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Abstract: The conjugate gradient methods are among the most efficient methods for solving optimization models. 

This is due to its simplicity, low memory requirement and the properties of its global convergent. Many researchers 

try to improve this technique. In this paper, we suggested a modification of the conjugate gradient parameter with 

global convergence properties via exact minimization rule. Preliminary experiment was conducted using some 

unconstrained optimization benchmark problems. Numerical outcome showed that the new algorithm is efficient and 

promising as it performs better than other classical methods both in terms of number of iteration and CPU time. 
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1. INTRODUCTION 

Conjugate gradient (CG) method is considered as an important tool for solving unconstrained 

optimization problems. It can be applied in many fields like industry, medical treatment and 

economics because of its low memory requests and global convergence properties (see [2,11,15]). 

Generally, the optimization problem can be express as 

min
𝑥∈𝑅𝑛

𝑓(𝑥) (1) 

where 𝑓: 𝑅𝑛 → 𝑅  is smooth. The CG methods computes it iterates 𝑥𝑘 starting from an initial 

point  𝑥0 ∈ 𝑅𝑛 as follows  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘,   𝑘 = 0,1,2, … (2) 

 

where the step-size (𝛼𝑘) can be obtained using a line search method along the search direction 

𝑑𝑘. The most preferred line search algorithm is the exact minimization condition:  

𝑓(𝑥𝑘 + 𝛼𝜅𝑑𝑘) =  min
𝛼≥0

𝑓(𝑥𝑘 + 𝛼 𝑑𝑘) (3) 

 

where 𝑑𝑘 is given by  
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(4) 

where  𝛽𝑘 is a scalar and 𝑔𝑘 = 𝑔(𝑥𝑘). 

 

The first CG algorithm was suggested by Hestenes and Stiefel (HS) [12] in (1952). Later, the 

Hestenes-Stiefel algorithm was improved to solve (1). The HS method is characterized by its 

formula  

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

(𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1
.            

Other known CG coefficients are presented in Table 1. 
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Table 1: Some well-known CG methods 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘
𝑇 𝑔𝑘

𝑔𝑘−1
𝑇  𝑔𝑘−1

 
 

       (Fletcher –Reeves [10], 1964) 

𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑔𝑘−1
𝑇  𝑔𝑘−1

 
 

       (Polak-Ribiere –Polyak [20,21], 1969) 

𝛽𝑘
𝐶𝐷 =

𝑔𝑘 
𝑇 𝑔𝑘

𝑑𝑘−1
𝑇  𝑔𝑘−1

 
 

       (Conjugate Descent [9], 1987) 

𝛽𝑘
𝐿𝑆 = −

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑑𝑘−1
𝑇  𝑔𝑘−1

 
 

       (Liu –storey [16], 1991) 

𝛽𝑘
𝐷𝑌 =

𝑔𝑘
𝑇  𝑔𝑘

(𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1
 

 

       (Dai –Yuan, [8], 1999) 

There are several researches about convergence properties of these methods (see 

[3,4,5,15,22,29,31,35]). Some convergent formulas are proposed by restricting the scalar to a 

nonnegative number [19]. The convergence analysis for the methods of HS, LS and PRP are yet to 

be established under other line searches. (see [13,32]). Some practical application of the 

optimization method can be referred to [28]. 

 

Recently, many researchers have studied CG methods. Table 2 provides a list of recent CG methods.  

 

Table 2: Several choices for update CG methods parameter 

 𝛽𝑘
𝑅𝑀𝐼𝐿 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

‖𝑑𝑘−1‖2   

          (Rivaie et al. [23], 2013) 

𝛽𝑘
𝐴𝑅𝑀𝐼 =

‖𝑔𝑘‖2 −
‖𝑑𝑘−1 + 𝑔𝑘‖

‖𝑑𝑘−1‖
 |𝑔𝑘 

𝑇 𝑔𝑘−1|

‖𝑑𝑘−1‖2
 

 

          (Abashar et al. [1], 2014) 

