(u,v,w) is finite, and there

exists a sequence (un,vn,wn),∈Uad such that limn7−→+∞ J(un,vn,wn)= inf(u,v,w)∈Uad
J(u,v,w)

and corresponding sequences of states Sn, In
w, I

n,Cn,Rn ,since there is a finile number

of uniformly bounded sequences, there exist (u∗,v∗,w∗) ∈ Uad and S∗, I∗w, I
∗,C∗ and

R∗ ∈ RT+1 such that an a sequences un −→ u∗,vn −→ v∗,wn −→ w∗,Sn −→ S∗, In
w −→

I∗w, I
n −→ I∗,Cn −→C∗ and Rn −→ R∗ .finally, due to the finite dimensional structure of

system (2) and the objective function J(u,v,w), u∗, v∗ and w∗ is an optimal controls with

corresponding states S∗, I∗w, I
∗,C∗ and R∗. therefore inf(u,v,w)∈Uad

J(u,v,w) is achieved.

In order to derive the necessary condition for optimal controls, the discrete version of pontrya-

gin’s maximum principle[12-20] the idea is introducing the adjoint function to attach the system

of difference equations to the objective functional resulting in the formation of a function called

the Hamiltonian. This principle converts into a problem of minimizing à Hamiltonian H(k) at

time step k defined by :

(6) H(k) = AkIw(k)+BkI(k)+FkC(k)+
Dku2

k
2

+
Ekv2

k
2

+
Gkw2

k
2

+Σ
5
i=1λi,k+1 fi,k+1
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where fi,k+1 is the right side of the system of difference equations (2) of the ith state variable at

time step k+1.

Theorem 2 : Given the optimal controls u∗,v∗,w∗ and the solutions S∗, I∗w, I
∗,C∗ and R∗

of the corresponding state system (2) there exists adjoint variables λ1,k,λ2,k,λ3,k,λ4,k

and λ5,k satisfying :

(7)



λ1,k = λ1,k+1(1−µ−α3(1−uk)−β1(1− vk)
Iw(k)

N
−β2(1− vk)

I(k)
N

)

+λ2,k+1(α3(1−uk)+β1(1− vk)
Iw(k)

N
+β2(1− vk)

I(k)
N

)

λ2,k = Ak−λ1,k+1β1(1− vk)
S(k)

N
+λ2,k+1(1−µ−α1− γ1−wk +β1(1− vk)

S(k)
N

)

+λ3,k+1α1 +λ5,k+1(γ1 +wk)

λ3,k = Bk−λ1,k+1β2(1− vk)
S(k)

N
+λ2,k+1β2(1− vk)

S(k)
N

+λ3,k+1(1−µ−α2− γ2−wk)

+λ4,k+1α2 +λ5,k+1(γ2 +wk)

λ4,k = Fk +λ4,k+1(1−µ−δ − γ3−wk)+λ5,k+1(γ3 +wk)

λ5,k = (1−µ)λ5,k+1

With the tranversality conditions at time T : λ1,T = 0 ; λ2,T = AT ; λ3,T = BT ; λ4,T = FT ;

λ5,T = 0 Furthermore for k = 0,1,2, .......,T −1, the optimal controls u∗k , v∗k and w∗k are

given by

(8) u∗k = min(umax,max(umin,
(λ2,k+1−λ1,k+1)α3S(k)

Dk
))

(9) v∗k = min(vmax,max(vmin,
(λ2,k+1−λ1,k+1)(β1S(k)Iw(k)+β2S(k)I(k))

NEk
))

(10)

w∗k =min(umax,max(umin,
(λ2,k+1−λ5,k+1)Iw(k)+(λ3,k+1−λ5,k+1)I(k)+(λ4,k+1−λ5+1)C(k)

Gk
))

Proof : The hamiltonian at time step k is given by
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H(k)=AkIw(k)+BkI(k)+FkC(k)+
Dku2

k
2

+
Ekv2

k
2

+
Gkw2

k
2

+λ1,k+1(Λ1+(1−µ)S(k)−α3(1−

uk)S(k)−β1(1−vk)
S(k)Iw(k)

N
−β2(1−vk)

S(k)I(k)
N

)+λ2,k+1(Λ2+(1−µ−α1−γ1−wk)Iw(k)+

α3(1− uk)S(k)+β1(1− vk)
S(k)Iw(k)

N
+β2(1− vk)

