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Abstract. Lucas sequences and their applications play vital role in the study of primality tests in number theory.
There are several known tests for primality of positive integer N using Lucas sequences which are based on fac-
torization of (N £ 1) [2] [13]. In this paper we give a primality test for odd positive integer N > 1 by using the
set L(A,N) where L(A,N) is a set of S(N) distinct pair of Lucas sequences (V,, (a,1),Uy(a, 1)), where S(N) for
N = p{'.p3*...p% is given as S(N) = LCM priil (pi - (%) ) };J and A = a®> — 4 for some fixed integer a.
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1. INTRODUCTION

Lucas sequences are recurrence relations. Many studies on properties of Lucas sequences,
and their connections with topics like trigonometric functions, Chebyshev’s functions, Dickson
functions, continued fractions are known [2][7]. The primality test for a positive integer N using
Lucas sequences was first initiated by Lucas and later developed further by Lehmer, was based
on factorization of (N + 1) [2][8]. In this paper we give a primality test for odd positive integer

N > 1 by using the set L(A,N) where L(A,N) is a set of S(N) distinct pair of Lucas sequences
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<Vn(a, 1),Un(a, 1)) where S(N) for N = pi'.p3*...ps* is given as S(N) = LCM[{pfi_1 <p,- —

N
<§> ) } J and A = a®> — 4 for some fixed integer a. In the following we describe the pair of
i i=

Lucas sequences and their properties.

Definition 1.1. Let ¢ and b be two integers, o a root of the polynomial x> — ax+ b in Q(v/A)

a+\f

for A = a> — 4b a non square, writing o = and its conjugate f§ = £ 2‘/K we have a + 3 =

a,of8 = b, — B = /A, and the Lucas sequences V,,(a,b) and Uy (a,b),n > 0 are defined as
Va(a,b) = o + B",

a"—p"

Un(a,b) = a—pB

In particular, Vy(a,b) = 2, Vi(a,b) = a and Up(a,b) =0, U;(a,b) = 1.

Va(a,b) and U, (a,b) are given by following recurrence sequences:

Vau(a,b) = aV,_1(a,b) — bV, _»(a,b),

Un(a,b) = aU,_i(a,b) —bU,_»(a,b).

Lucas sequences satisfy the following properties [3] [4] [9]:
(1) (Vanl@,b), Una(a,5)) = ((Va(a,5))? = 26", Un(a,b)Va(a,B)).
) (v2 a,b),U(a b)> (A(Un(a,b))2+4b”,Un_1(a,b)Un+1(a,b)+b"_1>.
3) ( rin(@,5), 2Unin(a, b)) ( (@, 0)Vi(a,b) + AUy (a, b)Up (a, b),
Up(a,b)Vp(a,b) + Un(a,b)Vm(a,b)> Vm>n.
) (Voin(@b), Unin(a,0) ) = (Vin(a,0)Va(a,b) = 6"Viy (@),
Un(a,b)Vy(a,b) — b”Um_n(a,b)>, YV m>n.
In particular for b = 1 the above properties can be written as
(©) (Van(a, 1),Uz(a 1)) = ((Vala, 1)) = 2,Un(a, Va(a 1))
@ (V(a,1),U2(a,1)) = (AU (@, 1) +4,Up1(a, U1 (a, 1)+ 1).
3) (2Vm+n(a,l),2Um+n(a,l)> - (Vm(a,1)Vn(a,1)+AUm(a71)Un(a,1),
Un(a, )Va(a, 1)+ Un(a,1)Vi(a, 1)) Vm>n.
@) (Vm+n(a, 1), Upsn(a, 1)) - (vm(a, DVi(a, 1) = Vip_n(a, 1),
Up(a, 1)Va(a,1) = Upn(a, 1)), Vm>n,
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Definition 1.2. If N = p'.p3*...p5 and A = a® — 4b for some fixed integer a such that
(N,A) = 1 then we have define S(N) = LCM[ny,ny,...,ns where n; = pfi_l (p,- — (%)) for

all 1 <i<sand (ﬁ) is the Legendre symbol [12] of A with respect to the prime p;.

(1) (Vs (@), Usiy(ab)) = (26777,0) mod V.
(1-¢)
(2) (VS(N)t(aab>7US(N)t(avb)> E( - ) mod N.

