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Abstract. This article proposes a general and efficient modification of Adomain decomposition method (ADM)

to obtain the general solutions for (n+1)- order nonlinear singular differential equations with different boundary

conditions. This technique is proposed to overcome the singular behaviour of this type of problems. We study

several nonlinear problems which will illustrate the efficiency of using that developed technique of the given

method to clearly confirm the effectiveness and accuracy of ADM. In addition, we compare the numerical results

with the exact solution to explain the rapid convergence of the approximation series as the solution.
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1. INTRODUCTION

This study aims at developing a new technique of ADM for the class of singular boundary

value problems of the form;

(1) y(n+1)+
m
x

y(n)+Ny = f (x),

under the following boundary conditions
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y(0) = a0 ,y′(0) = a1 ,...,y(n−1)(0) = an−1 ,y(r)(b) = an.

Where N is a nonlinear differential operator of order smaller than n, f (x) is known function

and a0,a1, ...,an−1,an,b are constants,

where 0≤ r ≤ n, n≥ 1. Many studies have recently made about singular boundary value prob-

lems because singular boundary value problems occurs repeatedly in different fields of engi-

neering and scientific applications. Moreover, the results of those studies have attracted the

attention of many concerned researchers. The solutions of singular boundary value problems

have been made through the application of various numerical methods by many researchers.

These methods have been studied to address the fundamental difficulty in solving the singu-

lar value problems which is the existence of the singularity at x=0. For instance, Kanth and

Aruna applied a differential transform method [9] and variational iteration method [10] to solve

singular boundary value problems. chang solved types of nonlinear equations with boundary

conditions by applying taylor series [3]. The integral method [4] has been applied to solve

singular two point boundary value problems by El-sayed. In [11] authors used Haar wavelet

method for the Lane– Emden equations. Some authors applied cubic B-spline [8] for solving

non-linear singular boundary value problems. The ADM [1,2] is an analytic approximation

method. in 1980s, George Adomian proposed this method. This technique is powerful and ef-

fective for solving linear and nonlinear equations of different types(ordinary differential equa-

tions, partial differential equation, algebraic equation and integral differential equations. . . ) in

the field of mathematics, physics, biology, chemistry, ect. This method depends on the search

for a solution in the form of a series and on decomposing the nonlinear operator into a series

and each term of this series is a polynomial called Adomian’s polynomials. Generating of Ado-

main polynomials for nonlinear equations relies on the formula which have been proposed by

George Adomain [2]. The ADM was applied to solve singular boundary value problems such

as [13,14]. Hasan Y.Q and Ming L.Z applied a modified of Adomian decomposition method to

solve singular boundary value problems of higher-order, see [6,7]. other successful applications

of this method were given in [5,12]. This article is an attempt to handle singular boundary value



GENERAL SOLUTION FOR SINGULAR EQUATIONS OF (n+1) ORDER 2263

problems of (n+1)-order by using ADM. We therefore introduced a new differential operator to

solve this type of equations.

2. NEW TECHNIQUE OF (ADM)

Problem (1) in the operater form

(2) Ly = f (x)−Ny,

where the differential operator L is defined by

(3) L(.) = x−1 dn−r

dxn−r x1+n−m−r d
dx

xm−n+r dr

dxr (.),

where m≤ (n−r), n≥ 1. The inverse for operator L is L−1 studied in a (n+1) integrals defined

as

(4) L−1(.) =
∫ x

0
· · ·
∫ x

0︸ ︷︷ ︸
r

xn−m−r
∫ x

b
xm−n−1+r

∫ x

0
· · ·
∫ x

0︸ ︷︷ ︸
n−r

x(.)dx . . .dx.

By using L−1to both sides of (2) to obtain

(5) y = γ(x)+L−1 f (x)−L−1(Ny),

such that

Lγ(x) = 0.