𝛽𝑘
𝐾𝑀𝐴𝑅 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑔𝑘−1
𝑇 (𝑔𝑘 + 𝑔𝑘−1)

 
 

          (Kamfa et al. [14], 2015) 
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𝛽𝑘
𝑁𝑅𝑀𝐼 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑔𝑘−1
𝑇 (𝑔𝑘 − 𝑑𝑘−1)

 
 

          (Shapiee et al. [24], 2016) 

𝛽𝑘
𝑅𝑀𝐴𝑅 =

𝑔𝑘
𝑇 (𝑔𝑘 −

‖𝑔𝑘‖
‖𝑑𝑘−1‖

𝑑𝑘−1)

‖𝑑𝑘−1‖2
 

 

          (Mamat et al. [17], 2017) 

𝛽𝑘
𝑀𝑀𝑀 =

‖𝑔𝑘‖

𝑑𝑘−1
𝑇 (𝑑𝑘−1 − 𝑔𝑘)

 
 

          (Mandara et al. [18], 2018) 

 

2. NEW FORMULA FOR 𝜷𝒌  

In early 21st century, tremendous efforts have been made by researchers to improve the CG 

methods. The researchers suggested numerous variants of CG methods with strong convergence 

properties and efficient numerical results. A survey of the CG methods is given by Andrei [6]. 

Lately, Wei et al. [30] introduce a variation of the PRP coefficient referred to the WYL method.  

𝛽𝑘
𝑊𝑌𝐿 =

𝑔𝑘
𝑇𝑔𝑘 − 𝑔𝑘

𝑇𝑔𝑘−1
‖𝑔𝑘‖

‖𝑔𝑘−1‖

‖𝑔𝑘−1‖2
. 

Motivated by the ideas of [12,30], we introduce our 𝛽𝑘 known as  𝛽𝑘
𝑇𝑀∗

, where TM∗ represents 

Tala’t and Mustafa. The new 𝛽𝑘
𝑇𝑀∗

 is a variant of HS method which is as follows: 

𝛽𝑘
𝑇𝑀∗

=
𝑔𝑘

𝑇(𝑚(𝑔𝑘 − 𝑔𝑘−1))

𝑚(𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1
  , where 𝑚 =

‖𝑔𝑘−1‖

‖𝑔𝑘‖
. 

(5) 

The algorithm of the proposed coefficient is as follows: 

Algorithm 1: Algorithm for CG coefficient 𝛽𝑘
𝑇𝑀∗

 

Stage 1: Initialization. Given 𝑥0  ∈ 𝑅𝑛, 𝜀 ≥ 0, set 𝑑0 = −𝑔0 if ‖𝑔0‖ ≤ 𝜀 then stop. 

Stage 2: Compute 𝛼𝑘 by (3). 

Stage 3: Let 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑔𝑘+1 = 𝑔(𝑥𝑘+1). if ‖𝑔𝑘+1‖ ≤ 𝜀  then stop. 

Stage 4: Calculate 𝛽𝑘 by (5), and produce 𝑑𝑘+1 by (4). 

Stage 5: let 𝑘 = 𝑘 + 1 go to Stage 2. 
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3. CONVERGENCE ANALYSIS  

An important condition for the convergence analysis of any CG algorithm is satisfying the 

sufficient descent condition (SDC) [2,27].  

 

2.1. Sufficient descent condition    

For the SDC to hold,  

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝐶‖𝑔𝑘‖2  for  𝑘 ≥ 0  and  𝐶 > 0 . (6) 

Theorem 1 

Consider a CG method with 𝑑𝑘 defined by (4) and  𝛽𝑘
𝑇𝑀∗

 specified as (5), then (6) holds for all   

𝑘 ≥ 0. 

 

Proof. 

If  𝑘 = 0, then 𝑔0
𝑇𝑑0 = −𝐶‖𝑔𝑘‖2. So, condition (6) holds true. For 𝑘 ≥ 1 ,  

𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘

𝑇(−𝑔𝑘 +  𝛽𝑘𝑑𝑘−1) 

 

             = −‖𝑔𝑘‖2 + 𝛽𝑘𝑔𝑘
𝑇𝑑𝑘−1. 