In particular for b = 1, we have

(1) <VS(N)(a,1),US(N)(a,1)> = (2,0) modN.
@ (Vsovula 1), Usiy(a,1)) = (2,0) mod N.
In the following an algorithm 1is given for computation of Lucas sequences

<Vn(a,1),Un(a,1)> using Lucas addition chain as in [11]. This algorithm gives Lu-

Algorithm 1 Evaluate (Vn(a, 1),Uy(a, 1))

step 0: (Initialize) Set N <— 5= where k = llogn],i=0,1,2,....kY < 1,Z<+2
step 1: (Value N) N < 5t and determine whether N is even or odd, if N is even skip to
step 4.
step2: setY < 2Y + 1 and Z + 2Z
step 3: [N = n, if N = n the algorithm terminates with ¥ as the answer.
step 4: setY <— 2Y,Z <Y 41 and return to step 1.
step 5: [initialize (V,(a,1),U,(a,1)] set Vy(a,1) =2,Vi(a,1) =a
and Up(a,1) =0,U;(a,1) =1
step 6: Fori fromOto ksetn < y-+z
compute V4 -(a,1) < Vy(a,1)V,(a,1) = Vy_.(a,1)
and Uy1,(a,1) < Uy(a,1)V,(a,1) —=Uy_.(a,1)

cas addition chain [5] [11] {e_1,ep,e1,e1 + 1,...ex-1 — 1l,ex_1,ex} and evaluates

{(Ve_l,Ue_l) Ve, Uey) » (Vel,Uel),...(Vel_,,Ue,_l,(Vel,Ue,))} for all + = 0,1,....k by

using the formulas Vy.(a,1) and Uy, (a, 1).
2. PRIMALITY OF N WITH S(N)

In the following we prove a theorem on primality of N with S(N) [7] [9].
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Theorem 2.1. If N is odd positive integer then N is prime if and only if S(N) = N — (&) for all
A with (A,N) = 1.

Proof. Let N be a prime number then by definition for N = p, and any A with (A,N) =1 we

have S(N) = S(p) = p — (%) =N — (%). Conversely suppose S(N) =N — (%), now if N is
N

composite then for N = pr" we have the two cases (i) s = 1 with ¢; > 2 and (ii) s > 2. In
i=1

case (i) for s = 1,e; > 2, we have N = p¢',e; >2 and S(N) = S(p¢') = p'~! (p— (%»,

therefore as e; > 2 we have p;|S(N) but note p1 { p{' £1ie. pi{N— (§) a contradiction to

N
S(N) =N — (). hence N is not in case (i). Now if N is as in case (ii) we have N =[] p’,
i=1

] Now as pis are odd, (A,N) =1 and

N

with s > 2 and S(N) = LCMprf“ (p,' - (§> ) } 1
<p,- — (A> ) are even, we note in the following that S(N) <N —1:

st =tom (= (- ()]
—2LCM Hp?*l (Pi - (2) ) }::J

17 1 1 1
—ON—[1+Y =+ T ]
2 ;pi ;j’pilﬂj i,;spipj---ps
11 1 1 1
SN |1+Y c+Y o+ + Y —|aspi>5
251 R i
1] 1 1 1
:2N§ -1+SC1 g +S02 ? +...+SCS §
1 1\s
:ZN—(I 7)
25 +5
3\ S
()
5
3\ 2
§2N(§> ass>2
2 AN
<2N(f):—<N—l
5 5
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Therefore S(N) < N—1, and as (N —1) < (N+ 1) we also have S(N) < N+ 1 in particular
we have S(N) < N — (&) which is a contradiction to S(N) = N — (%), therefore N is not in case

(ii) as well, therefore N is not composite. Hence N is prime. 0

3. PRIMALITY TEST WITH PAIR OF LUCAS SEQUENCES

Notation 3.1. Let N be a positive integer and A = a> — 4 for some positive integer a such that

(N,A) = 1, then the set of all the pairs of Lucas sequences is denoted as L(A,N) and is given as

L(AN) = {(Vn(a, 1), Un(a, 1)) 1<n< S(N)}.

The following theorem assures that all the pairs in L(A, N) are distinct modulo N and |L(A,N)| =
S(N).

Theorem 3.2. (V,(a,l),Ur(a,1)> = <Vo(a,1),U0(a,1)> mod N if and only if r = 0
mod S(N) [10].

Proof. Suppose r =0 mod S(N), then we have r = S(N)z, for some integer ¢ and
(Ve(a,1),Ux(a, 1)) = (Vsvy (@, 1), Use(a, 1)) = (Vo(a, 1), Up(a, 1)) mod N,
therefore r =0 mod S(N) implies (V,(a, 1),U,(a, 1)) = <V0(a, 1),Up(a, 1)) mod N.
Conversely suppose (Vr(a,l) Uy (a, 1)) ( 0(a,1),Up(a, )> mod N, then for

N = p{'.p?...ps note (Vr(a, 1,0, ) (Vo ), Uo(a, 1)) mod p;’ for all i =
1,2,...,s. We now show in the following that p{’ ! (p, ( )) divides r forall i = 1,2,.

