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1. INTRODUCTION 

The concept of topological vector spaces was introduced by Kolmogroff in 1934 [19]. Its 

properties and characterizations were studied and investigated by many different mathematicians. 

Due to its large number of exciting and interesting properties and characterizations, it has been 

used in different advanced branches of mathematics like fixed point theory, operator theory, 

variational inequalities, differential calculus, etc.  The researchers not only make use of topological 

vector spaces in many other fields to develop new concepts but also stretch and extend this notion 

in every possible way to make the field of study a more convenient and understandable. In 2008, 

M. Khan, T. Nori, and M. Hussain [16] introduced s g closed
­ sets and s g open

­ sets in topological 

spaces and showed that the family of all  s g open
­  subsets of a topological space ( )X ,  forms a 
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topology on X  which is finer than .  Also, they studied some characterizations and basic 

properties of s g open
­  sets and s g closed

­  sets. They also used these sets to define and study a new 

class of functions, namely, s g continuous
­ functions as well as  s g Normal

­  spaces. We introduce 

s g irresolute
­  topological vector spaces by using s g open

­  sets and investigate several general properties and 

characterizations of this notion of s g irresolute
­  topological vector space.  We also give several 

characterizations of s g Hausdorff
­  spaces. Furthermore, we show that the extreme point of the 

convex subset of s g irresolute
­  topological vector space X lies in the boundary spaces.  

 

2. s*g-OPEN SETS IN TOPOLOGICAL SPACES 

The  ( )X ,  and  ( )Y ,  ( )or simply, X and Y  denote topological spaces on which no separation 

axioms are assumed unless explicitly stated.  A subset A  of a topological space ( )X ,  is said to be 

open if A .   A subset A  of a topological space X  is said to be closed if the set cA X A= −  is open.  

The interior of a subset A  of a topological space X  is defined as the union of all open sets 

contained in A.  It is denoted by ( )Int A .  The closure of a subset A  of a topological space X  is 

defined as the intersection of all closed sets containing A. It is denoted by ( )Cl A .  

We start recalling the following definitions and results from  16 , which are necessary for this study 

in the sequel. 

Definition 2.1.  A subset A  of a topological space ( )X ,  is said to be ­semi open  set if 

( )A Cl Int A .     ( )SO X  represents the collection of all ­semi open sets in X .  

Definition 2.2.  A subset A  of a topological space ( )X ,  is said to be  semi closed­  set  if X A−  is 

semi open.­ ( )SC X  represents the collection of all semi closed­  sets in X .  

Definition 2.3.  A subset A  of a topological space ( )X ,  is said to be  open­  set if 

( )( )A Int Cl Int A .     

Definition 2.4.  A subset A  of a topological space ( )X ,  is said to be  closed­  set if X A− `is 

open. ­  

Definition 2.5. Let ( )X ,  be a topological space. A subset A  of X  is said to be generalized closed 

(briefly, g closed­ ) if ( )Cl A U  whenever A U and U is open in X . The complement of a 
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g closed­ set is g open.­  

Definition 2.6. Let ( )X ,  be a topological space. A subset A  of X  is said to be generalized 

semi closed­  (briefly, gs closed­ ) if ( )sCl A U  whenever A U and U is open in X .  The 

complement of a gs closed­ set is gs open.­   

Definition 2.7.  Let ( )X ,  be a topological space. A subset A  of X  is said to be generalized 

closed­  (briefly, g closed­ ) if  ( )Cl A U ­  whenever A U and U is open­  in X .  The 

complement of a g closed­ set is g open.­   

Definition 2.8. Let ( )X ,  be a topological space. A subset A of X  is said to be s g closed
­   if  

( )Cl A G  whenever A G and G  is semi open­  in X .  The collection of all s g closed
­  subsets of X  

is denoted by ( )S GC X .  

Definition 2.9.  Let ( )X ,  be a topological space and A X.  Then the s g closure
­  of A, denoted by 

( )s g Cl A
­  is the intersection of all s g closed

­  subsets of X  which contain A.   

Definition 2.10. Let ( )X ,  be a topological space. A subset A  of X  is said to be s g open
­  if  X A−  

is  s g closed ,
­  or equivalently, if ( )G Int A  whenever G A  and G  is semi closed­  in X .  The 

collection of all s g open
­  subsets of  X  is denoted by ( )S GO X .   

Definition 2.11.  Let ( )X ,  be a topological space and A X.  Then the s g interior
­  of A, denoted by 

( )s g Int A
­  is the union of all s g open

­  subsets of X which are contained in A.   

Definition 2.12.  23  A subset A  of a topological space ( )X ,  is said to be: 

( )i  An s g open 
­ ­  set if ( )( )A s g Int Cl s g Int A .  

 
­ ­  

( )ii  A pre s g open
­ ­  set if ( )A s g Int Cl A .   ­  

( )iii  A b s g open
­ ­  set if ( ) ( )A s g Int Cl A Cl s g Int A .       ­ ­  

( )iv  A s g open 
­ ­  set if ( )( )A Cl s g Int Cl A .   ­  

Theorem 2.13.  The union of two s g closed
­  sets (and hence the finite union of s g closed

­ sets) in 

a topological space ( )X ,  is s g closed.
­  

Proof .  Let A and B  be any two s g closed
­  sets in a topological space ( )X , .  Let G be a 

semi open­ set containing A B.  Then ( )Cl A G  and ( )Cl B G  implies that ( )Cl A B G.  This 
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proves that A B  is s g closed.
­  

Theorem 2.14.  An arbitrary intersection of  s g closed
­  sets in a topological space X is s g closed.

­  

Proof .  Theorem 3.12 in  16 .   

 Corollary 2.15.  For any space ( )X , ,  ( )S GO X  is a topology on X .  

Remarks 2.16. ( )1 We summarize the fundamental relationships between several types of 

generalized closed sets in the following diagram. None of the implications is reversible. 

closed s g closed g closed

closed g closed gs closed 

⎯⎯→ ⎯⎯→

 

⎯⎯→ ⎯⎯→

­ ­

­ ­ ­

 

( )2  The following diagram represents the fundamental relationships between several types of open 

sets and s g open
­  sets. None of the implications is reversible. 

open open pre open b open open

pre bs g

s g open s g open s g open s g openopen

 

 

   

⎯⎯→ − ⎯⎯→ − ⎯⎯→ − ⎯⎯→ −

    

− − − −
⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→

­

­ ­ ­ ­

 

Definition 2.17.  Let ( )X ,  be a topological space and let x X .  A subset A of X  is said  to be 

s g neighborhood
­  of x  if there exists an s g open

­  set G  such that x G A.     

The set of all  s g neighborhoods
­  of x X  is called s g neighborhood

­  system at x  and is denoted  by  

( )  s g N x A X : A is s g neighborhood of x . = ­ ­  

Remark 2.18.  Every neighborhood A  of x X is s g neighborhood
­  of x.  But in general, an 

s g neighborhood
­  A  of x X need not be a neighborhood of x  in X .   

Theorem 2.19.   Let ( )X ,  be a topological space and A,B X.  Then the following assertions are 

true. 