The Adomian decomposition method assumes that solution y(x) by an infinite series

(6) y(x) =
∞

∑
n=0

yn(x),

and the nonlinear termNy by an infinite series of polynomials

(7) Ny =
∞

∑
n=0

An,

where the components yn(x) of the solution y(x) will be determined recurrently by algorithm

[15,16], and the An are the Adomian polynomials,

(8) An =
1
n!

dn

dλ n [Z(
n

∑
i=0

λ
iyi)]λ=0, n = 0,1,2,3, ....

Which gives

A0 = Z(y0),
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A1 = Z′(y0)y1,

A2 = Z′(y0)y(2)+
1
2

Z′′(y0)y2
1,

(9) A3 = Z′(yo)y(3)+Z′′(y0)y1y2 +
1
3!

Z′′′(y0)y3
1,

. . .

from (6) , (7) and (5) we get

(10)
∞

∑
n=0

y(n) = γ(x)+L−1 f (x)−L−1
∞

∑
n=0

An.

To determine the components yn(x),we use Adomian decomposition method by using the rela-

tion

y0 = γ(x)+L−1 f (x),

(11) yn+1 =−L−1An, n≥ 0,

therefore

y0 = γ(x)+L−1 f (x),

y1 =−L−1A0,

y2 =−L−1A1,

(12) y3 =−L−1A3,

....

Using the equation (9) and (12) we can determine the components yn(x), and therefore, we can

directly obtain series solution of y(x) in (8).In addition, and for numerical reasons, we can be

the n-term approximate

Ψn =
n−1

∑
n=0

yn(x),

in order to approximate the exact solution.
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3. DISCUSSION OF ADM WITH NUMERICAL EXAMPLES

In this part we will discuss four types of equations and give every type a new differential

operator. Then we will make examples to everyone which contain equations of the third, fourth

and fifth order.

The first type put n = 1, r = 0, in Eq.(1) and Eq.(3) we get the same method in [6].

And when n = 1, r = 1, in (1),(3), we obtain the same method which has been studied in [7].

The second type when n = 2, r = 0,1,2, from Eq.(1) , Eq.(3) . We get

(13) y(3)+
m
x

y(2)+Ny = f (x),

with one of the following conditions

i)y(0) = a0,y′(0) = a1,y(b) = a3. When n=2, r=0,

ii)y(0) = a0,y′(0) = a1,y′(b) = a3. When n=2, r=1,

iii)y(0) = a0,y′(0) = a1,y′′(b) = a3. When n=2, r=2.

Where operators L are gotten as

(14) L(.) = x−1 d2

dx2 x3−m d
dx

xm−2(.),

(15) L(.) = x−1 d
dx

x2−m d
dx

xm−1 d
dx

(.),

(16) L(.) = x(−m) d
dx

x(m) d2

dx2 (.).
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The inverse operators L−1 are respectively

(17) L−1(.) = x2−m
∫ x

b
xm−3

∫ x

0

∫ x

0
x(.)dxdxdx,

(18) L−1(.) =
∫ x

0
x1−m

∫ x

b
xm−2

∫ x

0
x(.)dxdxdx,

(19) L−1(.) =
∫ x

0

∫ x

0
x−m

∫ x

b
xm(.)dxdxdx.

Eq.(13) with conditions (i,ii) have been studied in [6,7] so, we are going to study the equation

with condition (iii) and using a new differential operator(16) and the inverse operator (19).

Example 1. First, we consider the third order boundary value problem:

(20) y
′′′
− 2

x
y
′′
− y− y2 = f (x),

y(0) = 0,y′(0) = 0,y′′(1) = 35.3377,

where

f (x) = ex
(
−6+6x+7x2− ex x6

)
.

We use Taylor series of f(x ) with order 10

f (x) =−6+10x2 +9x3 +
17x4

4
+

41x5

30
− 2x6

3
− 325x7

168
− 5729x8

2880
− 20137x9

15120
− 67181x10

100800
,

for m=2, in the new differential operator (16) and its inverse (19) gives

L(.) = x2 d
dx

x−2 d2

dx2 (.).

So

L−1(.) =
∫ x

0

∫ x

0
x2
∫ x

1
x−2(.)dxdxdx.

