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Abstract. Concerning Small functions and weighted sharing we study the uniqueness of L-function and its certain

differential monomial. Our results in this paper improve and extend some earlier results.
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1. INTRODUCTION

For a long time a lot of attention have been given by many scholars on the Riemann hypoth-

esis. The Riemann zeta function is defined by the following infinite series ζ (s) = ∑
∞
m=1 1/ms =

∏p (1−1/ps)−1 where s = σ + it, σ > 1 and p denotes prime number and the product is taken

over all prime numbers. Throughout the paper an L-function L means an L-function L in the

Selberg class. Such an L-function is defined by L(s) = ∑
∞
m=1 a(m)/ms satisfying the following

hypothesis

(i) Ramanujan hypothesis: For every ε > 0, a(m)� mε .
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(ii) Analytic continuation: There exists a nonnegative integer l such that (s− 1)lL(s) is an

entire function of finite order.

(iii) Every L-function satisfies the functional equation

λL(s) = ωλL(1− s),

where

λL(s) = L(s)Qs
k

∏
i=1

Γ(µis+νi)

with positive real numbers Q, µi and complex numbers νi, ω with Reνi ≥ 0 and | ω |= 1.

(iv) Euler product: L(s) satisfies L(S) = ∏p Lp(s), where Lp(s) = exp(∑∞
m=1 b(pm)/pms) with

coefficients b(pm) satisfying b(pm)� pmθ for some θ < 1/2 and p denotes prime number.

Let F and G be two nonconstant meromorphic functions in the open complex plane C. We

denote by S(r,F) any function satisfying S(r,F) = o(T (r,F)) as r −→ ∞ , outside a possible

exceptional set of finite linear measure. A meromorphic function ρ is said to be a small

function of F if T (r,ρ) = S(r,F).

If F − z0 and G− z0 have the same set of zeros with the same multiplicities, we say that F

and G share z0 CM (counting multiplicities) and we say that F and G share z0 IM (ignoring

multiplicities) if we do not consider the multiplicities where z0 ∈ C∪{∞}.

In this paper we prove our results using Nevanlinna’s value distribution theory. Here we use

the standard notations and definitions of the value distribution theory [3].

2. PRELIMINARIES

Definition 2.1. [6] Let ξ be a meromorphic function defined in the complex plane. Let m be

a positive integer and c ∈ C∪{∞}. By N(r,c;ξ |≤ m) we denote the counting function of the

c points of ξ with multiplicity ≤ k and by N(r,c;ξ |≤ m) the corresponding one for which we

do not count the multiplicity. Also by N(r,c;ξ |≥ m) we denote the counting function of the c

points of ξ with multiplicity ≥ m and by N(r,c;ξ |≥ m) the corresponding one for which we do

not count the multiplicity. We define
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Nm(r,c;ξ ) = N(r,c;ξ )+N(r,c;ξ |≥ 2)+ · · ·+N(r,c;ξ |≥ m).

Definition 2.2. [6] Let ξ be a meromorphic function defined in the complex plane and ρ be

a small function of ξ . Then we denote by N(r,ρ;ξ |≤ m), N(r,ρ;ξ |≤ m), N(r,ρ;ξ |≥ m),

N(r,ρ;ξ |≥ m), Nm(r,ρ;ξ ) etc. the counting functions N(r,0;ξ −ρ |≤ m), N(r,0;ξ −ρ |≤ m),

N(r,0;ξ −ρ |≥ m), N(r,0;ξ −ρ |≥ m), Nm(r,0;ξ −ρ) etc. respectively.

In 2007 Steuding [9] proved the following uniqueness theorem.

Theorem A. [9] Let L1 and L2 be two L-functions with a(1) = 1 and z0 6= ∞ be a complex

number. If L1 and L2 share z0 CM, then L1 ≡ L2.

Remark 2.1. [4] In 2016 Hu and Li taking L1 = 1+2/4s and L2 = 1+3/9s proved that Theorem

A is not true for z0 = 1.

In 2010 Li [7] proved the following theorem.

Theorem B. [7] If a meromorphic function F having finitely many poles and a nonconstant

L-function L share α CM and β IM then L≡ F, where α and β are two distinct finite values.

In 2017, considering uniqueness problem of L-functions, Liu, Li and Yi [8] proved the fol-

lowing theorem.

Theorem C. [8] Let k≥ 1 and j≥ 1 be integers such that k > 3 j+6. Also let L be an L-function

and F be a nonconstant meromorphic function. If {Fk}( j) and {Lk}( j) share 1 CM then F ≡ dL

for some constant d satisfying dk = 1.

Definition 2.3. [5] Let ξ be a meromorphic function defined in the complex plane and m be an

integer (≥ 0) or infinity . For c ∈ C∪{∞} we denote by Em)(c;ξ ) the set of all zeros of ξ − c

with multiplicities not exceeding m, where a zero is counted according to its multiplicity. Also

we denote by Em)(c;ξ ) the set of all zeros of ξ − c with multiplicities not exceeding m, where a

zero is counted ignoring multiplicity.
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Definition 2.4. [5] Let ξ and χ be two meromorphic functions defined in the complex plane

and m be an integer (≥ 0) or infinity . For c ∈ C∪{∞} we denote by Em(c;ξ ) the set of all

zeros of f −c where a zero of multiplicity k is counted k times if k≤m and m+1 times if k > m.

