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1. INTRODUCTION

The concept of topological vector spaces was introduced by Kolmogroff in 1934 [19]. Its
properties and characterizations were studied and investigated by many different mathematicians.
Due to its large number of exciting and interesting properties and characterizations, it has been
used in different advanced branches of mathematics like fixed point theory, operator theory,
variational inequalities, differential calculus, etc. The researchers not only make use of topological
vector spaces in many other fields to develop new concepts but also stretch and extend this notion
in every possible way to make the field of study a more convenient and understandable. In 2008,

M. Khan, T. Nori, and M. Hussain [16] introduced s"g-closed sets and s*g-open sets in topological

spaces and showed that the family of all s"g-open subsets of a topological space (X.z) forms a
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topology on x which is finer than 7. Also, they studied some characterizations and basic
properties of s*g-open sets and s’g-closed sets. They also used these sets to define and study a new
class of functions, namely, s*g-continuous functions as well as s*g-Normal spaces. We introduce

s"g-irresolute topological vector spaces by using s*g-open sets and investigate several general properties and

characterizations of this notion of s*g-irresolute topological vector space. We also give several
characterizations of s*g-Hausdorff spaces. Furthermore, we show that the extreme point of the

convex subset of s"g-irresolute topological vector space X lies in the boundary spaces.

2.5*g-OPEN SETS IN TOPOLOGICAL SPACES

The (X,z) and (Y,o) (orsimply, X and Y) denote topological spaces on which no separation
axioms are assumed unless explicitly stated. A subset A of a topological space (X,r) is said to be

openif Aez. Asubset A ofatopological space X issaid to be closed if the set A° =X —A isopen.
The interior of a subset A of a topological space X is defined as the union of all open sets

contained in A. It is denoted by Int(A). The closure of a subset A of a topological space X is
defined as the intersection of all closed sets containing A. It is denoted by CI(A).
Westart recalling the following definitions and results from [16], which are necessary for this study

in the sequel.

Definition 2.1. A subset A of a topological space (X,r) is said to be semi-open set if
AcClI[Int(A)]. SO(X) represents the collection of all semi-opensets in X.

Definition 2.2. A subset A of a topological space (X,z) is said to be semi-closed set if X —A is
semi-open. SC(X) represents the collection of all semi-closed sets in X.

Definition 2.3. A subset A of a topological space (X,r) is said to be «a-open set if
Ac Int[CI(Int(A))].

Definition 2.4. A subset A of a topological space (X,r) is said to be a-closed set if X-A’is
a-open.
Definition 2.5. Let (X,7) be a topological space. A subset A of X is said to be generalized closed

(briefly, g-closed ) if CI(A)cU whenever AcU and U is open in X.The complement of a
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g-closed set is g-open.

Definition 2.6. Let (X,z) be a topological space. A subset A of X is said to be generalized
semi-closed (briefly, gs-closed ) if sCI(A)cU whenever Acu and U is open in X. The
complement of a gs-closed set is gs-open.

Definition 2.7. Let (X,r) be a topological space. A subset A of X is said to be generalized
a-closed (briefly, ga-closed ) if «-CI(A)cU whenever AcuU and U is a-open in X. The
complement of a ga-closed set is gea-open.

Definition 2.8. Let (X,r) be a topological space. A subset Aof X is said to be s'g-closed if
Cl(A)=G whenever AcGand G is semi-open in X. The collection of all s"g-closed subsets of x
is denoted by s'GC(X).

Definition 2.9. Let(X,z) be a topological space and Ac x. Then the s’g-closure of A, denoted by
s"g-CI(A) is the intersection of all s’g-closed subsets of X which contain A.

Definition 2.10. Let (X,z) be a topological space. A subset A of X is said to be s*g-open if X -A
is s’g-closed, or equivalently, if GcInt(A) whenever Gc A and G is semi-closed in X. The
collection of all s*g-open subsets of X is denoted by s*GO(X).

Definition 2.11. Let (X,z) be a topological space and Ac x. Then the s"g-interior of A, denoted by
s"g-Int(A) is the union of all s'g-open subsets of X which are contained in A.

Definition 2.12. [23] A subset A of a topological space (X,z) is said to be:

(i) An a-s"g-open set if Ac s*g—lnt[CI(s*g—lnt(A))]

(i) A pre-s'g-open setif Acs'g-Int[CI(A)].

(iii) A b-s"g-open set if Acs'g-Int[CI(A)]UCI[s'g-Int(A)].

(iv) A p-s'g-open set if AcCl [s*g—lnt(CI(A))].

Theorem 2.13. The union of two s*g-closed sets (and hence the finite union of s*g-closed Sets) in
a topological space (X,r) is s"g-closed.

Proof. Let Aand B be any two s’g-closed sets in a topological space (X,r). Let G be a

semi-open set containing AUB. Then CI(A)cG and CI(B)c=G implies that CI(AUB)cG. This
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proves that AUB IS s*g-closed.

Theorem 2.14. An arbitrary intersection of s*g-closed Sets in a topological space X is s*g-closed.
Proof. Theorem 3.12 in [16].

Corollary 2.15. For any space (X,z), S"GO(X) is a topology on X.

Remarks 2.16. (1) We summarize the fundamental relationships between several types of

generalized closed sets in the following diagram. None of the implications is reversible.

closed — s"g-closed — g-closed
2 2
a-closed —> ga-closed E— gs-closed

(2) The following diagram represents the fundamental relationships between several types of open

sets and s’g-open sets. None of the implications is reversible.

open —> o —open ——>  pre—open ——> b —open — S —open
\ \ \ \ \
s'g- o- pre— b- B-
% * H * H * —) *
open s’g-open s’g-open s’g-open s’g-open

Definition 2.17. Let (X,z) be a topological space and let xe X. A subset Aof x is said to be
s"g-neighborhood of x if there exists an s*g-open set G such that xeG c A.

The set of all s"g-neighborhoods Of xe X is called s’g-neighborhood System at x and is denoted by
s*g-N(x):{Ag X : Ais s"g-neighborhood of x}.

Remark 2.18. Every neighborhood A of xe X is s'g-neighborhood of x. But in general, an
s"g-neighborhood A Of x e X need not be a neighborhood of x in X.

Theorem 2.19. Let(X,z) be a topological space and ABc X. Then the following assertions are
true.

(1) sg-Int(X)=X and s°g-Int(¢)=¢.

(2) Int(A)=s*g-Int(A)c A.