In an operator form, Eq.(13) becomes

(21) Ly = g(x)+ y+ y2.
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By using L−1 on both sides of (20) we get

y = 35.3377x4 +L−1g(x)+L−1y+L−1y2.

To find the solution, we use the iterative formula

y0 = 35.3377x4 +L−1g(x),

(22) yn+1 = L−1yn +L−1An, n≥ 0,

where the nonlinear term y2 has Adomian polynomials An as the following

A0 = y2
0,

(23) A1 = 2y0y1,

A2 = 2y2y0 + y2
1,

so, from (22) and (23) we get

y0 = x3 +1.17165x4 +0.5x5 +0.15x6 +0.0337302x7 +0.00610119x8−0.00185185x9

−0.00358245x10−0.00258342x11−0.00126119x12−0.0004747x13 + . . . ,

y1 =−0.188897x4 +0.x5 +0.0166667x6 +0.0092988x7 +0.00223214x8 +0.00319444x9

+0.0044019x10 +0.00308943x11 +0.00139185x12 +0.000473912x13 + . . . ,

y2 = 0.0159126x4−0.00149918x7 +0.x8 +0.0000462963x9−0.000682397x10

−0.000571959x11−0.000144289x12 +3.8358410−6 x13 + . . . ,

the solution in a series form is given by

y(x) = y0 + y1 + y2 = x3 +0.998665x4 +0.5x5 +0.166667x6 +0.0415298x7 +0.00833333x8

+0.00138889x9 +0.000137057x10 + . . . .

observe, we can write the series of true solution y(x) = x3ex is

y(x) = x3 + x4 +0.5x5 +0.166667x6 +0.0416667x7 +0.00833333x8
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+0.00138889x9 +0.000198413x10 + . . .

In table 1, we give the true solutions and the ADM solution in[0,1]

Table 1.Numerical results for Example 1

x True solution ADM solution Absolute Error

0.0 0.000000000 0.00000000 000000000

0.1 0.00110517 0.00110504 1.33483×10−7

0.2 0.00977122 0.00976908 2.13727×10−6

0.3 0.03644618 0.03643534 0.0000108415

0.4 0.09547678 0.09544237 0.0000344025

0.5 0.20609015 0.20600557 0.00008458

0.6 0.39357766 0.39340025 0.000177402

0.7 0.69071717 0.69038295 0.000334221

0.8 1.13947695 1.13889451 0.00058244

0.9 1.79305066 1.79210043 0.00095022

1 2.71828182 2.71684714 0.00143468

In Fig 1, we have plotted ∑
2
0 yi(x), which is similar to the true solution y(x) = x3ex.

——– True ——– ADM

The third type, when n = 3, then r take one of the values 0,1,2,3 yields

y(4)+
m
x

y(3)+Ny = f (x),
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under one of the following boundary conditions

i)y(0) = a0,y′(0) = a1,y′′(0) = a2,y(b) = a4, when n=3, r=0,

ii)y(0) = a0,y′(0) = a1,y′′(0) = a2,y′(b) = a4, when n=3, r=1,

iii)y(0) = a0,y′(0) = a1,y′′(0) = a2,y′′(b) = a4, when n=3, r=2,

iv)y(0) = a0,y′(0) = a1,y′′(0) = a2,y′′′(b) = a4.when n=3, r=3.

The differential operators L are given, respectively as

(24) L(.) = x−1 d3

dx3 x4−m d
dx

xm−3(.),

(25) L(.) = x−1 d2

dx2 x3−m d
dx

xm−2 d
dx

(.),

(26) L(.) = x(−1) d
dx

x2−m d
dx

xm−1 d2

dx2 (.).

(27) L(.) = x−m d
dx

xm d3

dx3 (.).

The inverse operators L−1 are respectively

(28) L−1(.) = x3−m
∫ x

b
xm−4

∫ x

0

∫ x

0

∫ x

0
x(.)dxdxdxdx,

(29) L−1(.) =
∫ x

0
x2−m

∫ x

b
xm−3

∫ x

0

∫ x

0
x(.)dxdxdxdx,

(30) L−1(.) =
∫ x

0

∫ x

0
x1−m

∫ x

b
xm−2

∫ x

0
x(.)dxdxdxdx.