S(k)I(k)
N

)+λ3,k+1(Λ3 +(1− µ −α2− γ2−

wk)I(k) + α1Iw(k)) + λ4,k+1(α2I(k) + (1− µ − δ − γ3 −wk)C(k)) + λ5,k+1(γ3C(k) + γ2I(k) +

γ1Iw(k)+(1−µ)R(k)+(Iw(k)+ I(k)+C(k))wk)

for k = 0,1,2, .......,T − 1, the adjoint equations and transversality conditions can be

obtained by using Pontryagin’s Maximum principle, in discrete time given in [12-20]

suth that

(11)

λ1,k =
dH(k)
dS(k)

= λ1,k+1(1−µ−α3(1−uk)−β1(1− vk)
Iw(k)

N
−β2(1− vk)

I(k)
N

)

+λ2,k+1(α3(1−uk)+β1(1− vk)
Iw(k)

N
+β2(1− vk)

I(k)
N

)

λ2,k =
dH(k)
dIw(k)

= Ak−λ1,k+1β1(1− vk)
S(k)

N
+λ2,k+1(1−µ−α1− γ1−uk +β1(1− vk)

S(k)
N

)

+λ3,k+1α1 +λ5,k+1(γ1 +wk)

λ3,k =
dH(k)
dI(k)

= Bk−λ1,k+1β2(1− vk)
S(k)

N
+λ2,k+1β2(1− vk)

S(k)
N

+λ3,k+1(1−µ−α2− γ2−wk)+λ4,k+1α2 +λ5,k+1(γ2 +wk)

λ4,k =
dH(k)
dC(k)

= Fk +λ4,k+1(1−µ−δ − γ3−wk)+λ5,k+1(γ3 +wk)

λ5,k =
dH(k)
dR(k)

= (1−µ)λ5,k+1

with the tranversality conditions at time T : λ1,T = 0 ; λ2,T = AT ; λ3,T = BT ; λ4,T = FT ;

λ5,T = 0. For k ∈ 0,1,2, .......,T −1 , the optimal controls u∗k ,v∗k and w∗k can be solved

from the optimality condition:
dH(k)

duk
= 0,

dH(k)
dvk

= 0 and
dH(k)
dwk

= 0 that is:

dH(k)
duk

= Dkuk +(λ1,k+1−λ2,k+1)α3S(k) = 0
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dH(k)
dvk

= Ekvk +λ1,k+1(β1
S(k)Iw(k)

N
+β2

S(k)I(k)
N

)−λ2,k+1(β1
S(k)Iw(k)

N
+β2

S(k)I(k)
N

) = 0

dH(k)
dwk

= Gkwk−λ2,k+1Iw(k)−λ3,k+1I(k)−λ4,k+1C(k)+λ5,k+1(Iw(k)+ I(k)+C(k)) = 0

so we have

uk =
(λ2,k+1−λ1,k+1)α3S(k)

Dk

vk =
(λ2,k+1−λ1,k+1)(β1S(k)Iw(k)+β2S(k)I(k))

NEk

wk =
(λ2,k+1−λ5,k+1)Iw(k)+(λ3,k+1−λ5,k+1)I(k)+(λ4,k+1−λ5,k+1)C(k)

Gk
by the bounds in Uad of the controls, it easy to obtain u∗k , v∗k and w∗k in the form (8), (9),

(10).

5. NUMERICAL SIMULATION AND COST-EFFECTIVENESS ANALYSIS

5.1. Algorithm. In this section we present the results obtained by solving numerically the

optimality system. There were initial conditions for the state variables and terminal conditions

for the adjoints. That is the optimality system is a two-point boundary value problem with

separated boundary conditions at times step k=0 and k=T. We solve the optimality system by

an iterative method with forward solving of the state system followed by backward solving of

the adjoint system. We start with an initial guess for the controls at the first iteration and then

before the next iteration we update the controls by using the characterization. We continue until

convergence of successive iterates is achieved. A code is written and compiled in Matlab using

the following data (Table1).
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Table1: The description of parameters used for the definition of discrete time systems .
Parameter Description Estimated value Source

s0 Moroccan population 37000000 [3]

iw0 initial Number of infected people without symptoms 100 Assumed

i0 initial Number of infected people with symptoms 50 Assumed

c0 initial Number of infected people with complications 0 Assumed

r0 initial Number of recovered people 0 Assumed

Λ1 The incidence of susceptible 2000000 [28]

Λ2 The incidence of Immigrants with covid19 without symptoms 2000 [28]

Λ3 The incidence of Immigrants with covid19 with symptoms 500 [28]

µ Human natural death rate 0.02 [28]