 

We know that under exact line search 𝑔𝑘
𝑇𝑑𝑘−1 = 0. Thus, 

𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖2. (7) 

Hence, 𝑔𝑘
𝑇𝑑𝑘 ≤ −𝐶‖𝑔𝑘‖2 holds true. The proof is completed. ∎ 

 

2.2. Global convergence 

To establish the convergence properties of the method of 𝛽𝑘
𝑇𝑀∗

, we need to simplify 𝛽𝑘
𝑇𝑀∗

 to make 

the proof easier. From (5) we can see that 

𝛽𝑘
𝑇𝑀∗

=
𝑔𝑘

𝑇(𝑚(𝑔𝑘−𝑔𝑘−1))

𝑚(𝑔𝑘−𝑔𝑘−1)𝑇 𝑑𝑘−1
    

=
𝑚‖𝑔𝑘‖2 − 𝑚𝑔𝑘

𝑇𝑔𝑘−1

𝑚(𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1
≤

‖𝑔𝑘‖2

(𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1
. 
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Hence, we get                                                        

𝛽𝑘
𝑇𝑀∗

≤
‖𝑔𝑘‖2

(𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1
. 

 

(8) 

For the convergence of CG methods, next assumptions are always needed.  

 

Assumption 1. 

i. 𝑓(𝑥) is bounded below on the level set 𝑅𝑛 and differentiable in a neighborhood 𝑁 of the 

level set ℓ = {𝑥𝜖𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥0)} at the initial point 𝑥0. 

ii. The gradient 𝑔(𝑥) is Lipschitz continuous in 𝑁, 𝑖. 𝑒.,  

      ∃ 𝐿 > 0  𝑠. 𝑡 ‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ ∀ 𝑥, 𝑦 ∈ 𝑁 .                              

Under this Assumption, we have the next lemma, that was proven by Zoutendijk [33].  

 

Lemma 1. 

Let Assumption 1 holds true for any CG method of the form (1), with search direction 𝑑𝑘 and 𝛼𝑘 

fulfils (3). Then the following condition knowns as the Zoutendijk condition, holds 

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
<  ∞

∞

𝑘=1

 

which is equivalent to 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2
<  ∞

∞

𝑘=1

. 

Lemma 2 

Let Assumption 1 holds, {𝑥𝑘} generated by the Algorithm 1, and 𝛼𝑘 is calculated by (3). Then 

Lemma 1 holds for all 𝑘 ≥ 0.  

 

Proof. 

Let   ∀ 𝑘,  𝑔𝑘 ≠ 0 . If  𝑘 = 0  then 

𝑔0
𝑇𝑑0 = 𝑔0

𝑇(−𝑔0) = −‖𝑔0‖2. 
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Let a point  𝑥𝑘 and 𝑑𝑘 is not a descent direction then we have 𝑥𝑘 = 𝑥𝑘−1, which implies  𝑔𝑘 =

𝑔𝑘−1. From (5), we have 

𝛽𝑘
𝑇𝑀∗

= 0. 

That means those points become the steepest descent directions and denoted by 𝑁1 =

{𝑥𝑘|𝛽𝑘
𝑇𝑀∗

= 0} and the other points are denoted by 𝑁2 = {𝑥𝑘|𝛽𝑘
𝑇𝑀∗

≠ 0}. For all points in 𝑁1, 

from Lemma 1, we have                     

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
 <  ∞.  

∞

𝑥𝑘∈ 𝑁1

 
 

(9) 

 

The same as the above proof, for the points  𝑁2 , we also have       

 

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
<  ∞.   

∞

𝑥𝑘∈ 𝑁2

 
 

(10) 

So 

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
= ∑

(𝑔𝑘
𝑇𝑑𝑘)2

‖𝑑𝑘‖2
+ ∑

(𝑔𝑘
𝑇𝑑𝑘)2

‖𝑑𝑘‖2
< ∞

𝑥𝑘∈𝑁2𝑥𝑘∈𝑁1𝑘≥1

. 