(31) L−1(.) =
∫ x

0

∫ x

0

∫ x

0
x−m

∫ x

b
xm(.)dxdxdxdx.
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Note that, the operators (24), (25) under the conditions (i),(ii) have been studied in [6,7]. So

we will apply the method under the conditions (iii), (iv). as the following example:

Example 2. Next, we examine the boundary value problem of the kind

(32) y(4)− 4
x

y(3) =−8(9+57x4−137x8 +7x12)e−4y,

with one of the following boundary conditions

y(0) = 0,y′(0) = 0,y′′(0) = 0,y′′(1) = 2,

or

y(0) = 0,y′(0) = 0,y′′(0) = 0,y′′′(1) =−8.

To study Eq. (32) with first condition, we substitute m=-4 in (26), (30) to obtain

L(.) = x−1 d
dx

x6 d
dx

x−5 d2

dx2 (.),

and the inverse operator is

L−1(.) =
∫ x

0

∫ x

0
x5
∫ x

1
x−6

∫ x

0
x(.)dxdxdxdx.

In an operator form, Eq. (32) becomes

(33) Ly =−8(9+57x4−137x8 +7x12)e−4y.

By using L−1 on both sides of (33) we get

y =
2

42
x7 +L−1(−8(9+57x4−137x8 +7x12)e−4y).

To find the solution, we use the iterative formula

y0 = 0.047619x7,

(34) yn+1 = L−1(−8(9+57x4−137x8 +7x12))An, n≥ 0,

where the nonlinear term e−4y has An

A0 = e−4y0,
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(35) A1 =−4y1e−4y0,

A2 = 4(−y2 +2y2
1)e
−4y0,

so, from (34) and (35) we have

y1 = x4 +1.00697x7−1.35714x8 +0.0034632x11 +0.166061x12 +0.00397698x15

−0.00185185x16−0.0000242521x18−0.00299223x19−0.0000596833x22 + . . . ,

y2 =−1.24791x7 +0.857143x8 +0.0732345x11 +0.217143x12 +0.0816328x15

−0.225251x16−0.00102569x18−0.0670808x19 +0.0728304x20−0.00248791x22 + . . . ,

thus

y(x) = x4−0.193314x7−0.5x8 +0.0766977x11 +0.383203x12 +0.0856098x15

−0.227103x16−0.00104994x18−0.070073x19 +0.0728304x20−0.00254759x22 + . . . .

for consider Eq. (32) under first condition, we put m=-4 in the new differential operator (27),

and in the inverse operator (31) we get

L(.) = x4 d
dx

x−4 d3

dx3 (.),

and

L−1 =
∫ x

0

∫ x

0

∫ x

0
x4
∫ x

1
6

x−4(.)dxdxdxdx.

In an operator form, Eq.(32) becomes

(36) Ly =−8(9+57x4−137x8 +7x12)e−4y.

By using L−1 on both sides of (36)

y =− 4
105

x7 +L−1(−8(9+57x4−137x8 +7x12)e−4y).

To get the solution we use the iterative formula

y0 =−0.0380952x7,

(37) yn+1 = L−1(−8(9+57x4−137x8 +7x12))An,n≥ 0,
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where the nonlinear term e−4y has are Adomian polynomials An as the following

A0 = e−4y0,

(38) A1 =−4y1e−4y0,

A2 = 4(−y2 +2y2
1)e
−4y0,

so, from (37) and (38) we get

y1 = x4 +1.03365x7−1.35714x8−0.00277056x11 +0.166061x12−0.00318158x15

−0.00185185x16 +0.00239378x19−0.0000501914x23.

y2 =−0.927291x7 +0.857143x8 +0.0751746x11 +0.217143x12 +0.0882998x15

−0.225251x16 +0.000842292x18−0.0619068x19 +0.0728304x20 +0.00207196x22 + . . . ,

. . .