For all A with (A,N) =1 as (A, p;") = 1 using Euler’s criterion we have

. A _
o — o modp,1f<17i>_1,
B modpiif<[%):—1
otk i'f(é)zl,
= ali= TP
ﬁ+kpiif<l%):—1
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Therefore fori =1,2,...,s we have,

(] . Eifl (]
oPi = ((XP:)P,- — (a +kpi)pi

e;—1 ?iil ei—1 X ei—1
st (pl )api (ki) + (pl )api “2(kpi)* .

1

e;—1

p? ! p?iil—l p;
el o(kp;)Pi + (kp;)Pi

¢ ei—1 4 A
= ali =aofi mod pi’ if (—) =1.

Similarly,
i Gl
ol = (aPi)Pi
= (B +kpi)"
= ol =P mod p¢ if (-) =1
Di
therefore,
e;j—1
I’il €i A =
(pri _ (07 mod p; 1f<pi> 1,
ej—1 ..
Bri mod p{" if (I%) =—1

€ ei—1 - ¢i .
now ai' = aPi’  mod p{ if <1%> =1=a”' PV =1 modp{ if (ﬁ) =1

1

(27 eifl . ¢; o
and a?i = BPi  mod p’ 1f<1%> =—1=ali'?Pt) =1 mod p* if (%) =1

therefore note p' is smallest such that

i—1

p;’ cif (A) =
o — a mod p; 1f<p,-> I,
ej—1 -

Bri mod p{’ 1f(1%> =1

pii! (Pi_<A>>
= p{' is smallest such that o ' /) =1 mod pf'.
Now note (Vr(a, 1),U.(a, 1)) = (Vo(a, 1),Uo(a, 1)) mod p{’
= Vy(a,1) =Vp(a,1) mod p;" and U,(a,1) = Up(a,1) mod p}’

ar

= ar+ﬁr =2 mod pl?i and (x:gr =0 mod P?

= o'+ B"=2 mod p;’ and o' — = " mod pj’

=20 =2 mod p;’

= o " =1 mod pfi, therefore pfi_l (pi — <—>> divides r for i = 1,2,...,s therefore r is a

Pi

2549
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N
common multiple of pfi_l (p,- - (%)) and as S(N) is the LCM[{pfi_l (pi - I%))} ]
we have S(N)|r which implies » = 0 mod S(N), therefore we have (Vr(a, 1),U(a, 1)) =
<V0(a,1),U0(a,1)> mod N implies 7 =0 mod S(N). 0

Now in the following theorem we propose a primality test for N by using the pair of Lucas

sequences.

Theorem 3.3. For any odd positive integer N > 1, N is prime if and only if
<VN_(%) (a,1).Uy_(4)a 1)) = (Vo(a, 1), Uo(a, 1)) mod N, for all A with (A,N) = 1.

Proof. Let N be prime number, then by definition S(N) = N — (%) for all A with
(A,N)=1and as S(N) =0 mod S(N), by Theorem 3.1 we have

(VS(N)(C% 1),Usin) (a, 1)> = (Vo(a, 1),Uo(a, 1)) mod N

= (VNi(%)(a, 1),UN7(%)(0, 1)) = <V0(a, 1),U0(a, 1)) mod N

.. N is prime implies (V )(a, 1),UN_(%)(a, 1)) = (Vo(a, 1),Up(a, 1)> mod N, for all A

V(3
with (A,N) = 1.
Conversely let (VNf(N)(a 1) ) = ( 1),Uy(a, 1)) mod N, for all A with
(A,N) = 1 then by Theorem 3.1 we haV — (&) =0 mod S(N), therefore we have S(N) |

N — (&), forall A with (N,A) = 1.

If possible suppose N is not a prime, then we have the cases that N is composite and not square-
free or N is composite and squarefree. First suppose N is composite and not squarefree then
N =p{'.p3*...p§, for p1,pa, ..., psare distinct primes and s > 1 with ¢; > 1 for some 1 <i <,
that is e; — 1 > 0 then for some 1 < i < s, therefore S(N) = LCM[p¢' ™" (p; — ( )) P (p2—
<pA2> o pe N ps— <ﬁ>)] = pi 'Y S(N) for some 1 < i < s. Further for A with (A,N) = 1,
we have N — (§) =N=x1and p;{N forall 1 <i<snote p;{ (N— (%)) forall 1 <i<s. There-
fore as p; | S(N) for some 1 <i<sand p;{(N— (%)) forall 1 <i<snote S(N){N— (%)
which is contradiction to S(N) | N — (%) for all A with (N,A) = 1, therefore N is composite and

not squarefree is not possible. Now if N is composite and squarefree then N = p1.p,... ps for

pls are distinct primes and s > 1, therefore writing N = p;pt for p; # p; for some 1 <i,j <s

