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Abstract: The Glycolysis model has been solved numerically in one dimension by using two finite
differences methods: explicit and Crank-Nicolson method and we were found that the explicit method
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conditionally stable while Crank-Nicolson method is unconditionally stable.
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1. Introduction

Chemical reactions are modeled by non-linear partial differential equations
(PDEs) exhibiting travelling wave solutions. These oscillations occur due to feedback
in the system either chemical feedback (such as autocatalysis) or temperature
feedback due to a non-isothermal reaction.

Reaction-diffusion (RD) systems arise frequently in the study of chemical and
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biological phenomena and are naturally modeled by parabolic partial differential
equations (PDEs). The dynamics of RD systems has been the subject of intense
research activity over the past decades. The reason is that RD system exhibit very rich
dynamic behavior including periodic and quasi-periodic solutions and chaos(see, for
example [8]).

Mathematical Model:

A general class of nonlinear-diffusion system is in the form

Zt_UZdlAu +aqu+byv+ f(u,v)+0y(x)

%:dzAv+a2u+b2v— fu,v)+9a(x),

with homogenous Dirchlet or Neumann boundary condition on a bounded domain €,
with locally Lipschitz continuous boundary. It is well known that reaction and
diffusion of chemical or biochemical species can produce a variety of spatial patterns.
This class of reaction diffusion systems includes some significant pattern formation
equations arising from the modeling of kinetics of chemical or biochemical reactions
and from the biological pattern formation theory.

In this group, the following four systems are typically important and serve as
mathematical models in physical chemistry and in biology:

Brusselator model:
8 =—(b+1),l, =0, ap=b, b, =0, f :uzv, g =4, g, =0,

where a and b are positive constants.

Gray-Scott model:
a =—(f +K), by =0, a,=0,b, =—F, f =u?v, g; =0, g, =F,

where F and K are positive constants.

Glycolysis model:
a=-Lb =K, a,=0b=-FK f=u,g=p0,=0

where K, p and & are positive constants.
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Schnackenberg model:

& =—K,b=a,=b,=0, f =u?y, 0;=4a, g, =b,
where K, aand b are positive constants.

Then one obtains the following system of two nonlinearly coupled reaction-diffusion

equations (the Glycolysis model),

%:dlAu—u+Kv+u2v+p, (t,x) € (0,00)x Q,

1)

%:dzAv—Kv—u2v+6, (t,x) € (0,0)xQ,

2 u(t,x) =v(t,x)=0, t>0, X e oQ
u(0,x) =ug(x), v(0,x) =Vvp(x), xeQ

where p, K and & are positive constants [9].

2. Derivation of explicit method for Glycolysis model

Assume that the rectangle R={(xt):0<x<a, 0<t<b}is subdivided into
n-1 by m-1 rectangle with sides Ax=h and At=k , as shown in Fig. (1). Start at

the bottom row, where  t =1, = O, and the solutionis  u(x,,t) = f(x,).
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Fig. (1) The grid
A method for computing the approximations to U(X,t) at grid points in successive
rows {U(x,,t,): p=12,..,n},for q=23,...,m. The difference formulas used

for approximation u; (x,t),u, (x,t) and uy, (x,t) are

+0(k),

_u(x,t+k)—u(xt)
)  uwxt= ”

(4) Uy (xt)=

u(x+h,t)—u(xt) +o(h)
h ,
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u(x—h,t) —2u(x,t) +u(x+h,t)

2 +0(h?).

(5) Uxx (X,t) =

The grid spacing is uniform in every row: X, =X,+ h and
(X, =X, —h), and it is uniform in every column: t,,, =t, +k and (t,, =t, —k).

Next, we drop the terms O(k), O(hyand O(h?) [4], and use the approximation Upq

for u(x,,t,)inequations (3) and (5), and substituted into equation (1) to obtain

Up.ar1 ~Upa _ 4 Yp+ig ~2pq+Upag

2
K 1 h2 Up,q +KVpg+UpgVpg +p:

Vpart ~Vpaq _ d, Vp+1.a ~2Vp.q tVp-iq
k h?

dik )
Up,q+1 :h_z( Up+1,g =2Upq +Up-1q) = KUp g +Kkvp g +kup qVp g +Up g + 0K,

2
- Kvp‘q —Up.qVp,q +9,

d2k 2
Vp,gl = H2 (Vps1,g =2Vp,q +Vp-1q) — Kkvp g —Kup qVp g +KS+Vp g,

dik d,k
w7

Let =r, and -4 =r, ,then
he ! he ?