If Em(c;ξ ) = Em(c; χ), we say that ξ , χ share the value c with weight m.

The definition implies that if ξ , χ share a value c with weight m then zo is a c-point of ξ with

multiplicity k(≤m) if and only if it is a c-point of χ with multiplicity k(≤m) and zo is a c-point

of ξ with multiplicity k(> m) if and only if it is a c-point of χ with multiplicity n(> m) where k

is not necessarily equal to n.

We write ξ , χ share (c,m) to mean that ξ , χ share the value c with weight m. Clearly if ξ ,

χ share (c,m) then ξ , χ share (c, j) for all integers j,0≤ j < m. Also we note that ξ , χ share

a value c IM or CM if and only if ξ , χ share (c,0) or (c,∞) respectively.

Definition 2.5. Let ξ be a meromorphic function defined in the complex plane and ρ be a small

function of ξ . Then we denote by Em)(ρ;ξ ), Em)(ρ;ξ ) and Em(ρ;ξ ) the sets Em)(0;ξ − ρ),

Em)(0;ξ −ρ) and Em(0;ξ −ρ) respectively.

Using weighted sharing in 2015, Wu and Hu [10] proved the following result.

Theorem D. [10] Let L and H be two L-functions, and let α,β ∈ C be two distinct values.

Take two positive integers m1, m2 with m1m2 > 1. If Em1(α,L) = Em1(α,H), and Em2(α,L) =

Em2(α,H), then L≡ H.

Considering weighted sharing in 2018 Hao and Chen [2] proved the following theorem.

Theorem E. [2] Let L be an L-function and F be a meromorphic function defined in the complex

plane C with finitely many poles. Let α1,α2 ∈C be distinct and m1,m2 be positive integers such

that m1m2 > 1. If Em j(α j,F) = Em j(α j,L), j = 1,2, then L≡ F.

3. MAIN RESULTS

In this paper, considering small function and weighted sharing we prove the following

uniqueness theorem.
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Theorem 3.1. Let L be a nonconstant L-function and ρ be a small function of L such that

ρ 6≡ 0,∞. If E4)(ρ;L) = E4)(ρ;(Lm)(k)), E2)(ρ;L) = E2)(ρ;(Lm)(k)) and

(3.1) 2N2+k(r,0;Lm)≤ (σ +o(1))T (r,L),

where m≥ 1, k ≥ 1 are integers and 0 < σ < 1, then L≡ (Lm)(k).

4. LEMMAS

In this section, we present some results which we employ in the proof of our main results.

Let Φ and Ψ be two nonconstant meromorphic functions defined in C. Henceforth we shall

denote by Ω the following function

(4.1) Ω = (
Φ′′

Φ′
− 2Φ′

Φ−1
)− (

Ψ′′

Ψ′
− 2Ψ′

Ψ−1
).

Lemma 4.1. [1] If E4)(1;Φ) = E4)(1;Ψ), E2)(1;Φ) = E2)(1;Ψ) and Ω 6≡ 0, then

T (r,Φ)+T (r,Ψ)≤ 2{N2(r,0;Φ)+N2(r,∞;Φ)+N2(r,0;Ψ)+N2(r,∞;Ψ)}+S(r,Φ)+S(r,Ψ).

Lemma 4.2. {Theorem 2.5 [3]} Let Φ be a meromorphic function. Then

T (r,Φ)≤ N(r,∞;Φ)+N(r,a;Φ)+N(r,b;Φ)+S(r,Φ),

where a and b are small functions of Φ.

Lemma 4.3. [12] Let Φ be a nonconstant meromorphic function and k, p are two positive

integers. Then

Np(r,0;Φ
(k))≤ T (r,Φ(k))−T (r,Φ)+Np+k(r,0;Φ)+S(r,Φ)

and

Np(r,0;Φ
(k))≤ Np+k(r,0;Φ)+ kN(r,∞;Φ)+S(r,Φ)

Lemma 4.4. [11] Let Φ be a nonconstant meromorphic function and n be a positive integer.

Let P(Φ) = anΦn + an−1Φn−1 + .........+ a1Φ where ai for i = 1,2, ....,n are meromorphic

functions such that T (r,ai) = S(r,Φ) for i = 1,2, ...,n and an 6≡ 0. Then

T (r,P(Φ)) = nT (r,Φ)+S(r,Φ).
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Lemma 4.5. [9] Let L be an L-function with degree d. Then

T (r,L) =
d
π

r logr+O(r).

Lemma 4.6. Let L be an L-function. Then N(r,∞;L) = S(r,L).

Proof. Clearly L has at most one pole in the complex plane. Hence N(r,∞;L) =O(logr). Hence

by lemma 4.5 we have N(r,∞;L) = S(r,L). This completes the proof of the lemma. �

5. PROOF OF THE THEOREM 3.1

Proof. Let Φ = L
ρ

and Ψ = (Lm)(k)

ρ
.