( )1 ( )s g Int X X =­  and ( )s g Int .  =­    

( )2 ( ) ( )Int A s g Int A A. ­  

( )3 ( ) ( )A s g Cl A Cl A . ­  

( )4  If B is any s g open
­  set contained in A,  then ( )B s g Int A . ­   
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( )5 A  is s g closed
­  if and only if ( )s g Cl A A. =­  

( )6  If A B,  then ( ) ( )s g Int A s g Int B . ­ ­  

( )7 ( ) ( )s g Int s g Int A s g Int A .    = ­ ­ ­  

( )8  A  is s g open
­ if and only if ( )s g Int A A. =­  

( )9  ( )s g Cl X X =­  and ( )s g Cl .  =­          

( )10  If B is any s g closed
­  set containing A,  then ( )s g Cl A B. ­  

( )11  If A B,  then ( ) ( )s g Cl A s g Cl B . ­ ­  

( )12 ( ) ( )s g Cl s g Cl A s g Cl A .    = ­ ­ ­  

( )13  ( ) ( ) ( )s g Int A B s g Int A s g Int B  =­ ­ ­ and ( ) ( ) ( )s g Cl A B s g Cl A s g Cl B .  =­ ­ ­   

( )14 ( ) ( )X s g Int A s g Cl X A . − = −­ ­  

( )15 ( ) ( )X s g Cl A s g Int X A . − = −­ ­  

( )16  ( )x s g Cl A ­  if and only if for every s g open
­  set U  containing x,  U A .   

( )17  ( )x s g Int A ­  if and only if there is an s g open
­  set U  in X  such that x U A.      

( )18  ( ) ( )s g Cl U s g Cl U  

 

 
­ ­  and ( ) ( )s g Int U s g Int U .  

 

 
­ ­  

Definition 2.20  A mapping ( ) ( )f : X , Y , →  is called s g irresolute
­  at a point x X  if for all 

s g open
­  subsets V  in Y containing ( )f x ,  there is an s g open

­  subset U of X such that x U  and

( )f U  is a subset of  V . The function f  will be called s g irresolute
­  if f  is s g irresolute

­  at each 

point x X .   

Theorem 2.21.   Let ( ) ( )f : X , Y , →  be a function. Then the following statements are equivalent.  

( )1  f  is s g irresolute.
­  

( )2  For each x X and each s g neighborhood
­ V  of ( )f x  in Y ,  there is an s g neighborhood

­  U  of  

x  such that  ( )f U V.  

( )3  The inverse image of every s g closed
­ subset of Y is an s g closed

­  subset of X .  

( )4   The inverse image of every s g open
­ subset of Y is an s g open

­  subset of X . 

Definition 2.22. A function ( ) ( )f : X , Y , →  is called s g continuous
­  if ( )1f V−  is s g open

­ set in X

for every open set V in Y .  
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Proposition 2.23.  A function ( ) ( )f : X , Y , → is called s g continuous
­ if and only if ( )1f V−  is 

s g closed
­  set in X for every closed set V in Y .  

Definition 2.24.  A function ( ) ( )f : X , Y , → is called Pre s g open
­ ­  if  and only if  the image set 

( )f U  is s g open
­  set in Y  for every s g open

­  set U in X . 

Proposition 2.25.  A bijection function ( ) ( )f : X , Y , → is called s g homeomorphism
­  if f  is  

pre s g open
­ ­  and s g irreseolute.

­   

Theorem 2.26.  Let ( )X ,  be a topological space. Then the family ( )S GO X ,  of all s g open
­

subsets of X  forms a topology on X . 

Proposition 2.27.  A subset A  of a topological space ( )X ,  is s g open
­  if and only if it is an 

s g neighborhood
­  of each of its points.  

Proof .  :  If A  is s g open
­  in X , then  x A A   for each x A.  Thus A  is an s g neighborhood

­  

of each of its points.   

Conversely, suppose that A  is an s g neighborhood
­  of each of its points. Then for each x A,  there 

exists an s g open
­  set 

xU  in X  such that 
xx U A.   Hence xx A

U A.


  Since xx A
A U ,


  

therefore xx A
A U .


= Thus A  is an s g open

­  set in X ,  since it is a union of s g open
­ sets. 

 

3. PROPERTIES OF s*g-IRRESOLUTE TOPOLOGICAL VECTOR SPACES 

In this section, we define and investigate some basic properties of s g irresolute
­  topological vector 

spaces. 

Definition 3.1.  A topological space ( )( )K
X ,  is called s g irresolute

­  topological vector space 

( )s gITVS  whenever the following conditions are satisfied. 

( )1  for each x,y X  and for each s g open
­  neighborhood W  of +x y  in X ,  there exist s g open

­  

neighborhoods  U  and  V  in X  of x  and y  respectively, such that U V W.+   

( )2  for each x X ,  K  and for each s g open
­  neighborhood  W  of x  in X , there exist s g open

­  

neighborhoods U of   in K  and V of x  in X , such that U.V W.  

Theorem 3.2.   Let ( )( )K
X ,  be an s g irresolute

­  topological vector space. Then the following 

assertions are true. 
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( )1  The (left) right translation mapping  
xT : X X→  defined by ( )xT y y x;= + for all x,y X ,  is 

s g irresolute.
­  

( )2  The multiplication mapping M : X X , →  defined by ( )M x x, =  for all x X , is s g irresolute.
­  

Proof .  ( )1  Let W  be an s g open
­  neighborhood of ( )xT y x y.= +  Then by definition, there exist 

s g open
­  neighborhoods U  and V in X  containing y  and x  respectively, such that U V W.+   

This gives that ( )xT U U x U V W.= +  +   This proves that, 
xT : X X→  is an s g irresolute

­  mapping.    

( )2  Let x X ,  K.  Then ( )M x x. =  Let W  be any s g open
­  neighborhood  of x.  Then by 

definition of s gITVS,  there exist  s g open
­  neighborhoods U  in K  of   and V in X of x,  such 

that U.V W.  This gives that ( )M V V U.V W. =    This proves that M : X X →  is an 

s g irresolute
­  mapping. 

Theorem 3.3.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space.  Let ( )A S GO X .  Then the 

following statements are true. 

( )1  ( )x A S GO X ,+   for every x X .  

( )2  ( )A S GO X ,   for every −non zero  scalar K.  

Proof .  ( )1  Let  +y x A. Then = +y x a  for some a A. By definition of s g irresolute
­  topological 

vector spaces, there exist s g open
­  sets U  and V  in X  containing x−  and y  respectively such 

that U V A.+   This gives x V U V A.− +  +   This implies y V x A.  +  Therefore 

( )y s g Int x A . +­  Hence, ( )x A s g Int x A .+ = +­  This proves that +x A  is s g open
­  in X .     

( )2  Let x A.  Then =x a  for some a A.  Thus 
1

a x A.


=   By definition of s g irresolute
­  

topological vector spaces, there exist s g open
­  sets U  in K  containing 

1


 and V  in X  containing 

x  such that U.V A.  This implies that 
1 1

a x V U .V A.
 