(3) Acs’g-CI(A)=CI(A).
(

4) If Bisany s'g-open set contained in A, then B<s’g-Int(A).
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5) A is s'g-closed if and only if s’g-CI(A)=A.

6) If Ac B, then s’g-Int(A)=sg-Int(B).

7) s*g-lnt[s*g-lnt(A)}=s*g-|nt(A).

8) A is s’g-openif and only if s’g-Int(A)=A.

9) s'g-CI(X)=X and s’g-Cl(¢)=4¢.

10) If Bisany s'g-closed set containing A, then s°g-Cl(A)<B.

11) If AcB, then s'g-CI(A)=sg-Cl(B).

13) s’g-Int(ANB)=s"g-Int(A)Ns’g-Int(B)and s'g-Cl(AUB)=s"g-Cl(A)Us"g-Cl(B).

14) X —s"g-Int(A)=s"g-CI(X - A).

16) xes’g-Cl(A) if and only if for every s"g-open set U containing x, UNA=¢.

17) xes'g-Int(A) if and only if there is an s"g-open set U in X such that xeU c A.

(

(

(

(

(

(

(

(12) s'g-CI 5"g-CI(A) | =5"g-CI (A).
(13)

(14)

(15) X —s"g-Cl(A)=s"g-Int(X - A).
(16)

(17)

(18)

18 UieAs*g-CI(Ul)gs*g-CI(UkAUl) and Ums*g-lnt(ul)gs*g-lnt(UleAUi).

Definition 220 A mapping f:(X,r)—(Y,o) is called s'g-irresolute at a point xe X if for all
s'g-open subsets V in Y containing f(x), there is an s"g-open subset U of x such that xeU and
f(U) is a subset of V. The function f will be called s*g-irresolute if f is s’g-irresolute at each

point xe X.

Theorem 2.21. Let f:(X,r)—>(Y,o) be a function. Then the following statements are equivalent.
(1) f is s'g-irresolute.

(2) For each xe X and each s"g-neighborhood v of f(x) in Y, there is an s"g-neighborhood U of
x suchthat f(U)cV.

(3) The inverse image of every s*g-closed subset of Y is an s"g-closed subset of X.

(4) The inverse image of every s"g-opensubset of Y is an s"g-open subset of X.

Definition 2.22. A function f :(X,7)—>(Y,o) is called s*g-continuous if f™(V) is s"g-openset in X

for every openset Viny.
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Proposition 2.23. A function f:(X,r)—(Y,o) is called s’g-continuous if and only if f*(V) is
s'g-closed setin X for every closed set VinY.

Definition 2.24. A function f :(X,r)—(Y,o)is called Pre-s'g-open if and only if the image set
f(U) is s"g-open setin Y for every s'g-open set U in X.

Proposition 2.25. A bijection function f:(X,r)—(Y,o) is called s"g-homeomorphism if f is
pre-s‘g-open and s’g-irreseolute.

Theorem 2.26. Let (X,z) be a topological space. Then the family S'GO(X,r) of all s"g-open
subsets of X forms a topology on X.

Proposition 2.27. A subset A of a topological space (X,r) is s‘g-open if and only if it is an
s"g-neighborhood Of each of its points.

Proof. =: If A is s"g-open in X, then xe Ac A foreach xe A Thus A isan s g-neighborhood

of each of its points.

Conversely, suppose that A isan sg-neighborhood of each of its points. Then for each x e A, there

exists an s'g-open set U, in X such that xeU cA Hence |J U, cA Since Acl] U,,

therefore A= J ,U,.Thus A isan s’g-open setin X, since it is a union of s’g-open sets.

3. PROPERTIES OF s*g-IRRESOLUTE TOPOLOGICAL VECTOR SPACES

In this section, we define and investigate some basic properties of s*g-irresolute topological vector
spaces.

Definition 3.1. A topological space (X(K),r) is called s'g-irresolute topological vector space
(s"g1Tvs) whenever the following conditions are satisfied.

(1) for each x,ye X and for each s"g-open neighborhood W of x+y in X, there exist s"g-open
neighborhoods U and Vv in X of x and y respectively, such that U +v cw.

(2) foreach xeX, 2eK and foreach s’g-open neighborhood w of ix in X, there exist s"g-open
neighborhoods U of 4 in K and v of x in X, such that uv cw.

Theorem 3.2. Let (X(K),r) be an s'g-irresolute topological vector space. Then the following

assertions are true.
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(1) The (left) right translation mapping T, :X — X defined by T (y)=y+x; for all x,yeX, is
s"g-irresolute.

(2) The multiplication mapping M, : X — X, defined by M, (x)=24x, forall xe X, is s'g-irresolute.
Proof. (1) Let w be an s'g-open neighborhood of T,(y)=x+y. Then by definition, there exist
s"g-open neighborhoods U and Vv in X containing y and x respectively, such that u+v cw.
This gives that T,(U)=U+xcU+V cW. This proves that, T,: X — X is an s'g-irresolute mapping.
(2) Let xe X, 2eK. Then M,(x)=A4x. Let W be any s'g-open neighborhood of Ax. Then by
definition of s'gITVS, there exist s‘g-open neighborhoods U in K of 2 and Vv in X of x, such
that uvcw. This gives that M,(V)=AVcUV cW. This proves that M,:X —>X is an
s"g-irresolute mapping.

Theorem 3.3. Let (X(K),z’) be an s’g-irresolute topological vector space. Let AeS'GO(X). Then the

following statements are true.

(1) x+AeS"GO(X), forevery xeX.
(2) 2AeS°GO(X), for every non—zero scalar AeK.
Proof. (1) Let yex+A. Then y=x+a for some ae A. By definition of s’g-irresolute topological

vector spaces, there exist sg-open sets U and V in X containing —x and y respectively such
that U+vcA This gives —x+VcU+VcA This implies yeVcx+A  Therefore

yes'g-Int(x+A). Hence, x+A=s"g-Int(x+A). This proves that x+ A is s’g-open in X.

(2) Let xeiA. Then x=1a for some aeA Thus aZ%XEA. By definition of s’g-irresolute
topological vector spaces, there exist s*g-open sets U in K containing % and V in X containing

x such that UV c A This implies that a:%m%v cUV c A Hence xeV c 1A Thus we obtain
xes'g-Int(1A). Therefore, it follows that ZAcs’g-Int(2A). Hence, 21A=s"g-Int(AA). This shows
that 1AeS'GO(X).