_ o 2
Upgsl = (U p+lq +up_1’q) +(1-2 k)up’q + Kkvonq +ku 0.qVp.q + pk,

_ o 2
vpyqﬂ—rz(vpﬂ’q+vp,1yq)+(1 2r, Kk)vpyq kup,qvpyq+k§,

(6)

the result is the explicit forward difference equation to the Glycolysis model .

3. Derivation of implicit Crank-Nicholson method for Glycolysis

model
This method was invented by John Crank and Phyllis Nicholson, in (1947),

and is based on numerical approximations for solutions, they replace u,, by the

mean of its finite difference representation of the ()" and (q+1)" time rows [7]

Up g1 =M(Upi1q—2Upq+Uptq +Upitgrr —2Up,qe1+Up-1,q+1) —KUp g +
Kkvpyq +kuf,,qvpyq +kp,

Vpgel =P (vloJrlyq —2vp,q +Vp_1q +Vpslqe — 2Vp,q+1 +vp_1’q+1) + Kkvplq +
5k—ku%lqvp1q.

Rearranging the last two equations give
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(@+2n)up 11— Upsagen +Upa,g40) =R Upgq +Upsag) —A-2n—K)up g +Kkvy 4
(1) {+kud qvpq +kp,

A+20)Vp g1~ (Vps1,g+1 +Vp1,g+41) =2 (Vp_1q TVpi1,q) — A+ Kk +21)v, —kuf,‘qvp‘q +5Kk.

The system of equations (7) represents the implicit difference approximation for

Glycolysis model, where the left hand side of the system contains three unknown
values, while the right hand side contains three known values for p=2,3,...,n-1.

Hence the first equations in (7) form a tridiagonal linear system in the form
(8) AX =B.

The boundary conditions are used in the first and last equation (i.e. u; 4 =u, =0 and
Up g1 =Ungs =0 respectively). The equation (7) is especially pleasing to view in their

tri-diagonal matrix form

9 AXi=B,
f@-2¢) -n 0 o 0 . . . 0 ] U2,0+1
- (1-2%) -R 0 000 0 0 U3,g+1
0 - (@-2¢) - 0 0 0 O 0 Ug, g1
0 0 -h (1_2'1) -h u5,q+1
. 0 0 -R .
where A=| . : 0 o ... Xy =
0 0
‘ ' ' ‘ Un-3,g+1
0 0 0 0 0 - (1-2n) -n u
n-2,q+1
0 0 0 0 00 0 -r (1-2q)
N - | Un-1,g+1 |

r1U3Yq — (1— k — 2r1)U2,q —+ KkVZ’q —+ kuzzquZ’q —+ kp
rl(u4’q + uzyq) —(k+ 2r1)u3’q + Kkv3’q + ku%yqv&q +kpo

rl(u5’q + u3,q) —(k+ 2r1)u4’q + Kkv4’q + kuiqv‘l’q +kp

2
_rl(un’q +Un_2q )—(k + 2r1)un,1’q —+ Kkvn,l,q —+ ku,Fl’qvn,l’q —+ kp_

Also we can similarly solve the second equation of (7).

(10) A X, =By,
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(1-2r) - 0 0 0
o, (@-2n) - O 0 0 0 0 0 Magn ]
0 o, (@-2,) -5 0 0 0 O 0 Vagut
0 0 -, (1-2rp) -n Vo qe1
. 0 0 - V5,q+1
where A, =| . : 0 0 :
0 0 Xy =
0 0 0 0 0 0 - (1-2r) -n Yn-aa11
0 0 0 0 0 0 0 -5 (-2n) Yn-2411
- - | Yn-1,9+1 |

NV3,q — (KK +25)v, g — kuzzyquyq +0k
r, (Vz’q +V4’q) - (Kk + 2r2)V3’q - kuzs,qV&q + 6k