Table 2 shows the Exact solution, the ADM solution and Absolute Error in example (2),

Table 2. Numerical results for Example 2

x EXACT ADM1 Absolute ADM2 Absolute

solution solution Error solution Error

with the with the

first condition second condition

0.0 00000000 00000000 00000000 00000000 0000000

0.1 0.00009999 0.0001 6.19879×10−9 0.00009997 3.4×10−8

0.2 0.00159872 0.00159951 7.93172×10−7 0.00159559 3.1×10−6

0.3 0.00806737 0.00808090 0.00001353 .00801392 0.00005344

0.4 0.0252778 0.0253787 0.000100899 0.0.02487751 0.00040029

0.5 0.06062462 0.0610999 0.00047525 0.05871607 0.00190855

0.6 0.12186358 0.12351336 0.00164977 0.115016 0.0068494

0.7 0.21519202 0.21966408 0.00447206 0.19490591 0.0202861

0.8 0.34330597 0.35254001 0.00923404 0.0002335 0.0527535

0.9 0.50446544 0.51653381 0.01206837 0.0378866 0.125599

1 0.69314718 0.69461426 0.00146709 0.41716996 0.275977
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In Fig 2, we have plotted ∑
3
i=0 yi(x), which is almost equal to the exact solution

y(x) = ln(1+ x4).

——– Exact ——– ADM1 ——–ADM2

The fourth type, when n = 4, r ∈ {0,1,2,3,4} we get

y(5)+ m
x y(4)+Ny = f (x),

by using one of the following boundary value problems

i) when n = 4, r = 0,

y(0) = a0,y′(0) = a1,y′′(0) = a2,y′′′(0) = a3,y(b) = a4,

ii) when n = 4, r = 1,

y(0) = a0,y′(0) = a1,y′′(0) = a2,y′′′(0) = a3,y′(b) = a4,

iii)when n = 4, r = 2,

y(0) = a0,y′(0) = a1,y′′(0) = a2,y′′′(0) = a3,y′′(b) = a4,

iv)when n = 4, r = 3,

y(0) = a0,y′(0) = a1,y′′(0) = a2,y′′′(0) = a3,y′′′(b) = a4,
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v) when n = 4, r = 4,

y(0) = a0,y′(0) = a1,y′′(0) = a2,y′′′(0) = a3,y(4)(b) = a4.

The differential operators respectively are

(39) L(.) = x−1 d4

dx4 x5−m d
dx

xm−4(.),

(40) L(.) = x−1 d3

dx3 x4−m d
dx

xm−3 d
dx

(.),

(41) L(.) = x−1 d2

dx2 x3−m d
dx

xm−2 d2

dx2 (.),

(42) L(.) = x−1 d
dx

x2−m d
dx

xm−1 d3

dx3 (.),

(43) L(.) = x−m d
dx

xm d4

dx4 (.).,

And the inverse operators L−1 respectively as below

(44) L−1(.) = x4−m
∫ x

b
xm−5

∫ x

0

∫ x

0

∫ x

0

∫ x

0
x(.)dxdxdxdxdx,

(45) L−1(.) =
∫ x

0
x3−m

∫ x

b
xm−4

∫ x

0

∫ x

0

∫ x

0
x(.)dxdxdxdxdx,

(46) L−1(.) =
∫ x

0

∫ x

0
x2−m

∫ x

b
xm−3

∫ x

0

∫ x

0
x(.)dxdxdxdxdx.

(47) L−1(.) =
∫ x

0

∫ x

0
x
∫ x

0
x1−m

∫ x

b
xm−2

∫ x

0
x(.)dxdxdxdxdx.

(48) L−1(.) =
∫ x

0

∫ x

0

∫ x

0

∫ x

0
x−m

∫ x

b
xm(.)dxdxdxdxdx.