=     Hence x V A.  Thus we obtain 

( )x s g Int A . ­  Therefore, it follows that ( )A s g Int A .  ­  Hence, ( )A s g Int A . = ­  This shows 

that  ( )A S GO X .   

Corollary 3.4. Let ( )( )K
X ,  be an s g irresolute

­  topological vector space. Let A  be an s g open
­  

subset of X . Then the following statements are true.  
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( )1  ( )x A s g Cl s g Int x A  +  + ­ ­  for each x X .  

( )2  ( )A s g Cl s g Int A     ­ ­  for any non-zero scalar .  

Theorem 3.5.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space. Let  ( )A S GO X  and B  be 

any subset of X . Then prove that ( )A B S GO X .+   

Proof.  Suppose  ( )A S GO X  and B X.  Then, for each b B  and by Theorem 3.3 (1), we have 

( )A b S GO X .+   Then  A B A b : b B+ = +   is a union of s g open
­  sets. Since arbitrary union of 

s g open
­  sets is s g open,

­  therefore A B+  is s g open
­  in X .  

Corollary 3.6.  Suppose ( )( )K
X ,  is an s g irresolute

­  topological vector space and let ( )A S GO X .  

Then the set ( )
1n

U nA


=
=  is s g open

­  in X . 

Theorem 3.7.  Let ( )( )K
X ,  be an s g irresolute

­ topological vector space. Let A X.  Then the 

following statements are true. 

( )1  ( ) ( )s g Int x A x s g Int A , + = +­ ­  for any x X .  

( )2  ( ) ( )s g Int A s g Int A ,   =  ­ ­  for any non-zero scalar K.  

Proof . ( )1  By ( )Theorem 3.3 1 ,  ( )x s g Int A+ ­  is s g open.
­  Therefore ( )x s g Int A x A+  +­  implies 

( ) ( )x s g Int A s g Int x A . +  +­ ­  Now let ( )z s g Int x A . +­  Then = +z x y  for some y A.  By 

definition of s gITVS,  there exist s g open
­  sets U  and V  in X  containing x  and y  respectively, 

such that ( )U V s g Int x A .+  +­  This gives that ( )z x y x V s g Int x A x A.= +  +  +  +­  Therefore it follows 

that ( ) ( )V x s g Int x A x x A A. − + +  − + + =­  Since V is s g open,
­  then ( )V s g Int A ­ and therefore 

( )y s g Int A . ­  Thus ( )x z s g Int A .− +  ­ Hence ( )z x s g Int A . + ­ Therefore, it follows that 

( ) ( )s g Int x A x s g Int A . +  +­ ­  Consequently, we conclude that ( ) ( )s g Int x A x s g Int A . + = +­ ­  

( )2  By ( )Theorem 3.3 2 ,  ( )s g Int A   ­  is s g open.
­  Thus ( )s g Int A A    ­  implies that 

( ) ( )s g Int A s g Int A .     ­ ­  Next, if ( )y s g Int A , ­  then =y x  for some x A.  By definition of  

s gITVS,  there exist s g open
­  sets  U of   in K and V  of x  in X  such that ( )U.V s g Int A . ­  

Therefore, ( )y x V U.V s g Int A A.   =    ­  This implies that x V A.   Since V  is s g open.
­  

Thus ( )x s g Int A . ­  Consequently, ( )y x s g Int A .   =   ­  Therefore we obtain 
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( ) ( )s g Int A s g Int A .     ­ ­  Hence we conclude that  ( ) ( )s g Int A s g Int A .   =  ­ ­   

Theorem 3.8.  Let 
( )( )K

X ,  be an s g irresolute
­ topological vector space.  Let A,B X.  Then   

( ) ( ) ( )s g Int A s g Int B s g Int A B .  +  +­ ­ ­  

Proof .  We know that ( )s g Int A A ­  and ( )s g Int B B. ­  Hence we obtain  

( ) ( )s g Int A s g Int B A B. +  +­ ­  By Theorem 3.5, ( ) ( )s g Int A s g Int B +­ ­  is s g open.
­  Therefore we 

have ( ) ( ) ( ) ( ) ( )s g Int A s g Int B s g Int s g Int A s g Int B s g Int A B .      + = +  + ­ ­ ­ ­ ­ ­ Thus we get 

( ) ( ) ( )s g Int A s g Int B s g Int A B .  +  +­ ­ ­  

Theorem 3.9.  Let F  be any s g closed
­  subset of an s g irresolute

­  topological vector space X . Then 

the following statements are true. 

( )1  ( )x F S GC X ,+   for every x X .    

( )2  ( )F S GC X ,   for each non – zero scalar K.  

Proof.  ( )1  Suppose that ( )y s g Cl x F . +­  Consider z x y= − +  and let W  be any s g open
­  set in X  

containing z.  Then there exist s g open
­  sets U  and V  in X  such that x U,−  y V  and 

U V W.+   Since ( )y s g Cl x F , +­  ( )x F V .+   So, there is an element ( )a x F V. +  Thus 

 +a x F  and a V.  Hence x a F− +   and x a U V .− +  +  Therefore ( )x a F U V F W.− +  +   

Thus F W .  Therefore ( )z s g Cl F F. =­  Hence y x F. +  Thus we conclude that 

( )x F s g Cl x F .+ = +­  This proves that +x F  is s g closed
­  set in X . 

( )2  Assume that ( )x s g Cl F . ­  Let W  be any s g open
­  neighborhood of 

1
y x


=  in X .  Since X  

is s gITVS,  there exist s g open
­  sets U  in K  containing 

1


 and V  in X  containing x  such that 

U.V W.  By hypothesis, ( )F V .   Therefore, there is an element ( )a F V.  Thus a F  and 

a V.  Hence 
1

a F


  and 
1 1

a V U .V W .
 

    Therefore F W .  Hence ( )y s g Cl F F. =­  Thus 

x F  and thereby, ( )F s g Cl F . = ­  Hence ( )F S GC X .   

Corollary 3.10.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space and let A X.  Then 

( ) ( )s g Cl x s g Cl A x s g Cl A   + = + ­ ­ ­  for each x X .    

Theorem 3.11.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space and S  be a subspace of 
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X . If S  contains a −non empty  s g open
­  subset of X , then S  is s g open

­  in X .     

Proof .  Suppose U  is a −non empty  s g open
­  subset of X  such that U S.  By ( )Theorem 3.3 1 ,  for 

any y S ,  U y+  is an s g open
­  subset of X .  Since S  is a subspace of X ,  so also we have 

U y S+   for any y S , Thus  S U y : y S= +   is s g open
­  in X  being a union of s g open

­  sets.   

Theorem 3.12.  Let A  be any subset of an s g irresolute
­  topological vector space X .   Then the 

following statements are true. 

( )1  ( ) ( )x s g Cl A s g Cl x A , + = +­ ­  for any x X . 

( )2  ( ) ( )s g Cl A s g Cl A ,   =  ­ ­  for any non-zero scalar .   

