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Abstract. The restricted detour distance D*(u,v) between two vertices U and V of a connected
graph G is the length of a longest U—V path P in G such that <V (P) >= P . The restricted detour

polynomial of G, is a graph distance polynomial defined on restricted detour distance. The restricted
detour polynomials and restricted detour indices of hexagonal graphs and ladder graphs are obtained in
this paper.
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1. Introduction
Let G be a connected graph, and let u and v be any two vertices of G .The

(standard) distance d(u,v) between u and v in G is the length of a shortest u—v
path P in G [8]. It is clear that the induced subgraph <V (P)> is P itself. Based on
this observation, Chartrand, et al [4],in 1993 defined the detour distance d”(u,v)

between vertices u and v as the length of a longest u—v path P for which
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1623 THE RESTRICTED DETOUR POLYNOMIALS

<V (P)>=P. Later on, Chartrand, et al and any other authors (see [5] and [6]).
Defined the concepts of detour distance D(u,v) between vertices u and v in G, as

the length of a longest u—v path P, without assuming the induced condition

<V (P) >=P. Therefore, in order to differentiate between the two concepts, we shall
call the detour distance with the induced condition, the restricted detour distance

between u and v, and denote it by Dg(u,v) or simply D"(u,v). From this definition
of the concept D" on the vertex set V (G), we notice that D"(u,v) =0 if and only if

u=v, and D"(u,v)=1 if and only if uv is an edge of G. However, the triangle
inequality does not hold in general [4], therefore the restricted detour distance is not
metric onV (G).

An induced u—v path of length D"(u,v) will be called a restricted (or an
induced) detour path. Moreover, a connected graph G is called a restricted detour
graph if D"(u,v) =d(u,V) for every pair u,vof vertices in G . It is clear that all trees,

complete graphs, and complete bipartite graphs are restricted detour graphs. However,
every cycle of order p >5is not restricted detour.

For more properties and results on restricted detour distances, one may see [4].
2. Restricted Detour Polynomials

Let G be a (p,q) connected graph. The concept of Hosoya polynomial
H(G;x)is based on standard distance, (See [7], [9], and [10]), and the concept of
detour polynomials D(G;x) of G, (See [2] and [3]) is based on detour distance. On
the same line, the concept of restricted detour polynomial, denoted by D" (G;x)or

H™(G;X), see [1], is defined as follows:

(21) D'(G;x) =D X%y,

where the summation is taken over all unordered pairs u,v of vertices of G. The

index of G with respect to restricted detour distance is denoted by dd”(G) and

defined by
(2.2) dd"(G)=>_Dg(u,v),

and will be called restricted detour index of G .

It is clear that
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(2.3) dd*(G) = % D" (G;X)| .

One can easily notice that
(2.4) D'(G;x)=> .C"(G,k)x*,

k>0

in which C”(G,k)is the number of unordered pairs of vertices u,v of G such that
D.(u,v) =Kk .

Let ube any vertex of G, and let C"(u,G;k) be the number of vertices v of
G such that D"(u,v) =k . Then, the polynomial is defined by
(2.5) D'(u,G;x)=>_C"(u,G;k)x*,

k>0
is called the restricted detour polynomial of vertex u.

It is clear that

(2.6) D*(G;x):%( Y, D'u,G;x)+ pj.

ueV(G)
We illustrate these concepts in the next example.

Example: Let Q, be the 3-cube graph, and let u be any vertex in Q, as shown in

Fig.2.1. From the symmetry of Q,,we have
D'(Q;;X)=4[1+D"(u,Q;;x)].

Vs Vs

u v,

Fig.2.1. The 3-cube Q.

By direct calculation using Fig.2.1,we obtain the restricted detour distances from
vertex u to the other vertices v,, v,,...,v, which, respectively, are 1, 1, 1, 4, 4, 3, 4.

Thus
D (u,Q;;x) =1+3x+ x> +3x*,
and so

D(Q,; X) =8+12x+4x° +12x*,

and
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dd™(Q,) =72.
In 2010, Abdullah and Muhammed-Saleh [1] obtained the restricted detour

polynomials and restricted detour indices of some special graphs.
In this paper, we obtain the restricted detour polynomial and index of a
hexagonal graph consisting of one row of m hexagons.

3. Restricted Detour Polynomials of Hexagonal Graphs

Let J,, m>1, be a hexagonal chain consisting of one row of m hexagons h,,

h,, ..., h,asdepicted in Fig.3.1. Then, p(J,)=4m+2, q(J,,)=5m+1.

U u, U u, U Upyig Upig Upy  Upig Upm—s U Uopp
hy h,

’ ’ 1 ! ’ !