I (Vs,q +V3,q) — (KK+21p)vy o — ku24,qv4'q + 0k

2
2 (Vh—2,q +Vn-4,q) + (1= 2)Vn_3q —KUf_3 qVn-3,q T KbVh_3q

2
b (Vn—l,q + Vn—3,q) +(1- 2r2)Vn—2,q - kUn—z,an—z,q + I(an—z,q

Vn_2,q — (Kk+2r)vy_4 4 —ku2,1_1’qvn_1’q + 0k |
When the Crank-Nicholson method is implemented with a computer, the linear
system AX=B can be solved by either direct methods or by iterations method.

In this study we use the direct methods (Gaussian Elimination Method) to solve the
linear system in equation (7). The numerical stability of the numerical methods is
studying the errors introduced by the truncation of the series which are used to
represent the derivatives in the process of replacing the differential equations by finite

difference equation and the growth of these errors and finding the conditions for

which the errors will be decay from one time step to the next [6].

4. Numerical stability of explicit method

The numerical stability of the numerical methods is studying the errors
introduced by the truncation of the series which are used to represent the derivatives
in the process of replacing the differential equations by finite difference equation and
the growth of these errors and finding the conditions for which the errors will be
decay from one time step to the next [5].

The Von Neumann analysis is the most commonly used method of determining
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stability criteria as it is generally the easiest to apply, the most straight-forward and
most dependable. This method developed by Von Neumann during World War 11, was

first discussed in detail by O’Brien, Hyman and Kaplan in a paper published in 1951
[5].

The general form of this method is to substitute the solution in finite difference
method at the time t by w(t)e'*, when >0 and i=+/—1 [5]. To apply the Von
Neumann method, it will take the following form

Up,get =M (Ups1q +Up-1,q) +@-21—K)up 4
Vp,ga =12 (vp+11q +vp_1yq)+ 1-2r, - Kk)vp,q,

where rlz%k, rzz% , Ax=h and Ay=kfor the first equation of the system,

neglecting for some values of K, pthe terms Kkv, and p linearizing the system,

the non linear terms can be neglected [3]. So

p(t+ADe'™ = ()"0 4y (1)) 1 (120 k) (t)e'.
Dividing both sides by €', to obtain
w(t+A) = g [e +e Ny (t) + (120 — Ky (D).

For some values of  , we can assume that sin?(azAx/2) is unity [3], and

pt+a) _

It is stable if ‘M‘ <1 so
w(t)

|@-4r —k)| <1, which implies -1<(@-4r-k)<L1.

Case 1: _1S(1_4"l_k):>4r1£2—k:>r132;k or
Case 2: 1—4r1—k£1:>r12_71(,

The equation is stable under the conditions rls% and we will neglect rlz}f

because r is positive.

And for the second equation

Vp,get =2 (Vpi1q +Vp1q) + A=2r —KK)vp 4.
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To study the stability of the second equation we let v, , = #()e'”* so the equation will

P,
be in the form

Bt + AP = n[g(t)e PO 4 g(t)e! P14 (1-2r, — KK)g(t)e'PX.

Dividing both sides of the equation by ¢(t)e'”* to obtain

% =T, (2cos(pAx)) +(1—-2r, —KKk)=2r 2(1—25in2(,b’Ax/2)) +(1-2r, —KK)
=1-4r, - Kk =¢&.
Itis stable if |&<1, or % <1 =[1-4r,-KK|<1,

[1—4r, —KK| <1 = -1< (1-4r, —KK) <1,

-1<(1-4r, —KK) = 4r, <2-Kk =1, < 2-Kk.

or (1—4r2Kk)S124r2 Z—Kk:rz Z%TK

Finally the system is conditionally stable under the conditions

Ky <27k ang Kk, 2-Kk

<K<
4 4 4 27 4

5. Numerical stability of implicit (Crank-Nicolson) method

We use Crank-Nicolson finite difference in equation (1) to obtain

u -u d
Patl —"pg _ & _ _ _
” = [Up1,q—2Upq+Upirq +Up-1,g+1—2Up g1 TUpirgal —Up g+ KVp g + o

Substituting u, , by w(t)e”* in the above equation, yields

w(t+At)e” —y (t)e'”
k

) 2%[1//(09‘7(’(‘“) =2y ey e 1y (e At)el O
2y (t+ A" +y(t+ At Ay (t)e .
Neglecting for some values of k, p and linearizing the nonlinear term can be

neglected.