Proof .  ( )1  By applying ( )Theorem 3.9 1 ,  ( )x s g Cl A+ ­  is s g closed.
­  Hence x A+  ( )x s g Cl A+ ­  

implies ( ) ( )s g Cl x A x s g Cl A . +  +­ ­  For the reverse inclusion, let ( )z x s g Cl A . + ­  Then = +z x y, 

for some ( )y s g Cl A . ­  Let W  be any s g open
­  neighborhood of z  in X .  Then, there exist 

s g open
­  neighborhoods U  and V  of x  and y  respectively in X  such that U V W.+   Since 

( )y s g Cl A , ­  A V .  Consider a A V .  Then ( ) ( ) ( )x a x A U V x A W.+  + +  +   Therefore 

we have  ( )x A W .+   Consequently, ( )z s g Cl x A . +­  Thus ( )x s g Cl A+ ­  ( )s g Cl x A . +­  

Hence, ( ) ( )x s g Cl A s g Cl x A . + = +­ ­   

( )2  By ( )Theorem 3.9 2 , ( )s g Cl A   ­  is s g closed.
­  Therefore ( )A s g Cl A     ­  implies that 

( ) ( )s g Cl A s g Cl A .     ­ ­  Next, let ( )x s g Cl A ­  and let W  be any s g open
­  neighborhood of  

=z x  in X .  Then we get s g open
­  sets U  in K  containing   and V  in X  containing x  such 

that U .V W .  Since ( )x s g Cl A , ­  there is an element a A V  and thus 

( ) ( ) ( ) ( ) ( )y a A V A UV A W.    =     Hence ( )A W .  Therefore it follows that 

( )z x s g Cl A . =  ­  Thus  ( ) ( )s g Cl A s g Cl A .     ­ ­  Hence the assertion follows.  

Theorem 3.13.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space. Let A  and B  be subsets 

of X .  Then prove that ( ) ( ) ( )s g Cl A s g Cl B s g Cl A B .  +  +­ ­ ­    

Proof .  Let ( )x s g Cl A ­  and ( )y s g Cl B . ­  Let W  be an s g open
­  neighborhood of +x y.  Then 

there exist s g open
­  neighborhoods U and V  of x  and y  respectively, such that U V W.+    

Since, ( )x s g Cl A , ­  ( )y s g Cl B , ­  there are a A U  and b B V .  Then, 
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( ) ( ) ( )a b A B U V A B W.+  + +  + Thus we have ( )A B W .+   This implies that

( )x y s g Cl A B .+  +­  Hence eventually  we obtain ( ) ( ) ( )s g Cl A s g Cl B s g Cl A B .  +  +­ ­ ­  

Theorem 3.14.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space. For given y X  and K

with 0 ,  each translation mapping yT : X X→  defined by ( )yT x x y= +  and multiplication 

mapping M : X X →  defined by ( )M x x, =  where x X , is s g homeomorphism
­  onto itself. 

Proof .  First, we show that yT : X X→  is s g homeomorphism.
­  It is obviously bijective. By Theorem 

3.2 (1), yT  is s g irresolute.
­  Moreover, yT  is pre s g open− ­  because for any s g open

­  set U ,  by 

Theorem 3.3 (1), ( )yT U U y= +  is s g open.
­  Similarly, we can prove that M

 is s g homeomorphism.
­  

Theorem 3.15.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space. Then any s g open
­  

subspace of X  is s g closed
­  in X . 

Proof.  Let G  be an s g open
­  subspace of X . Then by Theorem 3.3 (1), for any x X G, −   G x+  

is s g open.
­  We also clearly have x G x X G. +  −  Then,  Z G x : x X G X G= +  − = −  being a 

union of s g open
­ sets is s g open.

­  Therefore, G X Z= −  is s g closed.
­  

Theorem 3.16.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space and B  be an s g open
­  set 

in X . Then for any subset A  of X ,we have ( )A B s g Cl A B.+ = +­  

Proof .  Since we know that ( )A s g Cl A , ­  so ( )A B s g Cl A B.+  +­   Conversely, let 

( )y s g Cl A B +­  and write = +y x b,  where ( )x s g Cl A ­  and b B.  There exists an s g open
­  

neighborhood V  of zero such that ( )bT V V b B.= +   Now, V  is s g open
­  neighborhood of 0  in X , 

this gives that −V is also s g open
­  neighborhood of 0  in X .  Then −x V is an s g open

­

neighborhood of x.  Since ( )x s g Cl A , ­  so there exists an element ( )a A x V . −  We know that 

y x b a a x b a V b A B.= + = − + +  + +  + Therefore, ( )s g Cl A B A B. +  +­  Hence, consequently, we 

obtain ( )A B s g Cl A B.+ = +­  

Theorem 3.17.  Let 
( )( )K

X ,  be an s g irresolute
­  topological vector space. Then the scalar multiple 

of s g closed
­  set is s g closed.

­   

Proof .  Let B  be an s g closed
­  set in X  and let  0K . −  Then X B−  is s g open

­  set in X .  Now 

( ) ( ) ( )M X B X B X B X B S GO X .     − = − = − = −   Therefore,  ( )B S GC X .   
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Definition 3.18.  A topological space ( )X ,  is said to be s g compact
­  if every cover of X   by 

s g open
­  sets of  X  has a finite sub cover.  A subset A  of X  is said to be s g compact

­  relative to 

X  if every cover of A  by s g open
­  sets of X has a finite sub cover. 

Theorem 3.19.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space and let A  be any 

s g compact
­  set in X . Then prove that +x A  is s g compact

­  for each x X .  

Proof.  Let  U :  =   be an s g open
­ cover of x A.+  Then  A x U :   − +   and 

  ( )x U : S GO X .   − +    By hypothesis,  0A x U :   − +   for some finite subset 
0 .   

Whence we find that  0x A U : .  +    This shows that +x A  is  s g compact.
­  Hence, the proof 

is complete.  

Theorem 3.20.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space. The scalar multiple of 

s g compact
­  set is s g compact.

­  

Proof .  Let A  be an s g compact
­  subset of X .  If 0=  we are nothing to prove.  Assume 

 0K . −  Let  U :  =   be an s g open
­  cover of A.  Then 

( )  ( )
1 1

A U :  
 

   
 =  =   
   

 
1

U : .  


  
  

  
 Since   ( )U : S GO X      and ( )( )K

X ,  is 

s gITVS,  so we obtain ( )
1

U : S GO X ,  


  
   

  
 By hypothesis A  is s g compact,

­  therefore there 

exists a finite subset 
0   such that 0

1
A U : .  



  
   

  
 This implies that  0A U : .     

Hence A  is s g compact.
­  

Definition 3.21.  A mapping ( )( ) ( )( )X YK K
f : X , Y , →  is said to be linear if 

( ) ( ) ( )+ = +f x y f x f y ,     for all x,y X  and , K.   

Definition 3.22.  A mapping f : X K→  is called linear functional if ( ) ( ) ( )f x y f x f y ,   + = +  for 

all x,y X  and , K.    The kernel of f  is defined by ( ) ( ) 0Ker f x X : f x .=  =  

Theorem 3.23.  Let ( )( ) ( )( )X YK K
f : X , Y , →  be a linear mapping such that f  is s g irresolute

­   at 0.  