Corollary 3.4. Let (X(K),r) be an sg-irresolute topological vector space. Let A be an s°g-open

subset of X. Then the following statements are true.
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(1) x+Ags*g-CI[s*g-lnt(x+A)] for each xe X.

(2) AAcs'g-Cl[sg-Int(2A)] for any non-zero scalar A.

Theorem 3.5. Let (X(K),z’) be ans*g-irresolute topological vector space. Let AeS'GO(X) and B be
any subset of X. Then prove that A+BeS‘GO(X).

Proof. Suppose AeS°GO(X) and B< x. Then, for each be B and by Theorem 3.3 (1), we have
A+beS'GO(X). Then A+B=U{A+b:beB} is a union of s'g-open sets. Since arbitrary union of
s"g-open Sets is s’g-open, therefore A+B IS s*g-open in X.

Corollary 3.6. Suppose (X(K),r) is an s'g-irresolute topological vector space and let AeS'GO(X).
Then the set U ={J” (nA) is s"g-open in X.
Theorem 3.7. Let (X(K),r) be an s'g-irresolute topological vector space. Let AcX. Then the

following statements are true.

(1) s’g-Int(x+A)=x+s"g-Int(A), forany xe X.

(2) s'g-Int(2A)=A[s"g-Int(A)], for any non-zero scalar 1eK.

Proof. (1) By Theorem3.3(1), x+s'g-Int(A) is s’g-open. Therefore x+s'g-Int(A)cx+A implies
x+s'g-Int(A)cs'g-Int(x+A). Now let zes'g-Int(x+A). Then z=x+y for some yeA By
definition of s’gITVS, there exist s"g-open sets U and V in X containing x and y respectively,
such that U +V cs*g-Int(x+ A). This gives that z=x+y e Xx+V =sg-Int(x+ A) = x+ A. Therefore it follows
that V < —X+s'g-Int(x+A)c—x+(x+A)=A. Since V is s°g-open, then V =s'g-Int(A) and therefore
yes'g-Int(A). Thus -x+zes'g-Int(A). Hence zex+s'g-Int(A). Therefore, it follows that
s'g-Int(x+A)c x+s°g-Int(A). Consequently, we conclude that s*g-Int(x+A)=x+s"g-Int(A).

(2) By Theorem3.3(2), A[s'g-Int(A)] is s'g-open. Thus A[s'g-Int(A)]c2A implies that
A[s"'g-Int(A) = s'g-Int(4A). Next, if yes'g-Int(2A), then y=Ax for some xe A By definition of
s'gITVS, there exist s’g-open sets U of A in Kand V of x in X such that UV cs’g-Int(1A).
Therefore, y=AxeAV cUV cs'g-Int(1A)c AA. This implies that xeV c A. Since V is s’g-open.

Thus  xes'g-Int(A).  Consequently, — y=ixe4[s'g-Int(A)].  Therefore ~we  obtain
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s'g-Int(4A) < A[s°g-Int(A) ]. Hence we conclude that s°g-Int(1A)=4[s"g-Int(A)].

Theorem 3.8. Let (X(K),r) be an s’g-irresolute topological vector space. Let ABcX. Then
s'g-Int(A)+s"g-Int(B)=s"g-Int(A+B).

Proof. We know that s'g-Int(A)cA and s'g-Int(B)cB. Hence we obtain
s'g-Int(A)+s'g-Int(B)< A+B. By Theorem 3.5, s'g-Int(A)+s"g-Int(B) is s'g-open. Therefore we
have s*g-lnt(A)+s*g-Int(B):s*g-lnt[s*g-lnt(A)+s*g-lnt(B)]gs*g-lnt(A+B). Thus we  get
s'g-Int(A)+s"g-Int(B)=s"g-Int(A+B).

Theorem 3.9. Let F be any s'g-closed subset of an s’g-irresolute topological vector space X. Then

the following statements are true.

(1) x+FeS'GC(X), forevery xex.

(2) AFeS'GC(X), for each non — zero scalar 1 eK.

Proof. (1) Suppose that yes’g-Cl(x+F). Consider z=—x+y and let W be any s‘g-open setin X
containing z. Then there exist s'g-open sets U and V in X such that —xeU, yeV and
U+V cW. Since yes'g-Cl(x+F), (x+F)NV =4¢. So, there is an element ae(x+F)NV. Thus
aex+F and aeV. Hence -x+aeF and —x+aeU+V. Therefore —x+aeFN(U+V)cFNW.
Thus FNW =g¢. Therefore zes'g-CI(F)=F. Hence yex+F. Thus we conclude that

x+F =s"g-Cl(x+F). This proves that x+F is s’g-closed setin X.

(2) Assume that xes'g-CI(AF). Let w be any s‘g-open neighborhood of y:%x in X. Since X

IS s"gITVS, there exist s"g-open sets U in K containing % and v in X containing x such that
UV cW. By hypothesis, (A1F)NV =¢. Therefore, there is an element ae(AF)NV. Thus ac AF and
aeV. Hence %aeF and %ae%v cUV cW. Therefore FNW =¢. Hence yes'g-CI(F)=F. Thus
xe AF and thereby, AF =s'g-Cl(AF). Hence AF e S"GC(X).

Corollary 3.10. Let (X.z) be an s‘g-irresolute topological vector space and let Ac X. Then
s*g-CI[x+s*g-CI(A)]=x+s*g-CI(A) for each xe X.

Theorem 3.11. Let (X(K),T) be an sg-irresolute topological vector space and S be a subspace of
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X. If s contains a non—empty s‘g-open subset of x, then S is sg-open in X.

Proof. Suppose U is a non—empty s‘g-open subset of X such that u < s. By Theorem 3.3(1), for
any yeS, U+y IS an s'g-open subset of X. Since S is a subspace of X, so also we have
U+ycs forany yes, Thus S=U{U+y:yeS} is s'g-open in X being a union of s"g-open sets.
Theorem 3.12. Let A be any subset of an sg-irresolute topological vector space X. Then the

following statements are true.

(1) x+s°g-Cl(A)=s"g-Cl(x+A), for any xe X.

(2) s'g-ClI(4A)=A[s'g-CI(A)], for any non-zero scalar A.