In the following example, the fifth order boundary value problem study under term (iii), (iv),

(v) only. The another conditions have been studied in [6,7] .
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Example 3. Let us consider the fifth order boundary value problem

(49) y(5)− 3
x

y(4) =−12(192+80x2−220x4 +7x6)e4y

x(4+ x2)
,

under the boundary conditions

y(0) = log(1
4),y

′(0) = 0,y′′(0) =−1
2 ,y
′′′(0) = 0,y′′(2) = 0,

or

y(0) = log(1
4),y

′(0) = 0,y′′(0) = −1
2 ,y′′′(0) = 0,y′′′(2) = 1

8 ,

or

y(0) = log(1
4)y
′(0) = 0,y′′(0) =−1

2 ,y
′′′(0) = 0,y′′′′(2) =− 3

16 ,

with exact solution y = log( 1
4+x2 ).

To study Eq.(49) with first condition, we put m=-3 in the new differential operator (41), and in

the inverse operator (46) we get

L(.) = x−1 d2

dx2 x6 d
dx

x−5 d2

dx2 (.),

L−1(.) =
∫ x

0

∫ x

0
x5
∫ x

2
x−6

∫ x

0

∫ x

0
x(.)dxdxdxdxdx.

Eq.(49) can be written as operator form

(50) Ly =−12(192+80x2−220x4 +7x6)

x(4+ x2)
e4y.

Taking L−1 on both sides of (50) and using the boundary condition gives

y(x) =−1.38629−0.25x2 +0.000372024x7−12L−1(
192+80x2−220x4 +7x6

x(4+ x2)
e4y).

To get tho solution we use the iterative formula

y0 =−1.38629−0.25x2 +0.000372024x7.

(51) yn+1 =−12L−1 (192+80x2−220x4 +7x6)

x(4+ x2)
An, n≥ 0,

where the nonlinear term e4y has Adomian polynomials An as the following

A0 = e4y0,
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(52) A1 = 4y1e4y0,

A2 = 4y2e4y0 +8e4y0y2
1,

. . .

So, by substituting (52) into (51)and it must observe that, to compute y1, we use the Taylor

series for (192+80x2−220x4+7x6

x(4+x2)
) with order 10.

In this case we obtain

y0 =−1.38629−0.25x2 +0.000372024x7,

y1 = 0.03125x4−0.00520833x6−0.00053857x7 +0.00114397x8−0.000213914x10,

y2 = 0.00022131x7−0.000167411x8 +0.0000186012x10 + . . .

y3 = 4.61597 ×10−6x7−1.15597 ×10−7 x11−2.70563 ×10−7 x12 + . . . ,

this means that the solution in a series form is given by

y(x) = y0 + y1 + y2 + y3 =−1.38629−0.25x2 +0.03125x4

−0.00520833x6 +0.0000593791x7 +0.000976563x8

−0.000195313x10− . . . .

The series of exact solution y(x) = log( 1
4+x2 ) is as the following

y(x) =−1.38629−0.25x2 +0.03125x4−0.00520833x6 +0.000976563x8

−0.000195313x10 + . . .

To study Eq(49) with second condition, we substitute m=-4 in (42), (47) to get the new differ-

ential operator

L(.) = x−1 d
dx

x5 d
dx

x−4 d3

dx3 (.),

and the inverse operator

L−1 =
∫ x

0

∫ x

0
x
∫ x

0
x4
∫ x

2
x−5

∫ x

0
x(.)dxdxdxdxdx.

By using operator form, Eq.(49) is

(53) Ly =−12(192+80x2−220x4 +7x6)

x(4+ x2)
e4y.
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Taking L−1 on (53) and using the condition gives

y(x) =−1.1.38629−0.25x2 +0.0000372024x7−12L−1(
192+80x2−220x4 +7x6

x(4+ x2)
e4y).

To determine the components yn(x) we use the iterative formula

y0 =−1.1.38629−0.25x2 +0.0000372024x7.

(54) yn+1 =−12L−1 (192+80x2−220x4 +7x6)

x(4+ x2)
An, n≥ 0,

where the nonlinear term e4y has An as the following

A0 = e4y0,

(55) A1 = 4y1e4y0,

A2 = 4y2e4y0 +
16
2

e4y0y2
1,

. . .