U U Uz uj ug Uy g Uy Uy, Usg Upm_s 2m+l

Fig.3.1. A hexagonal graph J ..
From Fig.3.1 and taking care of the symmetry of J_, we have the following
reduction formula:
(3.1) D'J,;x)=D"(J,, ;X)+F,(x), m=>2,
in which
3.2) F (x)=2D"(u,J

X)+2D"(uy, J,; X) —(3x+x° +2x).

m? m?

We shall find D" (u,,J_:x), i=1, 2.

Remark. All restricted detour distance D"(, ) in this section are calculated in the
graph J,..
Proposition 3.1. For m>2and i=2, 3,..., m

1) D*(up Uy,y) =21+ erli—‘ ’
(2) D' (u,uy) =2i +1+2BJ :
3 D*(ul’uéh—l) =2i+1+ Z{éJ '

(4) D (uy,uy) =2i +2B1.
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Proof.
(1) From Fig.3.1, one may easily see that D"(u,u,)=6, D'(u,u,)=10,

D"(u,,u,) =12, and for each 2<i<m,a (u,,u,.,) restricted detour is

! ! ’ ! ! !

!
Uy, Up, Uy, Ug, Usy Uy, U, Us, oony (Uy gy Uy Uy g ) (OF oon Uy gy Ugpy Uiy Uypg ),
. . i
which is of length 2i +2(ﬂ.

(2) We notice that D"(u,u,)=7, D'(u,U;) =9, D'(u,u;) =13, ...; and for
4<i<m a (u,u,) restricted detour is

! ! ! ! ’ ! !

1
U, U, Uy, Ug, Ugy Uy, Ug,Usg, .oy (u2i—3'u2i—3’u2i—2'u2i—l’u2i—1'u2i) (or ... Uiz

! ! !

uZi—l’ u2i ' u2i+1’ u2i+1' uZi )’
which is of length 2i +1+ 2L%J .

Parts (3) and (4) are proved using similar ways. &

Proposition 3.2. For m>2,

(3.3) D'(Uy, JpiX) =14+ 2x+ x> +2x* +2(x+1) D %7

1'% m?
i=2

Proof.
From Fig.3.1, we get

m . - s , * ’
D*(Ul, Jm;X) — D*(Ul, Jl' X) +Z[XD (CRUEY) + XD (ug,Up;) +XD (Uy,U31,1) + XD (U1:U2i)].
i=2

Since
(3.4) D'(uy,J;;X) =1+2x+ x> +2x%,

then, from Preposition 3.1, we obtain

D™ (u, 3, X) =1+2x+ x> +2x* + zi Xzi[xmu + sz]

i=2

=1+2x+ X +2x + 2D XX + X =14 2x+ X0+ 2x +2) (1+x)xT . .
i=2 i=2

Proposition 3.3 For m> 4, we have

(1) D'(U,,u,,) = 2i +1+BJ, fori=2,3,..,m.
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(2) D*(u,,u,)=2i + 2%} fori=3,4,..,m.
(3) D(u,,ul,) = 2i +2B}, fori=2,3,..,m.

(4) D*(u,,u}) = 2i +1+BJ, fori=4,5,...m.

Proof.

It is similar to that of proof Proposition 3.1. B
Proposition 3.4 For m>4,
(3.5) D'(Uy Jpi X) =14 2X+ X7 +2X* + X+ X2+ X + X7+ %7 + X0 +2(x+1) D x*..

i=4

Proof.
From Fig.3.1, (3.4), and Proposition 3.3, we get

D*(u21 Jm; X) — D*(uz’ Jl; X)+ Z[XD*(UZVUZiH) + XD*(u2+u2i) + XD*(u2+uéi+1) + XD*(u2+uéi)]

i=2

— D*(u1 \]1X)+ (XD*(UZvus) + XD*(U21U7)) +(XD*(U2xU4) + XD*(UZvue))_'_ (XD*(Uzvué) +

. i . i
XD U)) | (xD7 () |y D )y zi[xz'“{zJ + XMM]
i=4

=L+ 2x+ X3 +2x)+ (X + )+ (C+ X))+ (P + X))+ (X +x) +
22 XZi (Xi + Xi+l) .
i=4

Simplifying the expression, we get (3.5). B
Proposition 3.5. For m>4, we have a reduction formula

(36) D'(3,;%)=D"(J, ;%) + F, (%),

m—l;
where

F_(x) = R(X) + 8(x +1)i X,

R(X) =4+5x+3x° +6x* + 2x° +6x° +8x” +2x° +6x° +8x™.
Proof.

From (3.2), we have, for m>2,

F.(x)=2D"(u,J,;X)+ 2D"(u,,J,; X) — (3x+ x> +2x%).

1'% m? 2'Ym?