Proof. (1) By applying Theorem 3.9(1), x+s°g-CI(A) is s'g-closed. Hence x+Ac x+s'g-Cl(A)
implies s'g-Cl(x+A)c x+s°g-CI(A). For the reverse inclusion, let zex+s’g-CI(A). Then z=x+y,
for some yes'g-Cl(A). Let W be any s’g-open neighborhood of z in X. Then, there exist
s"g-open neighborhoods U and VvV of x and y respectively in X such that U+Vv cw. Since
yes'g-Cl(A), ANV =¢. Consider ac ANV. Then x+ae(x+A)N(U+V)c(x+A)NW. Therefore
we have (x+A)(\W =¢. Consequently, zes'g-Cl(x+A). Thus x+s'g-Cl(A) <s'g-Cl(x+A).
Hence, x+s°g-CI(A)=s"g-Cl(x+A).

(2) By Theorem3.9(2), 4[s'g-CI(A)] is s'g-closed. Therefore AAc[s'g-CI(A)] implies that
s'g-Cl(1A) < A[s'g-CI(A)]. Next, let xes'g-CI(A) and let W be any s'g-open neighborhood of
z=Ax in X. Then we get s"g-open sets U in K containing A and V in X containing X such
that UV cWw. Since xes'g-Cl(A), there is an element aecANv and thus
y=Aae(AA)N(AV)<c(AA)N(VV)c(AA)NW. Hence (AA)NW =¢. Therefore it follows that
2=2xes'g-CI(4A). Thus A[s'g-Cl(A)]<=s'g-CI(4A). Hence the assertion follows.

Theorem 3.13. Let (X(K),z’) be an s"g-irresolute topological vector space. Let A and B be subsets
of X. Then prove that s°g-Cl(A)+s’g-Cl(B)<s’g-Cl(A+B).

Proof. Let xes'g-CI(A) and yes'g-Cl(B). Let W be an s'g-open neighborhood of x+y. Then

there exist s'g-open neighborhoods U and vV of x and y respectively, such that U+Vv cw.

Since, xes’g-Cl(A), yes'g-CI(B), there are aeANU and beBNV. Then,
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a+be(A+B)N(U+V)c(A+B)NW. Thus we have (A+B)N\W=g¢. This implies that
x+yes'g-Cl(A+B). Hence eventually we obtain s"g-Cl(A)+s"g-Cl(B) = s'g-Cl(A+B).

Theorem 3.14. Let (X(K),z’) be an s*g-irresolute topological vector space. For given ye X and 1eK
with 1=0, each translation mapping T,:X —» X defined by T (x)=x+y and multiplication
mapping M, : X — X defined by M, (x)=4x, where xe X, is s’g-homeomorphism onto itself.

Proof. First, we show that T, : X — X is s’g-homeomorphism. It is obviously bijective. By Theorem
3.2 (1), T, is s'g-irresolute. Moreover, T, is pre-s'g-open because for any s'g-open set U, by
Theorem 3.3 (1), T,(U)=U +y is s"g-open. Similarly, we can prove that M, is s"g-homeomorphism.
Theorem 3.15. Let (X(K),z') be an s’g-irresolute topological vector space. Then any sg-open
subspace of X is s"g-closed in X.

Proof. Let G be an s'g-open subspace of X. Then by Theorem 3.3 (1), for any xe X -G, G+x
is s"g-open. We also clearly have xeG+xc X-G. Then, Z=U{G+x:xeX-G}=X-G being a
union of s*g-open sets is s*g-open. Therefore, G=X -z is s’g-closed.

Theorem 3.16. Let (X(K),z') be an s'g-irresolute topological vector space and B be an s’g-open set
in X. Then for any subset A of X ,we have A+B=s"g-Cl(A)+B.

Proof. Since we know that Acs’g-CI(A), so A+Bcs'g-Cl(A)+B.  Conversely, let
yes'g-Cl(A)+B and write y=X+b, where xes’'g-CI(A) and beB. There exists an s’g-open
neighborhood Vv of zero such that T, (V)=V +b<B. Now, V is s’g-open neighborhood of 0 in X,
this gives that -V is also s'g-open neighborhood of 0 in X. Then x-V is an s’g-open
neighborhood of x. Since xes'g-CI(A), so there exists an elementae AN(x-V). We know that
y=x+b=a-a+x+bea+V+bc A+B. Therefore, s°’g-CI(A)+Bc A+B. Hence, consequently, we
obtain A+B=s"g-CI(A)+B.

Theorem 3.17. Let (x(K),r) be an s"g-irresolute topological vector space. Then the scalar multiple
of s"g-closed set is s"g-closed.

Proof. Let B be an s'g-closed setin X and let 2eK—-{0}. Then X —B is s'g-open setin X. Now

M, (X —B)=A(X -B)=4X —AB=X - ABeS'GO(X ). Therefore, 1BeS'GC(X).
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Definition 3.18. A topological space (X,r) is said to be s‘g-compact if every cover of X by
s"g-open sets of X has a finite sub cover. A subset A of X is said to be s*g-compact relative to
X if every cover of A by s*g-open sets of X has a finite sub cover.

Theorem 3.19. Let (X.z) be an s'g-irresolute topological vector space and let A be any
s'g-compact set in X. Then prove that x+ A is s"g-compact for each xe X.

Proof. Let ©={U,:aeA} be an s'g-open cover of x+A Then AcU{-x+U,:ae4} and
{-x+U, 1@ e A} = S'GO(X). By hypothesis, AcU{-x+U, :ae4,} for some finite subset A c A.
Whence we find that x+ AcU{U, : @ € 4)}. This shows that x+ A is s’g-compact. Hence, the proof
is complete.

Theorem 3.20. Let (X(K),z’) be an s*g-irresolute topological vector space. The scalar multiple of
s*g-compact Set iS s*g-compact.

Proof. Let A be an s'g-compact subset of X. If A=0 we are nothing to prove. Assume
AeK-{0}. Let ¥={U,:aeA} be an  s'g-open cover of AA.  Then

Ag(%j(U&”):[%J(U{Ua:aeA}): U{(%jua:ae/l}. Since {U, :ae A4} cS'GO(X) and (X .7) is

s"gITVS, so we obtain {(%)Ud :aeA}gS*GO(X), By hypothesis A is s*g-compact, therefore there

exists a finite subset 4, < A such that Agu{(%jua :aer}. This implies that ZAcU{U, :a € 4)}.

Hence 1A is s’g-compact.

Definition 321 A mapping (X7 ) > (Y

%) is said to be linear if
f(ax+py)=af(x)+4f(y), forall x,yeX and a,BfecK.
Definition 3.22. A mapping f : X - K is called linear functional if f(ax+pgy)=af(x)+Af(y), for

all x,yeX and «,feK. The kernel of f is defined by Ker(f)={xeX: f(x)=0}.