δ Mortality rate due to covid-19 in Morocco 0.035 [3]

α1 The rate of infected people with symptoms 0.8 Assumed

α2 The rate of infected people with complications 0.4 Assumed

α3 The rate of infected people due to contact with infected surfaces 0.05 Assumed

β1 The rate of infec people due to contact with infec without sympt 0.2 [28]

β2 The rate of infec people due to contact with infec with sympt 0.1 [28]

γ1 The rate of those recovering from covid-19 without symptoms 0.4 Assumed

γ2 The rate of those recovering from covid-19 with symptoms 0.3 Assumed

γ3 The rate of those recovering from covid-19 with complications 0.2 Assumed

5.2. Discussion. In this section, we analyse numerically the effects of controls such as the

treatment of patients infected with (COVID-19) by subjecting them to quarantine within hos-

pitals and designated places for that, urging people to wash their hands with water and soap,

cleaning and disinfecting surfaces frequently and using masks to cover the sensitive body parts.

Different simulations can be carried out using various values of parameters. We use parameters

values as shown in Table1. Furthermore we investigate numerically the impact of each of the

following optimal control strategies:

strategy 1. Urging people to wash their hands with water and soap , clean and disinfect surfaces

frequently control u.

strategy 2. Forcing people to use masks to cover the sensitive body parts control v.
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strategy 3. The treatment of patients infected with COVID-19 by subjecting them to quarantine

within hospitals and designated places for that control w.

strategy 4. Combining of strategy1 and strategy2, by using controls u and v .

strategy 5. Combining of strategy1 and strategy3, by using controls u and w .

strategy 6. Combining of strategy 2 and strategy3, by using controls v and w .

strategy 7. Combining of strategy1, strategy2 and strategy3, by using controls u, v and w.

5.2.1. Strategy 1. In this strategy, we apply the control (u) by urging people to wash their

hands with water and soap, cleaning and disinfecting surfaces frequently. We observed the in

Figures 3 the number of infected people without symptoms ”Iw” decreased from 1.233 ∗ 106

(without controls) to 0.96 ∗ 106(with controls). Figure 4 demonstrates that the number of the

infected people with symptoms ”I” decreases from 1.371∗106 (without controls) to 1.05∗106

(with controls).

Figure 5 demonstrates that the number of the infected people with complications ”C” decreases

from 2.15∗106 (without controls) to 1.65∗106 (with controls), at the end of the implementation

of the proposed strategy.

5.2.2. Strategy 2. In this strategy applying control (v) by forcing people to use masks to cover

the sensitive body parts, we observed in Figures 3, 4 and 5, the number of infected humans with-

out symptoms Iw, with symptoms I, and with complications C all decreases slightly compared

to cases without control.

5.2.3. Strategy 3. In this strategy, we apply the control (w) by treating the patients infected

with COVID-19 within quarantined hospitals and designated places for that. We observed that

in Figures 3 the number of infected people without symptoms ”Iw” decreased from 1.233 ∗

106 (without controls) to 0.91 ∗ 106(with controls). Figure 4 demonstrates that the number

of the infected people with symptoms ”I” decreases from 1.371 ∗ 106 (without controls) to

0.63 ∗ 106 (with controls). Figure 5 demonstrates that the number of the infected people with

complications ”C” decreases from 2.15∗106 (without controls) to 0.45∗106 (with controls), at

the end of the implementation of the proposed strategy.
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5.2.4. Strategy 4. Here, using this strategy, we urge people to wash their hands with water

and soap, clean and disinfect surfaces frequently (control u) and forcing citizens to use masks

to cover the sensitive body parts (control v). We observe that in Figure 6, the number of infected

people without symptoms ”Iw” decreased from 1.233∗106 (without controls) to 0.99∗105(with

controls). Figure 7 demonstrates that the number of the infected people with symptoms ”I”

decreases from 1.371 ∗ 106 (without controls) to 0.135 ∗ 106 (with controls). Figure 8 demon-

strates that the number of The infected people with complications ”C” decreases from 2.15∗106

(without controls) to 0.21∗106 (with controls), at the end of the implementation of the proposed

strategy.