 The proof is completed. ∎ 

 

By Lemma 1 and using (8), we obtain the following convergence theorem. 

 

Theorem 2 

Suppose that Assumption 1 is holds for any CG method in the form of (2), (4), and (8), where 𝛼𝑘 

is obtained by (3). If the descent condition holds true. Then either  

lim
𝑘→∞

‖𝑔𝑘‖ = 0   𝑜𝑟  ∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2
<  ∞

∞

𝑘=1

      

Proof: 

From (4)      
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‖𝑑𝑘‖2 = −‖𝑔𝑘‖2 − 2𝑔𝑘
𝑇𝑑𝑘+ 𝛽𝑘

2‖𝑑𝑘−1‖2 

and from (7), implies 

‖𝑑𝑘‖2 = ‖𝑔𝑘‖2+ 𝛽𝑘
2‖𝑑𝑘−1‖2, 

applying (8), we have  

‖𝑑𝑘‖2 = ‖𝑔𝑘‖2+ 
‖𝑔𝑘‖4

((𝑔𝑘 − 𝑔𝑘−1)𝑇 𝑑𝑘−1)2
‖𝑑𝑘−1‖2, 

therefore,    

‖𝑑𝑘‖2

‖𝑔𝑘‖4
−

1

((𝑔𝑘 − 𝑔𝑘−1)𝑇 )2
=

1

‖𝑔𝑘‖2
. 

Also, 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2
≤ ∑‖𝑔𝑘‖2

∞

𝑘=1

∞

𝑘=1

 

that is, we have 

lim
𝑘→∞

‖𝑔𝑘‖ = 0. 

Hence, the proof is completed. ∎ 

 

4. NUMERICAL RESULTS 

To illustrates the efficiency of the proposed 𝑇𝑀∗, we compare it performance with that of FR, 

WYL and RMIL methods based on iteration number and CPU time. Table 3 displays some classical 

test problems, dimensions and the initial points considered for the experiments. Most of the 

selected test functions are from Andrei [6]. We choose 𝜀 = 10−6 and the termination criteria is 

set as ‖𝑔𝑘‖ ≤ 𝜀 as suggested by Hillstron [13]. Three random initial guesses are used; starting 

from the points near the solution points, to a point far from it. All standard optimization test 

problems are tested in a small to large-scale dimension. If the line search fails to obtain the positive 

𝛼𝑘 in some cases, the computation stopped [25,26]. The performance was displayed in Figure 1 

and Figure 2 based on performance profile introduced by [8]. 
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Table 3. List of test functions 