Theorem 3.23. Let f :(X(K),rx)—>(Y

(K),ry) be a linear mapping such that f is s‘g-irresolute at O.

Then f is s'g-irresolute on X.

Proof. Let x be any non-zero element of X and v be any s'g-open set in Y containing f(x).



2795
s*g-IRRESOLUTE TOPOLOGICAL VECTOR SPACES

Since the translation of a s’g-open set in ans‘g-irresolute topological vector spaces is s*g-open,

—f(x) is s’g-open set in Y containing 0. Since f is s'g-irresolute at 0, there exists an s*g-open
set U in X containing 0 such that f(U)<V - f(x). Furthermore, the linearity of f implies that
f(x+U)cV. By Theorem 3.3 (1), x+U is s'g-open and hence f is s'g-irresolute at x. By
hypothesis, f is s'g-irresolute at 0. This reflects that f is s*g-irresolute.

Corollary 3.24. Let (X(K),r) be an s"g-irresolute topological vector space. Let f:X —K be alinear

function which is s’g-irresolute at 0. Then the set F={xe X : f(x)=0} is s"g-closed.

4. CHARACTERIZATIONS OF $*g-IRRESOLUTE TOPOLOGICAL VECTOR SPACES

In this section, we give some characterizations of s"g-irresolute topological vector spaces.
Theorem 4.1. Let (X,7) be an s'gITVS. For xe X, the following assertions are true:

1) If U es'g-N(x), then xeU.

2) If U es’g-N(x) and V is a neighborhood of x,then UNV esg-N(x).

3) If U es’g-N(x), then there exists v es’g-N(x)such that U es’g-N(y), forall yeV.

(
(
(
(4) If Ues'g-N(x) and U cV, then V es"g-N(x).
(5) If Ues’g-N(0), then AU es'g-N(0) for every non-zero element Z¢R.

(6) If Ues'g-N(x) and V is an s"g-neighborhood of x,then UNV es'g-N(x).

(7) U es'g-N(0) if and only if x+U es’g-N(x).

Proof. We will prove (2), (5) and (7) while the proofs of others follow easily.

(2) If U is an s g-neighborhood of x,and V is a neighborhood of x,then there is an s*g-open subset
A and an open set B such that xe Acuand xeBcV. Then xe ANBcUNV and r < S"GO(X).
Thus ANBeS'GO(X). Therefore UNV is an s"g-neighborhood of x.

(5) Let U be an s'g-neighborhood for zero. Then there exists an s*g-open neighborhood V of zero

such that v cU. Since the map M, : X — X,defined by M,(x)=2Ax, is s'g-irresolute. The inverse
map N,;X — X, defined by Nl(x)z%x,is also an s’g-irresolute. Thus M, is s"g-homeomorphism, for

each 21eR-{0}. Hence M, (V)=24V is an s'g-open neighborhood of zero. Furthermore, clearly
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AV < AJ.Thus consequently AU es'g-N(0).

(7) Suppose U is an s*g-neighborhood for zero. Then there exists an s*g-open neighborhood v of
zero such that v cu. Since the map T, :X — X, defined by T,(y)=y+Xx, is s'g-irresolute. The
inverse map S,;X — X, defined by S, (y)=x-y, is also an s'g-irresolute. Thus T, s
s"g-homeomorphism, for each xe X. Hence T,(V)=x+V is an s"g-open neighborhood for a point x.
Clearly x+V cx+U. Thus x+U eN,. The converse can be proved similarly.

Definition 4.2. A subset A of a topological vector space X is called balanced if and only if 1Ac A
for each 2eR such that ||<1.

Definition 4.3. A subset A of a topological vector space X is called absorbing if for all x < x there
exists a number &>0such that Axe Afor ||<e.

Definition 4.4. A set C of atopological vector space X is said to be convex, if and only if it contains
all segments between its points: xeC, yeC, for te[0,1] implies tx+(1-t)yeC, or equivalently

tC+(1-t)C < C,for all te[01]. A set C of a topological vector space X is said to be absolutely
convex if it is both convex and balanced.

Theorem 4.5. Let (X(K),r) be an sg-irresolute topological vector space. If a subset C of X is
convex, then s"g-CI(C) is also convex.

Proof. The convexity of C implies tC+(1-t)C <C. By Theorem 3.12 (2), and Theorem 3.13, it
follows  immediately  that  t[s'g-CI(C)]+(1-t)[s'g-CI(C)]= s'g-CI(tC)+ s’g-CI[ (1-t)C ]
s'g-CI[tC+(1-t)C]=sg-CI(C). Thus t[s'g-CI(C)]+(1-t)[s’g-CI(C)]=s'g-CI(C). Hence we
conclude that s°g-Cl(C) is convex.

Theorem 4.6. Let (X(K),z’) be an s’gITVvS. If a subset ¢ of X is convex, then s’g-Int(C) is also

convex.

Proof. By Theorem 3.7 (2), and Theorem 3.8, t[s'g-Int(C)]+(1-t)[s'g-Int(C)]= s'g-Int(tC)+
s'g-Int[ (1-t)C | < s'g-Int[tC+(1-t)C|=s"g-Int(C). Therefore s’g-Int(C) is convex.
Theorem 4.7. Let (X(R),r) be an s*gITVS. Then the following statements are equivalent:

(a) Every s’g-neighborhood U of zero is absorbing.
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(b) For every s'g-neighborhood U for zero, there exists a balanced set v es’g-N(0) such that
V cu.

Proof. (a) Suppose U is an s’g-neighborhood for zero. Then there exists an s‘g-open subset
V e N, such that v cU. By hypothesis X is an s'gITVS. So there exist s'g-open sets v, of R
containing zero and v, of X containing zero such that V,V, cV.The set v, contains an open
interval of the form (—&,&)for some &> 0. Therefore txeV cU for all te(-¢,¢)and for all xeV,.
This implies u is absorbing.

(b) Let U be an s'g-neighborhood of zero. By hypothesis X is an s’gITVvS. So there exist s"g-open
sets Vv, of R containing zero and V, of X containing zero such that V,V, cU.Then there exists
£>0 such that (-¢,s)cV,. Define w =Uf{tv, :teR|Jt <&}. Since tv, is an s’g-neighborhood of zero,
for t=0 and tv,cU for te(—¢,&). Thus W is an sg-neighborhood for zero and w cu. Now we
have to show that W is balanced. Let reR such that |r[<1. Let te(-¢,¢) and xeV,. Since
Irt|=|r[[t|<[t|<e. Thus r(tx)=(rt)xe(-¢,&)V,cW. This shows that rw cw. Therefore W is

balanced.