Then f  is s g irresolute
­  on X .  

Proof.  Let  x  be any non-zero element of X  and V  be any s g open
­  set in Y  containing ( )f x . 
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Since the translation of a s g open
­  set in an s g irresolute

­  topological vector spaces is s g open,
­  

( )V f x−  is s g open
­  set in Y containing 0.  Since f  is s g irresolute

­  at 0, there exists an s g open
­  

set U  in X  containing 0  such that ( ) ( )f U V f x . −  Furthermore,  the linearity of  f implies that  

( )f x U V.+   By Theorem 3.3 (1), +x U  is s g open
­  and hence f  is s g irresolute

­  at x.  By 

hypothesis, f  is s g irresolute
­  at 0.  This reflects that f  is s g irresolute.

­  

Corollary 3.24.  Let ( )( )K
X ,  be an s g irresolute

­  topological vector space. Let  f : X K→  be a linear 

function which is s g irresolute
­  at 0.  Then the set ( ) 0F x X : f x=  =  is s g closed.

­    

 

4. CHARACTERIZATIONS OF s*g-IRRESOLUTE TOPOLOGICAL VECTOR SPACES 

In this section, we give some characterizations of s g irresolute
­ topological vector spaces. 

Theorem 4.1.  Let ( )X ,  be an s gITVS.  For x X ,  the following assertions are true: 

( )1  If ( )U s g N x , ­  then x U.  

( )2  If ( )U s g N x ­  and V is a neighborhood  of x, then ( )U V s g N x . ­  

( )3  If ( )U s g N x , ­  then there exists ( )V s g N x ­ such that ( )U s g N y , ­  for all  y V .  

( )4  If ( )U s g N x ­  and U V,  then ( )V s g N x . ­   

( )5  If ( )0U s g N , ­  then  ( )0U s g N  ­  for every non-zero element R.   

( )6  If ( )U s g N x ­  and V is an s g neighborhood
­  of x, then ( )U V s g N x . ­  

( )7  ( )0U s g N ­  if and only if ( )x U s g N x .+  ­  

Proof . We will prove ( )2 ,  ( )5  and ( )7  while the proofs of others follow easily. 

( )2  If U is an s g neighborhood
­  of x,and V is a neighborhood of x, then there is an s g open

­ subset 

A  and an open set B  such that x A U  and x B V.   Then x A B U V   and ( )S GO X . 

Thus ( )A B S GO X .  Therefore U V is an s g neighborhood
­  of  x.  

( )5  Let U  be an s g neighborhood
­  for  zero. Then there exists an s g open

­  neighborhood V  of zero 

such that V U.  Since the map M : X X , → defined by ( )M x x, =  is s g irresolute.
­  The inverse 

map N ;X X , →  defined by ( )
1

N x x,


= is also an s g irresolute.
­ Thus M  is s g homeomorphism,

­  for 

each  0R . −  Hence ( )M V V = is an s g open
­  neighborhood of zero. Furthermore, clearly 
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V U.  Thus consequently ( )0U s g N .  ­  

( )7  Suppose U  is an s g neighborhood
­  for zero. Then there exists an s g open

­  neighborhood V  of 

zero such that V U.  Since the map 
xT : X X ,→ defined by ( ) = +xT y y x,  is s g irresolute.

­  The 

inverse map xS ;X X ,→  defined by ( )xS y x y,= − is also an s g irresolute.
­  Thus 

xT  is 

s g homeomorphism,
­ for each x X .  Hence ( )xT V x V= + is an s g open

­  neighborhood for a point x. 

Clearly x V x U.+  +  Thus 
xx U N .+   The converse can be proved similarly.  

Definition 4.2.  A subset A  of a topological vector space X  is called balanced if and only if A A 

for each R  such that 1 .  

Definition 4.3.  A subset A  of a topological vector space X  is called absorbing if for all x X there 

exists a number 0 such that x A for  .   

Definition 4.4.  A set C  of a topological vector space X is said to be convex, if and only if it contains 

all segments between its points: x C, y C,  for  0 1t ,  implies ( )1tx t y C,+ −   or equivalently  

( )1tC t C C,+ −  for all  0 1t , .  A set C  of a topological vector space X is said to be absolutely 

convex if it is both convex and balanced.  

Theorem 4.5.   Let ( )( )K
X ,  be an s g irresolute

­  topological vector space. If a subset C  of X is 

convex, then ( )s g Cl C
­  is also convex. 

Proof .   The convexity of C implies ( )1tC t C C.+ −   By Theorem 3.12 (2), and Theorem 3.13, it 

follows immediately that ( ) ( ) ( )1t s g Cl C t s g Cl C    + − =   ­ ­ ( )s g Cl tC +­ ( )1s g Cl t C −   ­

( ) ( )1s g Cl tC t C s g Cl C . + − =  ­ ­  Thus ( ) ( ) ( ) ( )1t s g Cl C t s g Cl C s g Cl C .     + −    ­ ­ ­  Hence we 

conclude that ( )s g Cl C
­  is convex. 

Theorem 4.6.    Let ( )( )K
X ,  be an s gITVS.  If a subset C  of X is convex, then ( )s g Int C

­  is also 

convex. 

Proof .  By Theorem 3.7 (2), and Theorem 3.8, ( ) ( ) ( )1t s g Int C t s g Int C    + − =   ­ ­  ( )s g Int tC +­  

( )1s g Int t C −   ­ ( ) ( )1s g Int tC t C s g Int C . + − =  ­ ­  Therefore ( )s g Int C
­  is convex. 

Theorem 4.7.  Let ( )( )R
X ,  be an s gITVS. Then the following statements are equivalent: 

( )a  Every s g neighborhood
­  U  of zero is absorbing.  
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( )b  For every s g neighborhood
­  U  for zero, there exists a balanced set ( )0V s g N ­  such that 

V U.  

Proof.  ( )a  Suppose U  is an s g neighborhood
­  for zero. Then there exists an s g open

­  subset 

0V N  such that V U.  By hypothesis X  is an s gITVS.  So there exist s g open
­  sets 

1V  of  

containing zero  and 
2V of X containing zero such that 

1 2 V .V V . The set 
1V contains an open 

interval of the form ( ), − for some 0.  Therefore  tx V U  for all ( )t ,  − and for all 
2x V . 

This implies U is absorbing.  

( )b  Let U  be an s g neighborhood
­  of zero. By hypothesis X  is an s gITVS.  So there exist s g open

­  

sets 1V  of  containing zero and 
2V of X containing zero such that 

1 2V .V U. Then there exists 

0  such that ( ) 1, V . −   Define  2W tV : t R, t .=    Since 
2tV  is an s g neighborhood

­  of zero, 

for  0t  and 
2tV U  for ( ) −t , .   Thus W  is an s g neighborhood

­ for zero and W U.  Now we 

have to show that W is balanced. Let  r R  such that 1r .  Let ( ) −t ,   and 
2x V .  Since  

rt r t t .=    Thus ( ) ( ) ( ) 2r tx rt x , .V W. =  −   This shows that rW W. Therefore  W is 

balanced. 