5.2.5. Strategy 5. Using this strategy, we urge people to wash their hands with water and

soap, clean and disinfect surfaces frequently (control u) and by treatment of patients infected

with (COVID-19) by subjecting them to quarantine within hospitals and designated places for

that (control w). In Figure 6, we observe that the number of infected people without symptoms

”Iw” decreased from 1.233∗106 (without controls) to 0.91∗105(with controls). Figure 7 demon-

strates that the number of the infected people with symptoms ”I” decreases from 1.371 ∗ 106

(without controls) to 0.093 ∗ 106 (with controls). Figure 8 demonstrates that the number of

The infected people with complications ”C” decreases from 2.15 ∗ 106 (without controls) to

0.089∗106 (with controls), at the end of the implementation of the proposed strategy.

5.2.6. Strategy 6. Using, this strategy we force people to use masks to cover the sensitive

body parts (control v), and using treatment for patients infected with (COVID-19) by subjecting

them to quarantine within hospitals and designated places for that (control w). In Figure 6, we

observed that the number of infected people without symptoms ”Iw” decreased from 1.233 ∗

106 (without controls) to 0.98 ∗ 105(with controls). Figure 7 demonstrates that the number

of the infected people with symptoms ”I” decreases from 1.371 ∗ 106 (without controls) to

0.0105∗106 (with controls). Figure 8 demonstrates that the number of The infected people with

complications ”C” decreases from 2.15 ∗ 106 (without controls) to 0.093 ∗ 106 (with controls),

at the end of the implementation of the proposed strategy.
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5.2.7. Strategy 7. In this strategy, we use all the three controls u, v, and w to optimize the

objective funtion J(u,v,w). We observed that in Figure 9 the number of infected people without

symptoms ”Iw” decreased from 1.233 ∗ 106 (without controls) to 7694(with controls). Figure

10 demonstrates that the number of the infected people with symptoms ”I” decreases from

1.371∗106 (without controls) to 5700 (with controls). Figure 11 demonstrates that the number

of The infected people with complications ”C” decreases from 2.15∗106 (without controls) to

3708(with controls), at the end of the implementation of the proposed strategy.
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5.3. Cost-effectiveness Analysis. Following the method as applied in several studies [29–32],

we evaluate the costs using the incremental Cost-Effectiveness Ratio (ICER). This ratio is used

to compare the differences between the costs and health outcomes of two alternative intervention

strategies. The ICER numerator includes the differences in intervention costs, averted disease

costs, costs of prevented cases and averted productivity losses if applicable. While, ICER’s

denominator is the difference in health outcomes. Given two competing strategies i and j,

where strategy j has higher effectiveness than strategy i (TA(i) < TA( j)), the ICER values are

calculated as follow:

(12) ICER(i) =
TC(i)
TA(i)

(13) ICER( j) =
TC( j)−TC(i)
TA( j)−TA(i)

Where the total costs (TC) and the total cases averted (TA) are defined, in our study, during a

given period for strategy i for i = 1, 2, 3, 4, 5, 6, 7 by:

(14) TC(i) = Σ
T−1
k=0 ((Dku∗k +Ekv∗k)S

∗(k)+Gkw∗k(I
∗
w(k)+ I∗(k)+C∗(k)))

(15) TA(i)ΣT
k=0((Iw(k)+ I(k)+C(k))− (I∗w(k)+ I∗(k)+C∗(k)))

Where Dk, Ek and Gk corresponds to the person unit cost of the three possible interventions,

while I∗w(k), I∗(k) and C∗(k) is the optimal solution associated to the optimal controls u∗k , v∗k and

w∗k . Based on the model simulation results, we ranked, in Table 2 our control strategies in order
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of increased numbers of averted infections.

Table2 : Total costs and total averted infections for all strategies.

strategy Total averted infections (TA) Total cost (TC)

2 0.1949∗108 1.6541∗1010

1 1.4027∗108 2.3955∗1010

4 1.7729∗108 5.2238∗1010

3 2.8319∗108 8.1219∗108

6 2.8886∗108 1.7626∗1010

5 3.4718∗108 2.5745∗1010

7 3.5726∗108 5.3690∗1010

First, we compared the cost-effectiveness of strategy 2 and strategy 1 :

ICER(2) =
1.6541∗1010

0.1949∗108 = 848.691

ICER(1) =
2.3955∗1010−1.6541∗1010

1.4027∗108−0.1949∗108 = 61.384

Note that ICER(2) higher than ICER(1). This means that strategy2 is dominated by strategy1.

Therefore, strategy2 is excluded from the set of alternatives.

Second, we compared the cost-effectiveness of strategy 1 and strategy 4 :

ICER(1) =
2.3955∗1010

1.4027∗108 = 170.777

ICER(4) =
5.2238∗1010−2.3955∗1010

1.7729∗108−1.4027∗108 = 763.992

By comparing between strategy1 and strategy4 , the lower ICER for strategy1 indicates that

strategie4 is strongly dominated. That is, strategy4 is more costly and less effective than strate-

gie1. Therefore, strategy4 is excluded from the set of alternatives.