From Proposition 3.2 and 3.4, we obtain, for m>4:
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F, () = 2f1+2x+ X° + 2x* + 2(x + D (x° + X°) +2(x+1) D x*

i—4
142X+ X + 22X X x84 2%+ + X + 2% +2(x+1) D X} —(3x +X° +2x*) .
i=4

Simplifying the algebraic expression, we get F, (x) as given in (3.6)
Hence, the proof is completed. ®
Now, we state our main result.
Theorem 3.6 . For m>4,
(3.7) D'(J,;X)=4m+2+(5m—1) x+3mx’ +6mx* +(2m—2)x> + (6m—6)x° +
(8M—-10)x" + (2m—2)x® + (6m—-12)x° + (8m-16)x" +

8(x +1)i(m +1-k)x*.

k=4
Proof.

From Proposition 3.5, we have

D'(J,;x)=D"(J

m-11

X)+ R(X) + 8(x+1)> x*
i=4
m-1 m
=D"(J,,_,;X)+ 2R(X) +8(x+1) {szi +Zx3i} .
i=4 i=4
Thus solving our reduction formula, we obtain

X3i

M~

(3.8) D'(J,;x)=D"(J5;x)+ (M=3)R(X) + 8(x+1)zm:

k=4 i

]
N

=D"(J5;X) + (M=3)R() + 8(x+1)D_ (m+1-k)x* .
k=4
By direct calculation, we get
D (J;;X) =14 +16X+9x> + 18x* +4x° +12x° + 14x" +4x® + 6x° +8xY.
Therefore, substituting R(x), from (3.6), and D"(J,;x) in (3,8) and simplifying, we

get the required result (3.7). |

Theorem 3.7. For m>4 , the restricted detour index of J_, is given by
dd"(J,) =8m° + 28m° —2m+9
Proof.

Taking the derivative of D"(J,; x) with respect to x, we get

D”(J,;x) = (5Bm+1) + 9mx’ + 24mx> + (10m —10)x* + (36m —36)x° +
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(56m—70)x° + (16m—16)x" + (54m—108)x® + (80m—160)x° +
8 (M+1—-k)x* + 8(x+1)> 3k(m+1-k)x**.
k=4 k=4

Putting x =1, we get

D" (J,;1) = 290m —399+ 8 (m+1-+ 6mk + 5k —6k)
k=4

= 290m —399+8 {(m +1)(m—3)+(6m+5)zm:k—62m:k2}

k=4 k=4
m+4

= 290m—399 +8(M? — 2m—3) + 8(6M +5)(——)(m —3) —

48{6 m(m-+1)(2m+1) —14} =8m® +28m* —2m+9.

Corollary 3.8 . For m> 3, the restricted detour diameter of J_ is 3m+1.
Proof.

It is clear that the highest power of xin D"(J,;X)is 3m+1.m
Moreover, one may notice that D"(J,.; x) does not contain the terms x*and x** for
4<k<m.
4. The Restricted Detour Polynomial of the Ladder L,

Let P, be a path of order n,n>2. The ladder graph L, is K,xP,. It is clear
that p(L,)=2n, q(L,)=3n-2, and diam L, =n. It is known [7] that the Hosoya

polynomial of P is given by

n-1
(4.1) H(P;x)=> (n—k)x".
k=0
Let the vertices of P, beu,,u,,....,u,, and let the vertices of L be labeled as shown in

1 Ynp

Fig- 41y  u

2 |+2 [3 +
! ! I
ul u2 |+2 u|+3 I+4 u|+5 i+ |+k+l

F|g.4.1. The ladder L,, n>2.

Proposition 4.1. For k>0,

(4.2) D, (u,u.,)= k+2[k41-‘
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(43) D_ (u,u/,)=k+1+ ZLEJ
Proof.
It is clear that d, (u;,u;, ) =k. From Fig.4.1, we notice that there is a restricted

detour between vertices u, and u,,,, for k>2,in L,, namely

!/ !’ !’ ’ ! !

ui’ui’ui+l’ui+2’ ui+2’ui+3’ui+4’ui+4’ui+5 ""’ui+k—l’ui+k (Or ""ui+k’ui+k)
. k-1
which is of length k +2 - | Hence (4.2) holds.

(b) If k=0, then D (u,u)=1, and if k=1, then D (u,uj,)=2 . Also
D! (u;,u},,)=3,Df (U,u/,;)=4,D; (u,ui,,)=7.

Thus, (4.3) holds for k=0,1,2,3,4. In general, we have a restricted detour between
u;and u’, in L of length k+1+ Z&J namely, for k >4,

u;, u’

i i+l

! !

i+27

! !