Theorem48. Let X be an  s'g-irresolute  topological  vector space. Then
5'g-ClI(A)=N{A+U :U es’g-N(0)}.

Proof. Assume xes'g-Cl(A), and let U be an s*g-neighborhood of zero. Then by Theorem 4.7(b),
there exits a balanced neighborhood V for zero such that v cu. Thus x+V is an s"g-neoghborhood
for x and xes'g-ClI(A), so (x+V)NA=g. Take ae(x+V)NA Then aex+V and aeA Let
a=x+v for some veV. Since V is balanced, so A-V=A+V. Take x=a+(-v)e A-V implies
xe A+V c A+U. Thus xe A+U, for any s'g-neighborhood U of zero. Therefore, we obtain
s'g-ClI(A)=N{A+U :U es'g-N(0)}.

Conversely if xes°g-CI(A), then there exists a balanced neighborhood U for zero such that
(x+U)NA=¢. Thus xe A-U = A+U. It follows that N{A+U :U es'g-N(0)} =s’g-CI(A). Thus we get
s'g-ClI(A)=N{A+U :U es’g-N(0)}.

Theorem 4.9. Let X be an s"gITVS. Then the following assertions are true.

(a) For every U es’g-N(0), there exists symmetric set v es’g-N(0) such that v +v cu.
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(b) For every U es'g-N(0),there exits an s"g-closed balanced set v es’g-N(0) such that v cu.

(c) Forevery U es'g-N(0), there exists symmetric set v es'g-N(0) such that v +v +v cu.

Proof. (a) Assume Ues'g-N(0). By hypothesis X is an s'gITvS. There exist s'g-open
neighborhoods v, and Vv, for zero in X such that v, +v, cU. Let V =V,N(-V,)NV,N(-V,). Then V is
a symmetric s"g-open neighborhood of zero and v +V cV,+V, cU.

(b)Let U be an s"g-neihborhood of zero in X. By part (a) there is s*g-neihborhood V for zero with
V +V cU. By Theorem 4.7 (b), there exits s*g-neihborhood W for zero which is balanced and w cv.
By Theorem 4.8, s'g-Cl(W)cW+V cV+VcU. This shows that U contains a s’g-closed

neighborhood of zero.

(c) Follows easily from (a).

Definition 4.10. A topological space (X,r) is called s’g-Hausdorff, if each two distinct points x and
y in X, there exist disjoint s*g-open sets u, V suchthat xeU and yeV.

Now we give some properties of s*g-Hausdorff space.

Theorem 4.11. Let X be an s'gITVS. Then the following statements are equivalent.

(a) X is s'g-Hausdorff.

(b) If xe X, x=0, then there exists U es"g-N(0) such that x¢U.

(c) If x,yeX, x=y, there exists v es"g-N(x)such that yeV.

Proof. By continuity of translation, it is sufficient to prove the equivalence between (a) and (b)
only.

(a)=(b): Assume x be a non-zero vector belongs to X. Therefore there are disjoint s’g-open sets
UV c X suchthat 0eU and xeV. Thus U es’g-N(0),V es’g-N(x) and x¢U.

(b)=>(a): Let x,ye X be such that x—y=0. Then there exists U es"g-N(0)such that x-y¢U. By
Theorem 4.9 (a), there exists s*g-neihborhood W of zero such that w +w cU. By Theorem 4.7 (b),
w can be assumed to be balanced. Let v,=x+w and Vv,=y+W. We note that v, es’g-N(x),
V, es'g-N(y) and v,NV, =¢, since if zeV,NV,, then z—xew and z-yeW. Since w is balanced,
S0 —(z—x)eW. It follows that x-y=(z-y)+[—(z-x)]eW +W cU, which is a contradiction. So, we

must have v, NV, =¢. Finally, by the definition of s’g-neihborhood, there exist V," v, e S’GO(X) such
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that xeV, cV,, yeV, cV,, and V, NV, =¢. This shows that the space X is s"g-Hausdorff. This

completes the proof.
The following result follows from Theorem 4.11.

Corollary 4.12. Let X be an s'gITvS. Then the following statements are equivalent.

(a) X is s"g-Hausdorff.

(b) N{U:U es’g-N(0)} ={0}.

(c) N{U:Ues'g-N(x)}={x}.

Theorem 4.13. An s'gITVS X is s'g-Hausdorff if and only if every one-point set in X is s"g-closed
in Xx.

Proof. Let xeXand ye X —{x}. Then y—x=0, and by assumption, there exists U <s’g-N(0) such
that y-xeU. By Theorem 4.9 (b), there exists an s’g-closed and balanced set v es"g-N(0) such
that v cu. It follows that y—xgV that is y-xe X -V. Thus ye(X -V)+{x}. But (X -V)+{x} is
s"g-open, since V is s'g-closed, and (X -V )+{x} = X —{x}. This shows that X —{x} is s"g-open. For
the converse, let xe x and assume that {x} is s'g-closed. Then by Theorem 4.8, {x}=s"g-Cl({x})=
N{U +{x}:U es’g-N(0)} =N{V :V e5°g-N(x)}, where V =U +{x} es’g-N(x). Then by Corollary 4.12,
X is s"g-Hausdorff. This completes the proof.

Since translation is an s’g-homeomorphism and as a consequence of Theorem 4.13, we have the

following result.

Corollary 4.14. An s*gITVS X is s"g-Hausdorff if and only if {0} is s"g-closed in X.

Theorem 4.15. Let C,K be disjoint sets in an s*gITVS X with C s'g-closed, K s‘g-compact. Then
there exists U es’g-N(0) with (K+U)N(C+U)=4.