Next, strategy 1 is compared with strategy 3 :

ICER(1) =
2.3955∗1010

1.4027∗108 = 170.777

ICER(3) =
8.1219∗108−2.3955∗1010

2.8319∗108−1.4027∗108 =−161.928
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Since ICER(3)< ICER(1), then strategy 1 is less effective than strategy 3. Therefore, strategy1

is excluded from the set of alternatives.

Next, we compare the cost-effectiveness of strategy 3 and strategy 6:

ICER(3) =
8.1219∗108

2.8319∗108 = 2.868

ICER(6) =
1.7626∗1010−8.1219∗108

2.8886∗108−2.8319∗108 = 2965.398

The comparison of ICER (3) and ICER (6) reveals a cost savings of 2.868 for Strategy 3 over

Strategy 6. This means that Strategy6 more expensive and less effective than Strategy 3. There-

fore, Strategy 6 is excluded from the set of alternatives.

Now, we compare the cost-effectiveness of strategy 3 and strategy 5 :

ICER(3) =
8.1219∗108

2.8319∗108 = 2.868

ICER(5) =
2.5745∗1010−8.1219∗108

3.4718∗108−2.8319∗108 = 389.636

The lower ICER obtained for Strategy 3 is an indication that Strategy 3 strongly dominate Strat-

egy 5, this simply indicates that Strategy5 is more costly to implement compare to Strategy3.

Therefore, it is best to exclude Strategie5 from the set of control strategies and alternative inter-

ventions to implement in order to preserve limited resources.

Finally, strategy3 is compared with strategy7:

ICER(3) =
8.1219∗108

2.8319∗108 = 2.868

ICER(7) =
5.369∗1010−8.1219∗108

3.5726∗108−2.8319∗108 = 713.889

The comparison reveals that strategy3 is cheaper than strategy7 by saving 2.868 .Therefore,

strategy3 is the best strategy from all compared strategies due to its cost-effectiveness and

healthy benefit. Moreover, Figures 3, 4 and 5 show that the application of the intervention (The

treatment of patients infected with COVID-19 by subjecting them to quarantine within hospi-

tals and designated places for that control w) alone is the cheapest. But we do not consider this

because a single intervention is not effective in eradicating the disease. The combination of all
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the three interventions( urging people to wash their hands with water and soap, clean and disin-

fect surfaces frequently, forcing people to use masks to cover the sensitive body parts, treating

patients infected with COVID-19 by taking them to hospitals and designated quarantine sites) is

the most expensive strategy compared to other strategies. But this strategy is yielding important

results in fighting the spread of the COVID-19 epidemic, See the figures 9, 10 and 11 .

6. CONCLUSION

In this research a mathematical model of the COVID-19 disease is considered to investigate

the effect of three optimal controls strategies that respectively represent urging people to wash

their hands with water and soap frequently, clean and disinfect surfaces, forcing people to use

masks to cover the sensitive body parts, treating patients infected with COVID-19 by submitting

them to hospitals and designated quarantine sites. After introducing the work and related liter-

ature in the beginning, we formed a mathematical discrete model that describes the dynamics

of a population infected by COVID-19 virus, without symptoms, with symptoms and with the

serious or critical complications in order to minimize the number of infected people in all steps

for COVID-19. We applied the results of the control theory and obtain the characterizations

of the optimal controls. Finally, we have a numerical solution obtained from the mathematical

model through the maximum principle of Pontryagin’s in discrete time. The system of optimal-

ity is solved by an iterative method. Also we investigated the cost-effectiveness of the controls

to determine the most effective strategy to eliminate COVID-19 with minimum costs. Using

ICER cost-effectiveness analysis, we showed that strategy 3 is the most effective strategy but

not effective in eliminating the disease. The combination of the three interventions u, v and w

(strategie7) is the most costly strategy compared to other strategies. But, this strategy has im-

pressive results in coping with the spread of the disease and reducing the number of infections,

see figures 9, 10 and 11. The Moroccan state, since the first day of the emergence of infec-

tions by this disease, has committed to implementing this strategy gradually, despite its cost

and its impact on the national economy. By simulating the propagation process of COVID-19,

we found that the proposed strategie7 (see figures 9, 10 and 11) corresponded closely to official

data from Morocco [3].
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