' '
u u u u ui+4’ui+4' ""ui+k’ui+k (Or""ui+k—1’ui+k)’

i+27 Yi+3?

which is of length k+1+ ZEJ y |
Let S={u,u,,..,u,}, and S'={uj,u;,...,u;}. From (4.1), we notice that the
number of unordered pairs of vertices which are of distance k apart in P, is

(n—Kk) .Therefore, by Proposition 4.1, the number of unordered pairs of vertices of
S (or of S") which are of restricted detour distance k+2(kT_11, fork>2,in L, is
(n—k). Also, the number of unordered pairs u,u’with ue S and u’eS’, which are of
restricted detour distance 1+k+2EJ, for k>0, in L, is (n—k). Using this fact,
we shall prove the following theorem.

Theorem 4.2. For n>3,

oy) _ 1Yy 2 S _ k Z[Tw l+2bJ

(4.4) D'(L,;;¥)=2n+ (Bn=2)x+ 2(n-1)x* +2)_ (n—k)x“ (x' * T+x ).

k=2
Proof.

From the symmetry of L, we have forall i, je{12,...,n},

D; (ui1uj) = D; (Ui"u})
and
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D (u,,uj)= D (u/,u;).

Since the order of L, is 2n and its size is (3n—2), then by Proposition 4.1, we get
* n-1 k+ Z[k l-‘ 1+2{EJ
D'(L,;X) =2n+ (3n—2)x+ 2> (n—k)x +22(n k)yx
k=2

ST St
=2n+@n-2)x+ 2(n-1)x* +2>_ (n—k)x +22(n k)x 4.
k=2
Hence, the proof is completed. B

The next corollary determines the restricted detour diameter of L, .

Corollary 4.3. For n>1, let m= EJ , then

n+2m-1, if n=0(mod4)
Diam’(L,)={n+2m, if n=1or2(mod4)
n+2m+1, if n=3(mod4).

Proof.

Since diamP, =n—1, then

Diam*(Ln):max{(n—1)+2{n;2—l 1+ (n— 1)+2{”41J}

Let n=r (mod4),then n=4m+r,where r=0,1, 20r3.
If r=0, then

Diam’(L,) :max{n 1+ 2(4m4—21, n+2{4mT_1J}

=max {n—1+2m, n+2(m-1)} =n+2m-1.

If r=1, then

Diam"(L,) :max{n—1+ 2(4m—_1—l n+2r—mJ}
4 4

=max{n—1+2m, n+2m} =n+2m.

If r=2,then
dm+1
Diam"(L,) =max{n— 1+2 n+2 1
max{n 1+2m n+2m}_n+2m.
If r=3, then

Diam*(Ln)=max{n—1+2(4m4+1w, n+2[4m4+2J}

=max{n—1+2(m+1), n+2m} =n+2m+1.m

We shall obtain the restricted detour index of L,
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Theorem 4.4. For n>2, we have

1n(2n2+n—2), foreven n

dd"(L,) =
%(Zn +n —6n+5)+4Un 2}{”41) forodd n.

4
Proof.
Assuming n>3and taking the derivative of D"(L,;x) with respect to x, and

then putting x =1, we get from Theorem 4.2:

dd"(L,)=3n-2 +4(n— 1)+2Z(n k) (2k+1+2[k4ﬂ 2{%)

—7n- 6+2Z{n+(2n 1)k — 2k }+4Z(n k)((k 1} FJ)

P 4

=7n-6+2{ n(n-2)+(2n- 1)”—”( n-2)- 2[ (n-Dn@n-1)-1] } +4A,

where
1= k-1 k
Therefore,
(4.6) dd(L, )_—n +n —§n+4A
We shall find the value of A. Expanding the summation in (4.5), we get
=[(n—=2)A+0)+(n—3)(1+0)] +[(n-4)(A+1D) + (n-5)1+1)] +
[(n-6)2+1)+(n-7)(2+D)]+

=(2n-50)+(2n-9)(2) +(2n-13)(3) +... =2n(1+2+3...)— (5+18+39+...).
If 4<niseven, then

(47) A=2nYi iu(4n+1) (2n- 1)1(”—2)(”) 4(1)(”—2)(”)( n—1)
1 ]I_:13 1:l 2 1
=Z(En*—=n?-=n).
4°3 2 3

Thus, from (4.6) and (4.7), we get the formula for dd”(L,) foreven n>4.

If n isodd, n>5, then

s o3

4.8) A=2nzzli—2|(4l+1)+(( l FT_lJ)

=1
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:(2n—1)i21i -42? HP%ZLFTAJ)
_ 1 n-3,n-1 1, n-3,n-1 n-1
I L Tl T T YU O —2)+([ 1 {—J)

4
i M5, ((n_ﬂ{nT—lJ),

Thus, from (4.6) and (4.8), we obtain the required formula for n>5.
Moreover, one may easily see that the formula for dd”(L,) given in the theorem

holds also for n=2 and 3. Hence the proof is completed. &
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