Theorem 4.8. Let X  be an s g irresolute
­  topological vector space. Then 

( ) ( ) 0s g Cl A A U :U s g N . = + ­ ­   

Proof .  Assume ( )x s g Cl A , ­  and let U  be an s g neighborhood
­ of zero. Then by Theorem 4.7(b), 

there exits a balanced neighborhood V for zero such that V U.  Thus x V+ is an s g neoghborhood
­

for x  and ( )x s g Cl A , ­  so  ( )x V A .+   Take ( )a x V A. +  Then a x V + and a A.  Let 

= +a x v for some v V.  Since V  is balanced, so A V A V .− = +  Take ( )x a v A V= + −  −  implies 

x A V A U. +  +  Thus x A U, +  for any s g neighborhood
­  U of zero. Therefore, we obtain

( ) ( ) 0s g Cl A A U :U s g N .  + ­ ­   

Conversely if ( )x s g Cl A , ­  then there exists a balanced neighborhood U for zero such that 

( )x U A .+ =  Thus x A U A U. − = + It follows that ( )  ( )0A U :U s g N s g Cl A . +  ­ ­  Thus we get 

( ) ( ) 0s g Cl A A U :U s g N . = + ­ ­  

Theorem 4.9.  Let X  be an s gITVS.  Then the following assertions are true. 

( )a  For every ( )0U s g N , ­  there exists symmetric set ( )0V s g N ­  such that V V U.+   
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( )b  For every ( )0U s g N , ­ there exits an s g closed
­ balanced set ( )0V s g N ­  such that V U.  

( )c  For every ( )0U s g N , ­  there exists symmetric set ( )0V s g N ­  such that V V V U.+ +   

Proof.  ( )a  Assume ( )0U s g N . ­  By hypothesis X  is an s gITVS.  There exist s g open
­  

neighborhoods 
1V  and 

2V  for zero in X such that 
1 2V V U.+   Let ( ) ( )1 1 2 2V V V V V .= − − Then V  is 

a symmetric s g open
­  neighborhood of  zero  and 

1 2V V V V U.+  +   

( )b Let U  be an s g neihborhood
­  of zero in X . By part (a) there is s g neihborhood

­ V for zero with 

V V U.+   By Theorem 4.7 (b), there exits s g neihborhood
­  W for zero which is balanced and W V.  

By Theorem 4.8, ( )s g Cl W W V V V U.  +  + ­  This shows that U  contains a s g closed
­

neighborhood of zero.  

( )c  Follows easily from (a). 

Definition 4.10.  A topological space ( )X ,  is called s g Hausdorff ,
­  if each two distinct points x  and 

y  in X , there exist disjoint s g open
­  sets  U,  V such that x U  and y V .  

Now we give some properties of s g Hausdorff
­  space. 

Theorem 4.11.  Let X  be an s gITVS.  Then  the following statements are equivalent. 

( )a  X  is s g Hausdorff .
­  

( )b  If x X , 0x ,  then there exists ( )0U s g N ­  such that x U.  

( )c  If x,y X ,  x y, there exists ( )V s g N x ­ such that y V .  

Proof .  By continuity of translation, it is sufficient to prove the equivalence between (a) and (b) 

only.  

( ) ( )a b : Assume x  be a non-zero vector belongs to X . Therefore there are disjoint s g open
­ sets 

U,V X  such that 0 U  and x V .  Thus ( )0U s g N , ­ ( )V s g N x ­  and x U.  

( ) ( )b a :  Let x,y X  be such that 0x y .−   Then there exists ( )0U s g N ­ such that x y U.−   By 

Theorem 4.9 (a), there exists s g neihborhood
­  W of zero such that W W U.+   By Theorem  4.7 (b), 

W  can be assumed to be balanced. Let 
1V x W= +  and 

2V y W.= +  We note that ( )1V s g N x , ­  

( )2V s g N y ­  and 
1 2V V ,=  since if 

1 2z V V ,  then z x W−   and z y W .−   Since W  is balanced, 

so ( )z x W.− −   It follows that ( ) ( )x y z y z x W W U,− = − + − −  +    which is a contradiction. So, we 

must have 
1 2V V .=  Finally, by the definition of  s g neihborhood ,

­  there exist ( )1 2

* * *V ,V S GO X  such 
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that 1 1

*x V V ,   2 2

*y V V ,   and 1 2

* *V V .=  This shows that the space X is s g Hausdorff .
­  This 

completes the proof.  

The following result follows from Theorem 4.11.  

Corollary 4.12.  Let X  be an s gITVS.  Then  the following statements are equivalent. 

( )a  X  is s g Hausdorff .
­  

( )b  ( )   0 0U :U s g N . =­  

( )c  ( )   U :U s g N x x . =­  

Theorem 4.13.  An s gITVS X  is s g Hausdorff
­ if and only if every one-point set in X  is s g closed

­  

in X .  

Proof .  Let x X and  y X x . −  Then 0− y x , and by assumption, there exists ( )0U s g N ­  such 

that y x U.−   By Theorem 4.9 (b), there exists an s g closed
­  and balanced set ( )0V s g N ­  such 

that V U.  It follows that − y x V  that is y x X V .−  −  Thus ( )  y X V x . − +  But ( )  X V x− +  is 

s g open,
­  since V  is s g closed ,

­  and ( )    X V x X x .− +  −  This shows that  X x−  is s g open.
­  For 

the converse, let x X  and assume that  x  is s g closed.
­  Then by Theorem 4.8,    ( )x s g Cl x= =­  

  ( )  ( ) 0U x :U s g N V :V s g N x , +  = ­ ­  where   ( )V U x s g N x .= +  ­  Then by Corollary 4.12,  

X  is s g Hausdorff .
­  This completes the proof. 

Since translation is an s g homeomorphism
­  and as a consequence of Theorem 4.13, we have the 

following result. 

Corollary 4.14.  An s gITVS X  is s g Hausdorff
­  if and only if  0  is s g closed

­  in X .  

Theorem 4.15.  Let C,K be disjoint sets in an s gITVS
X  with C s g closed ,

­  K  s g compact.
­  Then 

there exists ( )0U s g N ­  with ( ) ( )K U C U .+ + =  

Proof .  If K ,=  then there is nothing to prove. Otherwise, let x K  by the invariance with 

translation, we can assume 0=x . Then X C−  is an s g open
­  neighborhood of zero. Since addition 

is s g irresolute
­  and s g continuous,

­  by 0 0 0 0+ + = ,  there is an s g open
­  neighborhood ( )0U s g N ­  

such that 3U U U U X C.= + +  −  By defining ( )W U U U= −   we have that W is s g open
­  

symmetric and 3W W W W X C.= + +  −  This means that  3x : x W C =  =

   2x : x W y x : y C,x W −    ( )W C W . +  This concludes the proof for a single point.  
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Sine K is s g compact,
­  then repeating the above argument for all x K , we obtain symmetric 

s g open
­  sets 

xV such that ( ) ( )2 x xx V C V .+ + =  The sets  xV : x K  are an s g open
­  covering of K,  

but K  is s g compact.
­  Hence there is a finite number of points ix K ,  1 2=i , ,...,n,  such that

( )
1

i

n

i x

i

K x V .
=

 +  Define the s g open
­  neighborhood V of zero by 

1
i

n

x

i

V V .
=

=  Then we get 

( ) ( )K V C V+ +   ( ) ( )
1

i

n

i x

i

x V V C V
=

+ + +  ( )( )
1

2
i i

n

i x x

i

x V C V .
=

 + + =
 

 This completes the proof. 