Proof. If K=¢, then there is nothing to prove. Otherwise, let xeK by the invariance with
translation, we can assume x=0. Then X —C isan s°g-open neighborhood of zero. Since addition
Is s"g-irresolute and s’g-continuous, by 0+0+0=0, there is an s’g-open neighborhood U es"g-N(0)
such that 3u=U+U+UcX-C. By defining wW=UN(-U)cU we have that w is s"g-open
symmetric  and  3W=W+W+WcX-C.  This  means that  ¢={3x:xeW}NC=

{2x:xeW}N{y—-x:yeCxeW} oWN(C+W). This concludes the proof for a single point.
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Sine K is s’g-compact, then repeating the above argument for all xe K, we obtain symmetric
s'g-open sets V, such that (x+2V,)N(C+V,)=¢. The sets {V, :xeK} are an s’g-open covering of K,

but K is s"g-compact. Hence there is a finite number of points x eK, i=12,..,n, such that

(x+V,). Define the s'g-open neighborhood Vv of zero by Vzﬁvxi. Then we get

i=1

Kc

.C:

’L

n

(K+V)N(C+V)c U(x +V, +V)N(C+V)c U[(xi+2\/xl)(C+vxl )]zqﬁ. This completes the proof.

i=1 i=1

Lemma 4.16. If U is an s'g-open setand UNA=g¢, then UN[s'g-CI(A)]|=¢.

Proof. Suppose that there exists an xeU ﬂ[s*g-Cl(A)]. Then xes’g-CI(A) and U is an s'g-open
neighborhood of x and X-U is s'g-closed set containing A, hence s’g-CI(A)c X-U and
x¢5s°g-Cl(A) which is contradiction, hence U N[s’g-CI(A)]=4¢.

Corollary 4.17. Let C,K be disjoint sets in an s'gITVS X with C s’g-closed, K s‘g-compact. Then
there exists U €s°g-N(0) with [s'g-CI(K +U)]N(C+U)=4.

Proof. By Theorem 4.15, there exists Ues'g-N(0) such that (K+U)N(C+U)=¢. Now
C+U=U{y+U:yeC} is s'g-open set being a union of s"g-opensets. Then by Lemma 4.16, we
obtain [s'g-CI(K+U)]N(C+U)=¢.

Theorem 4.18. Let X be an s'gITvS. Let f:X —R be a non-zero linear map. Then f(G) is
s"g-open in R whenever G is s*g-open in X.

Proof. Let G be a nonempty s’g-open set. Then one can assume that there is x, € X —{0} such that
f(x)=1. For any acG, it is required to show that f(a)esg-Int[ f(G)]. Since Ges'g-N(a) by
Theorem 4.1 we have G-aes'g-N(0). By Theorem 4.7 (a) G —a is absorbing, that is, absorbs x,,
namely there exists an >0 such that ix, eG-a whenever 2eR with |4|<e. Now for any geR
with |g-f (a) <= We have (5-f(a))x, cG-ahence f[(5-Tf(a))x]ef(G-a). Since f is linear.
This implies that (58— f(a))f(x,)e f(G—a). So we get (B-f(a))(1)e f(G-a)=f(G)-f(a). This
implies that pef(G) and f(a)e(f-¢,B+¢). Thus f(a)eint| f(G)]c=s'g-Int[ f(G)]; hence
consequently f(G)=s'g-Int[ f(G)].

Lemma 4.19. [14]. Let X be vector space and ¢=K < X. For aeK,the following statements are
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equivalent.

(1) a is an extreme point of K.
(2) If x,yeKare such that a:%(x+y),then a=x=y.

(3) Let x,yeK be such that x=vy, let 21€(0,1) and a=Ax+(1-4)y.Then we have either 1=0 or
A=1

Theorem 4.20. Let X be an s'gITvs and C be a convex subset of X. Then [s'g-Int(C)]N(eC)=4.
Proof. If s’g-Int(C)=¢, then the result is trivial. Suppose that s’g-Int(C)=¢ and letxes’g-Int(C).
Then there exists V es’g-N(0) such that x+Vv cC. As the map @:R— X, where @(u)=ux is
continuous at =1, for this the s’g-Ineighborhood x+V, there is an r>0 such that uxex+V

whenever |—1/<r. In particular, we have (1+r)xex+V cCand (1-r)xex+V cC. Now consider
x=A(1+r)x+(1-2)(1-r)x and take ﬂ,:%. Consequently, we have x:%(1+r)x+(l—%j(l—r)x,

which implies that x is not an extreme point of C.

Theorem 4.21. Let X be an s'gITvS and W an s'g-neighborhood of 0. Then there is an
s"g-neighborhood U of 0 such that s"g-CI(U)<W. Equivalently, if C is a s'g-closed subset of X
and x a point of X outside C then there are disjoint s"g-open sets U, and U, with xeuU, and
Ccu,.

Proof. Let x be a point outside an s'g-closed set C < X. We will produce an s*g-open set U
containing x with s’g-CI(U)NC=¢; then U,=U and U,=X-s'g-Cl(U), the complement of the
s"g-closure of u, are disjoint s*g-open sets with xeU, and CcU,, as desired. We know that X

looks the same everywhere, so we may work with x=0. Let W be the complement of C. Then

W is an s'g-open Set with 0eW. By hypothesis X is s"gITVS. So by Theorem 4.9 (a), there exists
an s'g-open subset U of 0 such that u+U cw. This means that U+U is disjoint from C.

Equivalently, U is disjoint from C-U. For otherwise there would be an xeU which could be

expressed as c—y with ceC and yeU, which would imply that c=x+yeU+UcW is in W.
Now the set —~U is s'g-open because themap X — X : x—(-1)x=-x isan s'g-homeomorphism,and

hence so are all its translates x-U. So the set U,=C-U =U{c-U :ceC} is s'g-open, being the union
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of s"g-open sets. Thus we have found an s"g-open set U, =U containing 0 and an s"g-open set U,,
disjoint from u,, with ccu,.

Theorem 4.22. Let (X(K),r) be an s’gITVS. Then every s'g-open subspace S of X is also an
s"gITVS.

Proof. Let W be an s"g-open neighborhood of x+y in S where x,y are two distinct points in S.
Since S is an s*g-open subspace of X, then W is an s'g-open neighborhood of x+vy in X, and
by definition of s*gITVS, there exist s*g-open neighborhoods u of x in X and Vv of y in X such
that U +Vv cw. Then the sets G=UNS and H=VNS are s’g-open neighborhoods of x and y in
S such that G+HcU+V cW. Now suppose iek, xeS and let w be an s’g-open
neighborhood of Ax in S. Since S is an s°g-open subspace of X, then W is an s'g-open
neighborhood of Ax in X. Then there exist s"g-open neighborhoods U of 4 in K and v of y in
X such that Uv cw.Then the set G=UNS is an s’g-open neighborhood of A in K and the set

H=VNS isan s"g-open neighborhood of x in S. Also GHcUV cWw. Hence S isan s'gITVS.
Theorem 4.23. Suppose that (X,,r) is an s'giTvs. If scx is a linear subspace, then so is
s'g-CI(S).