So, from (54) and (55) we get

y0 =−1.38629−0.25x2−0.0000279018x7

y1 = 0.03125x4−0.00520833x6−0.000163265x7 +0.00114397x8

−0.000213914x10−1.0568910−8 x11 +0.0000377473x12 + . . . ,

y2 = 0.000233239x7−0.000167411x8 +0.0000186012x10 +4.63822 ×10−8 x11

+3.2134 ×10−6 x12 + . . . ,

the solution in a series form is given by

y(x) =−1.38629−0.25x2 +0.03125x4−0.00520833x6−0.00110687x7

+0.000976563x8−0.000195313x10−0.000016927x11 +0.000040986x12 + . . .

To study Eq. (49) with the third condition, we put m=-3 in the new differential operator (43),

and in the inverse operator (48) to get

L(.) = x3 d
dx

x−3 d4

dx4 (.),
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and

L−1(.) =
∫ x

0

∫ x

0

∫ x

0

∫ x

0
x3
∫ x

2
x−3x(.)dxdxdxdxdx.

In an operator form, Eq.(47) becomes

(56) Ly =−12(192+80x2−220x4 +7x6)

x(4+ x2)
e4y.

Taking L−1 on (56) and using the boundary condition gives

y =−1.38629−0.25x2−0.0000279018x7−12L−1 192+80x2−220x4 +7x6

x(4+ x2)
e4y.

To determine the components yn(x), we use the iterative formula

y0 =−1.38629−0.25x2−0.0000279018x7.

(57) yn+1 =−12L−1 (192+80x2−220x4 +7x6)

x(4+ x2)
An,n≥ 0,

where An are Adomian polynomials of nonlinear term e4y,as below,

A0 = e4y0,

(58) A1 = 4y1e4y0,

A2 = 4y2e4y0 +8e4y0y2
1,

. . .

So, from (57) and (58) we have

y0 =−1.38629−0.25x2−0.0000279018x7,

y1 = 0.03125x4−0.00520833x6−0.000107195x7 +0.00114397x8−0.000213914x10

+7.92664 ×10−9 x11 + . . . ,

y2 = 0.000162925x7−0.000167411x8 +0.0000186012x10 +3.0453 ×10−8 x11

+3.2134 ×10−6 x12−7.8084710−9 x13−2.57975 ×10−6 x14−3.0248 ×10−9 x15 + . . . ,
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y3 = −0.0000442476x7−4.62856 ×10−8 x11−2.70563 ×10−7 x12 +1.18681 ×10−8 x13

+1.13487 ×10−7 x14 +5.23813 ×10−9 x15 + . . . ,

this means that the solution in a series form is given by

y(x) = y0 + y1 + y2 + y3 =−1.38629−0.25x2 +0.03125x4−0.00520833x6

−0.0000164186x7 +0.000976563x8−0.000195313x10− . . . ,

the series of exact solution y(x) = log( 1
4+x2 ) is as follows

y(x) =−1.38629−0.25x2 +0.03125x4−0.00520833x6 +0.000976563x8

−0.000195313x10 + . . . .

Noted that, when we continue finding the approximate solution for the above problem by using

the ADM method, we easily get the exact solution.

In Fig 3, we have plotted ∑
3
i=0 yi(x), which is almost equal to the exact solution y = log( 1

4+x2 ).

——– Exact ——– ADM1 ——– ADM2 ——–ADM3

4. CONCLUSION

In this paper, a reliable modification of ADM has been proposed for solving (n+1)-order of

non-linear singular boundary value problems. Throughout all the illustrative examples given

in this paper, it can be concluded that the proposed modification of (ADM) for solving singu-

lar boundary value problems of (n+1) order gives more reliable, and exact solutions. We have

presented a generalization by using such new technique of ADM because it becomes so clear
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that the solutions approach to the exact solution as in example (1,2) and sometimes the solu-

tions equal the exact solution as example (3). This study has generally arrived at a proposed

generalization which shows the suggested method is reliable and efficient. The graphics as well

as the results obtained in this study validate performance, consistency, and rapid convergence

of the technique and we see that the ADM is a powerful tool for linear and nonlinear ordinary

differential equations.
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