Lemma 4.16.  If U is an s g open
­  set and U A ,=  then ( )U s g Cl A .  = ­  

Proof .  Suppose that there exists an ( )x U s g Cl A .   ­  Then ( )x s g Cl A ­  and U is an s g open
­  

neighborhood of x  and X U−  is s g closed
­  set containing A,  hence ( )s g Cl A X U  −­  and 

( )x s g Cl A ­  which is contradiction, hence  ( )U s g Cl A .  = ­  

Corollary 4.17.  Let C,K be disjoint sets in an s gITVS  X  with C s g closed ,
­  K  s g compact.

­  Then 

there exists ( )0U s g N ­  with ( ) ( )s g Cl K U C U . + + = ­  

Proof . By Theorem 4.15, there exists ( )0U s g N ­  such that ( ) ( )K U C U .+ + =  Now 

 C U y U : y C+ = +   is s g open
­  set being a union of s g open

­ sets. Then by Lemma 4.16, we 

obtain  ( ) ( )s g Cl K U C U . + + = ­  

Theorem 4.18.  Let X  be an s gITVS.  Let f : X →  be a non-zero linear map. Then  ( )f G  is 

s g open
­  in  whenever G  is s g open

­  in X . 

Proof .  Let G be a nonempty s g open
­  set. Then one can assume that there is  0 0x X −  such that 

( )0 1f x .=  For any a G,  it is required to show that ( ) ( )f a s g Int f G .   ­  Since ( )G s g N a ­  by 

Theorem 4.1 we have ( )0G a s g N .−  ­  By Theorem 4.7 (a) −G a  is absorbing, that is, absorbs 0x ,  

namely there exists an 0  such that 
0x G a  −  whenever   with .   Now for any    

with ( )f a −   we have ( )( ) 0f a x G a, −  − hence ( )( ) ( )0f f a x f G a . −  −   Since f  is linear. 

This implies that ( )( ) ( ) ( )0f a f x f G a . −  −  So we get  ( )( )( ) ( ) ( ) ( )1f a f G a f G f a . −  − = −  This 

implies that ( )f G   and ( ) ( )f a , .    − +  Thus ( ) ( ) ( )f a Int f G s g Int f G ;       ­  hence  

consequently ( ) ( )f G s g Int f G .=   ­  

Lemma 4.19.  14 .  Let X be vector space and K X .    For a K , the following statements are 
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equivalent. 

( )1  a  is an extreme point of K.  

( )2  If x,y K are such that ( )
1

2
a x y ,= + then = =a x y.  

( )3  Let x,y K  be such that x y, let ( )0 1 ,  and ( )1a x y. = + − Then we have either 0=  or 

1= .  

Theorem 4.20.  Let X  be an s gITVS  and C  be a convex subset of X . Then ( ) ( )s g Int C C .   = ­  

Proof .  If ( )s g Int C , =­  then the result is trivial. Suppose that ( )s g Int C  ­  and let ( )x s g Int C . ­  

Then there exists ( )0V s g N ­  such that x V C.+   As the map : X , → where ( ) x  =  is 

continuous at 1= ,  for this the s g Ineighborhood
­ x V ,+ there is an 0r  such that  +x x V

whenever 1−  r.  In particular, we have ( )1 r x x V C+  +  and ( )1 r x x V C.−  +   Now consider 

( ) ( )( )1 1 1x r x r x = + + − −  and take 
1

2
. =  Consequently, we have ( ) ( )

1 1
1 1 1

2 2
x r x r x,

 
= + + − − 

 
 

which implies that x  is not an extreme point of C. 

Theorem 4.21.  Let X  be an s gITVS  and W  an  s g neighborhood
­  of 0.  Then there is an 

s g neighborhood
­  U  of 0  such that ( )s g Cl U W. ­  Equivalently, if C  is a s g closed

­  subset of X

and x  a point of X  outside C  then there are disjoint s g open
­  sets 1U  and 2U  with 

1x U   and  

2C U .     

Proof .  Let x  be a point outside an s g closed
­  set C X.  We will produce an s g open

­  set U

containing x  with ( )s g Cl U C ; =­  then  
1U U=  and  ( )2U X s g Cl U ,= − ­   the complement of the 

s g closure
­  of U,  are disjoint s g open

­  sets with 
1x U   and 

2C U ,  as desired. We know that X  

looks the same everywhere, so we may work with 0=x . Let  W  be the complement of C. Then 

W is an s g open
­  set with  0 W .  By hypothesis X is s gITVS.  So by Theorem 4.9 (a), there exists 

an s g open
­  subset U  of 0  such that U U W.+    This means that U U+  is disjoint from C. 

Equivalently, U   is disjoint from C U .−  For otherwise there would be an x U  which could be 

expressed as −c y  with c C  and y U ,  which would imply that c x y U U W= +  +   is in  W.   

Now the set U−  is  s g open
­  because the map X X :→  ( )1x x x→ − = −  is an s g homeomorphism,

­ and 

hence so are all its translates x U .−  So the set   2U C U c U : c C= − = −   is s g open,
­ being the union 
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of s g open
­  sets. Thus we have found an s g open

­ set 
1U U=  containing 0  and an s g open

­  set 
2U ,

disjoint from 
1U ,  with  

2C U .   

Theorem 4.22.   Let ( )( )K
X ,  be an s gITVS.  Then every s g open

­  subspace S  of  X  is also  an 

s gITVS.   

Proof .  Let W be an s g open
­ neighborhood of x y+  in S  where x, y  are two distinct points in S. 

Since S  is an s g open
­ subspace of X , then W is an s g open

­  neighborhood  of +x y  in X ,  and 

by definition of s gITVS,  there exist s g open
­  neighborhoods U of x  in X  and  V  of y  in X such 

that U V W.+   Then the sets G U S=  and H V S=  are s g open
­  neighborhoods of x  and y  in 

S  such that +  + G H U V W.  Now suppose K,  x S  and let W  be an s g open
­

neighborhood of x  in S.  Since S  is an s g open
­  subspace of X ,  then W  is an s g open

­

neighborhood of x  in X . Then there exist s g open
­  neighborhoods U of   in K  and V  of y  in 

X  such that U.V W. Then the set G U S=  is an s g open
­ neighborhood of   in K and the set 

H V S=  is an s g open
­ neighborhood of x  in S. Also G.H U.V W.   Hence S  is an s gITVS.  