Proof. Let S be a linear subspace of X. Thus s+scs and for all 2eK, A.ScS. By Theorem
3.13, s'g-CI(S)+s’g-Cl(S)cs'g-ClI(S+S)cs’g-CI(S). By Theorem 3.12, for every AeK,
A[s°g-CI(S)]=5"g-Cl(4S) =5°g-CI(S). Therefore, s'g-CI(S) is linear subspace of x.

Definition 4.24. Suppose that (X(K),r) isan s'gITvs. Asubset E < X is said to be bounded if for all

s"g-open sets V containing 0, there exists seR such that for all t>s, Ectv.That is, every
s"g-open neighborhood of zero contains E after being blown up sufficiently.
Theorem 4.25. Suppose that (X ,z) is an s'gITvs. If E is a bounded subset of X, then s'g-CI(E)

is bounded.

Proof. Let w be an s*g-open set containing 0, then by Theorem 4.21, there exists U es°g-N(0) such
that s°g-CI(U)<W.Since E is bounded, so EctU ct[s'g-CI(U)]<tw, for sufficiently large values

of t. It follows that for large enough t, s'g-Cl(E)<=s"g-Cl(tU)<t[s'g-CI(U) | <tw. Thus, s'g-CI(E)
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is bounded.

Theorem 4.26. Let (X,r) bean s'gITVS. Let V be an s"g-open neighborhood of zero in X. Then for

every sequence {r,:ne N} of positive real numbers such that r, — oo, [ JrV =X.

n=1

Proof. Let xe X and consider the sequence {r—xn:neN}. This sequence converges to 0 by the

s"g-irresoluteness Of the scalar multiplication FxX — X. Thus, for sufficiently large n, inev i.e.,
r

XerV.

Theorem 4.27. Let (X,7) be an s'gITvS. Then every s'g-compact set is bounded.

Proof. Let C be an s'g-compact subset of X. We need to prove that it is bounded, namely, that for
every s'g-open neighborhood V of 0, Cctv for sufficiently large t. Let V be an s'g-open
neighborhood of 0, then by Theorem 4.7(b), there exists a balanced s'g-open neighborhood W of
0 such that w cv.By Theorem 4.26, CgULnW. Since, Cis s‘g-compact, therefore there exists a
positive integer m such that c<lJT nw=n,J (n,/n,)WenWw. Thus, for all t>n,
CcnW =[t(n, /t) W ctw ctv,which implies that C is bounded.

Theorem 4.28. Let (X,z) be an s’gITvS. Then every Cauchy sequence in X is bounded.

Proof. Let {x,:neN} be a Cauchy sequence in x. Let w be an s’g-open neighborhood of zero,
then by Theorem 4.9 (a), there exists an s"g-open neighborhood V of 0 such that v +v cw. By
definition of a Cauchy sequence, there exists N such that for all mn>N, x,-x, eV and in
particular for all n>N, x, ex, +V. Set s>1such that x, esV,then for all n>N, x esvV+Vc

sV +sV < sw. Since for balanced sets sw <tw for s <t,and since every sg-open neighborhood of 0

contains a balanced neighborhood, this proves that the sequence is bounded.

Definition 4.29. Let X be a vector space over R. A non-negative real-valued function p defined
on Xisa pseudonorm if it satisfies the following two conditions.

(i) p(Ax)=|4|p(x), forall xe X and 1eR;

(ii) p(x+y)<p(x)+p(y).forall x,yeX.

Now, we introduce the notion of locally convex s'gITVS. Moreover, we give a necessary and
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sufficient condition, in terms of convex s"g-neighborhoods of 0, foran s'gITVS to be locally convex.
Definition 4.30. An s'gITvS (X,z) is locally convex if for all xe X, every Ses'g-N(x) contains a
convex set U es’g-N(x).

Theorem 4.31. An s'gITvS (X,7) is locally convex if and only if every Ses'g-N(0) contains a
convex set U es’g-N(0).

Proof. The sufficiency part is trivial. Let Ses’g-N(x). Then by Theorem 4.1 (7), S—xes’g-N(0)
and by assumption, there exists a convex set U es’g-N(0) such that U s -x. Hence by Theorem
4.1 (7) again, U+xes'g-N(x). As U+xcsS and as U+x is convex, (X,r) is a locally convex
s"gITVS.

Corollary 4.32. Inalocally convex s'gITVS (X,r), a pseudonorm p is s'g-irresolute ifand only if p
IS s"g-irresolute at zero.

Proof. If p is s’g-irresolute, then p is s'g-irresolute at zero. Conversely, suppose p is
s'g-irresolute  at 0, and let xex and VeN, (R). Then by Theorem 4.1 (7),
V—p(x)e Ny (R)=N_, (R) and thus (-¢,e)cV -p(x) for some &>0. Clearly (~¢,¢) being an open
setin Ris s'g-openset in R. By assumption, there exists U es’g-N(0) such that p(U)c(-¢.¢) and
as p(y)=0 for all yeu, p(U)<[0,&). Then by Theorem 4.1 (7), U+xes'g-N(x). For all yeu,
0<p(x+y)< p(x)+p(y)<p(x)+e, p(x+y)e[0,p(x)+&). Therefore it follows that p(U +x)cV.
Definition 4.33. Let A be an absolutely convex subset of a vector space X. Then the functional
defined by p(x)=inf {1:1>0,xe AA}is called the gauge of A.

Lemma 4.34. [14]. In a vector space X, the gauge of an absolutely convex and absorbent subset is

a pseudonorm.

Now, we prove the main result in which we characterize absolutely convex and absorbent

s"g-neoghborhoods Of zero in terms of their s*g-irresolute gauges.
Theorem 4.35. Let p be a gauge of an absolutely convex and absorbent subset U of an s'gITVvS
(X,7). Then p is sg-irresolute if and only if U is an s*g-neighborhood of zero.

Proof. If p is s°g-irresolute, then as (~11) isan s’g-opensetin R. V ={x: p(x)<1}=p*[(-L1)] isan
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s"g-open subset of X. Thus as v cU, U es’g-N(0). Conversely, if U es’g-N(0) and &> 0,then by
Theorem 4.1 (5), V=¢U es’g-N(0) and p(x)<e for all xeV. Thus p(V)c(-¢.). Hence, p is
s'g-irresolute at zero. By Lemma 4.34, p is a pseudonorm and by Corollary 4.32, p is

s*g-irresolute at each xe x. Therefore p is s*g-irresolute.
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