Dividing both sides of the equation by €' to obtain

dikp(t+AY)

> [e77% — 24+ e = —Kky(t).

[y (t+ At~y (1)] _L‘/’Z(t)[e—imx P
2h

Assuming nr =%, from the above equation, we get
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I 480y (01— 2 [2cos(an) -2 - W2

[2cos(yAx) —2]

= [y (t+ At~y (O] + iy (O[2sin> (AX ] 2]+ Fy (t + AD[2sin (7] 2)] =~k (b),
and

[1+ 26 sin? (YAX / 2)Jy/(t + At) = [L— 25 sin® (yAX / 2) = K]y (1),

02
which implies that w(t+At) _ 1—(2rls|n-(yAx/2)+k) ¢

(1) 1+ 25 sin? (yAX / 2

v (t+At)

<1, i.e.
w(t)

For stability we need‘

[1- @ sin (Ax/ 2) +K)|
1+2n sinz(;/Ax/ 2 | -

1, forall n,k,b.

1642

Hence the Crank-Nicolson method is unconditionally stable for the first equation of

Glycolysis model, and for the second equation

2
ov o°v
X dy S Kk g
at ox? ’
Vp a1~V d
pal ~Vpa _ 9o
K " on2 [Vp-1.0=2Vpa +Vpsra +Vp-1a+1 = 2Vpart +Vprrasl—Kkvpg.

Substitute v, = #(t)e'”* in the above equation to obtain

P

[¢(t +At) - ¢(t)]ei px _ 926(t) [P0 _ pgifx | giB(xan)y dog(t + At) [e}A(x-)
k 2h? 2h?

—2!PX 1 g AOEANT _ Kkeo(t)e'PX.

Multiplying both sides of the above equation by ke#*to obtain

Pt +At)—g(t) = %[eiﬁm‘ —2+6 +%[eiﬁm‘ — 2+ 6P Kkg(t).

In the above equation, let %k =r,, yields

-+ a0 —g() = 222

[2cos(pAX) —2]+ 1, @ [2cos(BAX) — 2] — Kkg(t)
= —Lp(t + A)[1— (L— 25in? (BAX/ 2)] - LA(t)[1— (L— 2sin? (BAX/ 2)] - Kke(t)

= —26,4(t + At)sin? (BAX ] 2) — 2r,g(t) sin? (BAX ] 2) — KKe(t).

Hence,
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Bt +At) + 20,p(t + At)sin? (BAX/ 2) = () —26,4(t)sin? (BAX/ 2) — Kke(t),
and after simplification, we get

plt+At) _[1-Kk-2rsin® (BAXI2) ] _
#(t) [1+2r,sin? (BAXI2)]

Thus |M|:|§|SL SO

(1)

I[1-Kk-2r,sin? (8Ax/2)1 |
| [1+2r,sin? (8AX/2)] |

<1, Vrz,k,K.

Since for both equations of the system we have |£ <1, the Crank-Nicolson method is
unconditionally stable.

6. Numerical example

We solved the following example numerically to illustrate efficiency of the

presented methods

Example:

Zt—uzdlAu—u+Kv+u2v+ p, t>0, xeQ,

%zdlAv VAU v+ t>0, xeQ,

with the initial conditions

U(x, 0) = Us + 0.01 sin(zx/ L) for 0<xx<L

V (x, 0) =Vs—0.12 sin(zx/ L) for 0xx<L

U(,t)=Us, U(L,t)=Us and V (0, t) = Vs, V (L, t)=Vs.
We will take

d;=d,=0.01, K=0.5 ,del=p=0.5 ,Us=0, V=1.
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implicit v(x.{)

0954

o

Fig. 2a The Implicit method of the concentration V

explicit v(xt)

Fig.2b The Explicit method of concentration V
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