Theorem 4.23.  Suppose that ( )( )K
X ,  is an s gITVS.  If S X is a linear subspace, then so is 

( )s g Cl S .
­  

Proof .  Let S  be a linear subspace of X .  Thus S S S+   and for all K, .S S.   By Theorem 

3.13,  ( ) ( ) ( ) ( )s g Cl S s g Cl S s g Cl S S s g Cl S .   +  + ­ ­ ­ ­  By Theorem 3.12, for every K,  

( ) ( ) ( )s g Cl S s g Cl S s g Cl S .     =  ­ ­ ­  Therefore, ( )s g Cl S
­  is linear subspace of X .  

Definition 4.24.  Suppose that ( )( )K
X ,  is an s gITVS.  A subset E X  is said to be bounded if for all 

s g open
­ sets V containing 0,  there exists s R  such that for all t s,  E tV. That is, every 

s g open
­  neighborhood of zero contains E after being blown up sufficiently.  

Theorem 4.25.  Suppose that ( )( )K
X ,  is an s gITVS.  If E  is a bounded subset of X , then ( )s g Cl E

­  

is bounded. 

Proof.  Let W be an s g open
­ set containing 0, then by Theorem 4.21, there exists ( )0U s g N ­  such 

that ( )s g Cl U W. ­ Since E is bounded, so ( )E tU t s g Cl U tW ,    ­  for sufficiently large values 

of t . It follows that for large enough t , ( ) ( ) ( )s g Cl E s g Cl tU t s g Cl U tW.      ­ ­ ­  Thus, ( )s g Cl E
­
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is bounded.  

Theorem 4.26.  Let ( )X ,  be an s gITVS.  Let V  be an s g open
­ neighborhood of zero in X . Then for 

every sequence  nr : n N of positive real numbers such that →nr ,  
1

n

n

r V X .


=

=  

Proof .  Let x X and consider the sequence 
n

x
: n N .

r

 
 

 
 This sequence converges to 0  by the 

s g irresoluteness
­ of the scalar multiplication F X X . →  Thus, for sufficiently large n,  

n

x
V

r
  i.e., 

nx r V .  

Theorem 4.27.  Let ( )X ,  be an s gITVS.  Then every s g compact
­ set is bounded. 

Proof .  Let C be an s g compact
­ subset of X . We need to prove that it is bounded, namely, that for 

every s g open
­ neighborhood V of 0,  C tV for sufficiently large t .  Let V be an s g open

­

neighborhood of 0, then by Theorem 4.7(b), there exists a balanced s g open
­  neighborhood W of 

0  such that W V. By Theorem 4.26, 
1n

C nW .


=
  Since, C is s g compact,

­  therefore there exists a 

positive integer m such that ( )
1 1

m m

j m j m mj j
C n W n n / n W n W.

= =
 =  Thus, for all t n,

( )m mC n W t n / t W tW tV , =     which implies that C  is bounded.  

Theorem 4.28.  Let ( )X ,  be an s gITVS.  Then every Cauchy sequence in X  is bounded. 

Proof .  Let   nx : n N  be a Cauchy sequence in X .  Let W be an s g open
­  neighborhood of zero, 

then by Theorem 4.9 (a), there exists an s g open
­ neighborhood V of 0  such that V V W.+  By 

definition of a Cauchy sequence, there exists N such that for all m,n N ,  
n mx x V−  and in 

particular for all n N,  +n Nx x V .  Set 1s such that Nx sV , then for all n N,  
nx sV V +   

sV sV sW.+  Since for balanced sets sW tW for s t,and since every s g open
­ neighborhood of 0  

contains a balanced neighborhood, this proves that the sequence is bounded. 

Definition 4.29.  Let X  be a vector space over .  A non-negative real-valued function p  defined 

on X is a pseudonorm  if it satisfies the following two conditions. 

( )i  ( ) ( )p x p x , =  for all x X and ;  

( )ii  ( ) ( ) ( )p x y p x p y ,+  + for all x,y X .  

Now, we introduce the notion of locally convex s gITVS.  Moreover, we give a necessary and 
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sufficient condition, in terms of convex s g neighborhoods
­ of 0, for an s gITVS  to be locally convex. 

Definition 4.30.  An s gITVS  ( )X ,  is locally convex if for all x X , every ( )S s g N x ­  contains a 

convex set ( )U s g N x . ­   

Theorem 4.31.  An s gITVS  ( )X ,  is locally convex if and only if every ( )0S s g N ­  contains a 

convex set ( )0U s g N . ­  

Proof .  The sufficiency part is trivial. Let ( )S s g N x . ­  Then by Theorem 4.1 (7), ( )0S x s g N−  ­  

and by assumption, there exists a convex set ( )0U s g N ­  such that U S x. −  Hence by Theorem 

4.1 (7) again, ( )U x s g N x .+  ­  As U x S+   and as U x+  is convex, ( )X ,  is a locally convex 

s gITVS.  

Corollary 4.32.  In a locally convex s gITVS  ( )X , ,  a pseudonorm  p  is s g irresolute
­  if and only if p  

is s g irresolute
­  at zero. 

Proof .  If p  is s g irresolute,
­  then p  is s g irresolute

­  at zero. Conversely, suppose p  is 

s g irresolute
­  at 0,  and let x X  and ( ) ( )p x

V N .  Then by Theorem 4.1 (7), 

( ) ( ) ( ) ( )0 0p
V p x N N−  =  and thus ( ) ( ), V p x −  −  for some 0 .  Clearly ( )− ,   being an open 

set in is s g open
­ set in .  By assumption, there exists ( )0U s g N ­  such that ( ) ( )p U ,  −  and 

as ( ) 0p y   for all y U ,  ( )  )0p U , . Then by Theorem 4.1 (7), ( )U x s g N x .+  ­  For all y U ,  

( )0 p x y +   ( ) ( ) ( )p x p y p x ,+  + ( ) ( ) )0p x y , p x .+  +  Therefore it follows that ( )p U x V.+   

Definition 4.33.  Let A  be an absolutely convex subset of a vector space X . Then the functional 

defined by ( )  0p x inf : ,x A  =   is called the gauge  of A. 

Lemma 4.34.  14 .   In a vector space X , the gauge  of an absolutely convex and absorbent subset is 

a pseudonorm. 

Now, we prove the main result in which we characterize absolutely convex and absorbent 

s g neoghborhoods
­  of zero in terms of their s g irresolute

­ gauges.  

Theorem 4.35.  Let p  be a gauge  of an absolutely convex and absorbent subset U of an s gITVS  

( )X , .  Then p  is s g irresolute
­ if and only if U is an s g neighborhood

­ of zero. 

Proof .  If p  is s g irresolute,
­  then as ( )11,−  is an s g open

­ set in .  ( )  ( )11 11V x : p x p ,−=  = −    is an 
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s g open
­ subset of X . Thus as V U,  ( )0U s g N . ­  Conversely, if ( )0U s g N ­  and 0 , then by 

Theorem 4.1 (5), ( )0V U s g N =  ­  and ( )p x   for all x V.  Thus ( ) ( )p V , .  −  Hence, p  is 

s g irresolute
­  at zero.  By Lemma 4.34, p  is a pseudonorm  and by Corollary 4.32, p  is 

s g irresolute
­ at each x X .  Therefore p  is s g irresolute.

­  
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