NO Function Dim Initial point 

1 SIX HUMP 2 (0.5,0.5), (8,8) ,(40,40) 

2 THREE HUMP 2 (-1,1),(1,-1),(2,-2) 

3 QUADRATIC  QF1 2 (3,3),(5,5),(10,10) 

4 DIAGONAL 2 2 (1,1),(5,5),(15,15) 

5 LEON 2 (2,2),(4,4),(8,8) 

6 MATYAS 2 (5,5),(10,10),(15,15) 

7 BOOTH 2 (10,10),(25,25),(100,100) 

8 RAYDAN 2 (3,3),(13,13),(23,23) 

9 ZETTL 2 (5,5),(20,20),(50,50) 

10 TRECANNI 2 (5,5),(10,10),(50,50) 

11 EXTENDED WOOD 4 (5,..,5),(20,..,20),(30,..,30) 

12 CLOVILLE 4 (2,..,2),(4,..,4),(10,..,10) 

13 HAGER 2 (7,7),(15,15),(20,20) 

14 EXTENDED PENALTY 2 (40,40),(80,80),(100,100) 

15 DIXON & PRICE 2, 4 (6,6),(30,30),(125,125),(30,..,30),(125,..,125) 

16 ARWHEAD 2, 10 (8,8),(24,24),(48,48),(24,..,24),(48,..,48) 

17 QUARTC 2, 10 (8,8),(16,16),(30,30), (16,..,16),(30,..,30) 

18 QUADRATIC QF2 2, 10 (4,4),(40,40),(80,80),(40,..,40),(80,..,80) 

19 EX QUADRATIC PENALTY QP2 2, 10 (10,10),(20,20),(30,30), (10,..,10), (30,..,30) 

20 EXTENDED POWELL 100, 1000 (2,..,2),(4,..,4),(8,..,8) 

21 GENERLIZED TRIDIAGONAL 1 2, 10 (3,3),(21,21),(90,90),(21,..,21),(90,..,90) 

22 GENERLIZED TRIDIAGONAL 2 10, 100 (15,.,15),(30,.,30),(150,..,150) 

23 ROSENBROCK 2, 10,100, 1000 (3,3),(15,15),(75,75),(3,..,3),(75,..,75) 

24 SHALLOW 2, 10,100,1000 (-2,-2),(12,12),(200,200),(200,..,200) 

25 EXTENDED WHITE & HOLST 2, 10,100,1000 (-3,-3),(6,6),(10,10), (-3,..,-3),(6,..,6),(10,..,10) 

26 EXT FREUDENSTEIN & ROTH 2, 10,100,1000 (2,2),(25,25),(30,30),(2,..,2),(25,..,25),(30,..,3) 

27 EXTENDED BEALE 2, 10,100,1000 (-1,-1),(7,7),(11,11), (-1,..,-1),(7,..,7),(11,..,11) 

28 PERTURBED QUADRATIC 2, 10,100,1000 (1,1),(5,5),(10,10), (1,..,1),(5,..,5),(10,..,10) 

29 EXTENDED TRIDIAGONAL 1 2, 10,100,1000 (25,25) ,(50,50), (75,75), (25,..,25) ,(50,..,50),  

30 DIAGONAL 4 2, 10,100,1000 (1,1),(20,20),(40,40),(1,..,1),(20,..,20),(40,..,4) 

31 EXTENDED HIMMELBLAU 2, 10,100,1000 (10,10),(50,50),(125,125),(10,..,10),(125,.,12) 

32 FLETCHCR 2, 10,100,1000 (12,12),(15,15),(35,35), (12,..,12), (35,..,35) 

33 EXTENDED DENSCHNB 2, 10,100,1000 (5,5),(30,30),(50,50),(5,..,5),(30,..,30),(50,..,5) 

34 EXT BLOCK DIAGONAL BD1 2, 10,100,1000 (1,1),(5,5),(10,10), (1,..,1),(5,..,5),(10,..,10) 

35 GENERRALIZED QUARTIC 2, 10,100,1000 (7,7),(70,70),(140,140),(7,..,7),(140,..,140) 

36 SUM SQUARES 2, 10,100,1000 (1,1),(5,5),(10,10), (1,..,1),(5,..,5),(10,..,10) 
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Using Dolan and More profile we compare and evaluate the performance of the 4 algorithms. 

Supposing 𝑛𝑠 solvers and 𝑛𝑝 problems exists, for every problem 𝑝 and solver 𝑠, Dolan and 

More defined by: 

 τ𝑝,𝑠 = calculating time (NO.IT. or CPU time) necessary to solve problem 𝑝 by solver 𝑠. 
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Figure 1: Performance profile based on number of 

iterations 

Figure 2: Performance profile based on CPU time 

 

Both figures above illustrate that 𝑇𝑀∗  is the best solver, as it can solve all of the test problems 

and reach 100% percentage. Comparing with 90% for FR, 97% for WYL, and 96% for RMIL of 

the given test problems. To sum up, our numerical outcomes show that the 𝑇𝑀∗ technique is 

efficient, modest to the typical CG method and owns nice convergence properties under exact line 

search. 

 

5. CONCLUSION 

In this paper, we present a new modification of the CG coefficient that guaranteed the sufficient 

descent condition provided exact line search is used. The global convergence of the proposed MS 

method was established under the exact line search. Numerical results reported have shown that 

the proposed coefficient is efficient and robust when compared to other CG methods. Future 

research can focus on investigating the performance of improved version of the conjugate gradient 

coefficient giving a wider scope on step length.  
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