Clearly E4)(1;Φ) = E4)(1;Ψ), E2)(1;Φ) = E2)(1;Ψ) except possibly for the zeros and poles

of ρ = ρ(z), since E4)(ρ;L) = E4)(ρ;(Lm)(k)), E2)(ρ;L) = E2)(ρ;(Lm)(k)). Now we have to

consider the following two cases.

CASE 1. Let Ω≡ 0.

Hence

(5.1) (
Φ′′

Φ′
− 2Φ′

Φ−1
)− (

Ψ′′

Ψ′
− 2Ψ′

Ψ−1
)≡ 0.

Integrating from (5.1) we get

(5.2)
1

Φ−1
≡ A

Ψ−1
+B,

where A and B are constants and A 6= 0.

From (5.2) it is clear that Φ and Ψ share 1 CM. We now claim that B = 0.

If possible let B 6= 0. Then from (5.2) we get

(5.3)
1

Φ−1
=

B(Ψ−1+A/B)
Ψ−1

.

Clearly from (5.3) we have

(5.4) N(r,0;Ψ−1+A/B) = N(r,∞;Φ) = S(r,L)
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If A 6= B, then by (5.4), lemma 4.2 and lemma 4.6 we have

T (r,Ψ) ≤ N(r,∞;Ψ)+N(r,0;Ψ)+N(r,0;Ψ−1+A/B)+S(r,L)

≤ N(r,0;Ψ)+S(r,L)

≤ T (r,Ψ)+S(r,L).(5.5)

Hence by lemma 4.3, lemma 4.6 and (5.6) we have

T (r,Ψ) = N(r,0;Ψ)+S(r,L)

= N(r,0;(Lm)(k))+S(r,L)

= N1(r,0;(Lm)(k))+S(r,L)

≤ T (r,(Lm)(k))−T (r,Lm)+N1+k(r,0;Lm)+S(r,L).

So mT (r,L)≤ N1+k(r,0;Lm)+S(r,L), which contradicts (3.1).

If A = B, then from (5.2) we get − ρ2

Lm(BL−Bρ−ρ) ≡
(Lm)(k)

Lm .

So by (5.2), lemma 4.4 and lemma 4.6 we get

(m+1)T (r,L) = T (r,
(Lm)(k)

Lm )+S(r,L)

≤ N(r,∞;
(Lm)(k)

Lm )+S(r,L)

≤ kN(r,∞;L)+mN(r,0;L)+S(r,L)

≤ mT (r,L)+S(r,L),

which is impossible. Hence B = 0 and so from (5.2) we get

(5.6)
Ψ−1
Φ−1

≡ A.

If A 6= 1, then from (5.6) we get

(5.7) N(r,0;Ψ+A−1) = N(r,0;Φ)

Now by lemma 4.2, lemma 4.3, lemma 4.6 and (5.7) we get

T (r,Ψ)≤ N(r,0;Ψ)+N(r,∞;Ψ)+N(r,0;Ψ+A−1)+S(r,Ψ)
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and so

T (r,(Lm)(k)) ≤ N(r,∞;L)+N(r,0;(Lm)(k))+N(r,0;L)+S(r,L)

≤ T (r,(Lm)(k))−T (r,Lm)+Nk+1(r,0;Lm)+N(r,0;L)+S(r,L)

Hence

mT (r,L)≤ 2Nk+2(r,0;Lm)+S(r,L),

which contradicts (3.1). Therefore A = 1. Hence from (5.6) we get L≡ (Lm)(k).

CASE 2. Let Ω 6≡ 0.

Since E4)(1;Φ) = E4)(1;Ψ), E2)(1;Φ) = E2)(1;Ψ), by lemma 4.1 we get

T (r,Φ)+T (r,Ψ)≤ 2{N2(r,0;Φ)+N2(r,∞;Φ)+N2(r,0;Ψ)+N2(r,∞;Ψ)}+S(r,Φ)+S(r,Ψ)

Using Lemma 4.3 and lemma 4.6 we have

T (r,L)+T (r,(Lm)(k)) ≤ 2{N2(r,0;L)+N2(r,∞;L)+N2(r,0;(Lm)(k))

+ N2(r,∞;(Lm)(k))}+S(r,L)+S(r,(Lm)(k))

≤ 2N2(r,0;L)+N2(r,0;(Lm)(k))+N2(r,0;(Lm)(k))+S(r,L)

≤ 2N2(r,0;L)+T (r,(Lm)(k))−T (r,Lm)+N2+k(r,0;Lm)

+ N2+k(r,0;Lm)+ kN(r,∞;Lm)+S(r,L)

≤ 2N2(r,0;L)+T (r,(Lm)(k))−mT (r,L)

+ 2N2+k(r,0;Lm)+S(r,L)

≤ T (r,(Lm)(k))−mT (r,L)

+ 4N2+k(r,0;Lm)+S(r,L)

That is

(m+1)T (r,L)≤ 4N2+k(r,0;Lm)+S(r,L),

which contradicts (3.1).

This completes the proof of the theorem. �
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