)

and for p; > 3 we have

B—(}%) =0 modpi—<;
= pi= (ﬁ) modp,-—(

3> 3>
N——
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= N=pipjt =pjt (%) mod p; — <%)
= N=pjt (%) mod p; — (%)
=N (z) =t () = (sr) modri= ()
== =rr ()= () (5 -
=)= (3)(or-(2) i

:>Pﬂ_<pt) =0 mod p; — ( ) as pi — <1%> IN— (%)
Therefore we have p; — (E) | pjt — (W)’ for all A with (A,N) = 1, but note this is a contra-
diction as there are some A such that p; — <A> Ipjt— (p%) which is seen in the following:

For ay,a; with a; = a; mod p; we have for A| = a1 4,A) = a2 4 such that ( ) =+ (%)

then <p—:> = <%) and (pA—jlz) =+ ( pAZZ) and we have the following cases;

0 ()= (3] -t (3) 1 (3)
o (5)-(3) -t (3) =1 (3) -1
Gii) (51) = (%) = —1and (&) =1,(£2) = 1.
) (&) = (%) =—tand (&) =-1,(&) =1.
in all the cases note either p; — (
ie (pi—1)t(pjt—1)or (pi—1
(pi—= 1)1 (pjt+1)or (pi—1)1(
(pi+ 1)1 (pjt—1)or (pi+1)1(
(pi+1)1(pjt+1)or (pi+1)1(
respectively as (p; — 1) | (pjt —1) and (p; — 1) t (p;t + 1) implies (p; — 1) | &2 which implies
pi = 1 or 3, a contradiction which implies N is not a composite and squarefree number, therefore
N is prime. 0
In the following, an algorithm is given for evaluating Lucas sequences (Vn (a,1),Up(a, 1))

and test for primality of N.
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Algorithm 2 Evaluate (Vn(a, 1),Uy(a, 1)) and test for primality of N

step 0: (Initialize) Set N < 5 where k = |logn],i=0,1,2,... k
Y 1,Z+2

step 1: (Value N) N < % and determine whether N is even or odd, if N is even skip to
step 4.

step 2: set Y < 2Y + 1 and Z < 2Z

step 3: [N = n|, if N = n the algorithm terminates with ¥ as the answer.

step 4: setY < 2Y,Z <Y + 1 and return to step 1.

step 5: [initialize (Vy,(a,1),U,(a,1)] set Vo(a,1) =2,V (a,1) =a
and Uy(a,1) =0,U;(a,1) =1

step 6: ForifromOto ksetn < x+y
compute V4 (a,1) < Vy(a,1)V,(a,1) = Vy_.(a,1)
and Uy1;(a,1) < Uy(a,1)V,(a,1) —Uy_;(a,1)

step 7: compute (VNil(a7 1),Un+1(a, 1)) mod N, if it is (Vo(a, 1),Uo(a, 1)) mod N

then N is prime otherwise N is composite.

Example 3.4. Let N = 2883155, a = 41 then A = 1677 such that (§) = (g5ss) = —1
Now compute <VN_(%)(a,1),UN_(%)(a,1)> mod N
= (V2883155+1(41>1);U2883155+1(4171)) mod 2883155

Vasgarss (41, 1), Usssaiss(41,1)) mod 2883155

V276(41,1),U276(41,1)> mod 2883155

= (80,192239) mod 2883155

S0, (VNf(%)(a, l),UNf(%)(a, 1)) # (Vo(a,1),Up(a,1)) mod N, therefore N is not a prime.

Example 3.5. Let N = 104701, a = 64 then A = 4092 such that (§) = (1o9957) = |
Now compute (VN_(%)(a,1),UN_(%)(a,1)> mod N

= <V104701_1(64, 1),U1047()1_1(64, 1)) mod 104701

= <V104700(64, 1),U104700(64, 1)) mod 104701

= (2,0) mod 2883155

S0, (VNf(%)(64, 1),UN7(%)(64, 1)> = (Vo(64,1),Up(64,1)) mod N, therefore N is a prime.



PRIMALITY TEST WITH PAIR OF LUCAS SEQUENCES 2553

Note 3.6. The primality test is independent of choice of a and A.

Example 3.7. List of L(A,N) for (1%) =1 and (]%) = —1 for composite and prime N with
respect to S(N) is given in the following tables depicting that the primality test for N = 33 and

37 is independent of a and A.

L(A,33)
a=12,A=8,(§)=1landS(N)=12 | a=18,A=23,(§)=—1and S(N) =20

(Vo,Uo) (2,0) (Vo,Uo) (2,0)

(V1,U1) (12,1) (V1,Ur) (18,1)
(Va,Us) (10,12) (Va,Us) (25,18)
(V3,U3) O.11) (V3,U3) (3,26)
(Va,Us) (32,21) (Va,Us) (29,21)
(V5,U5) (12,10) (V5,U5) (24,22)
(Ve,Us) (13,0) (Ve,Us) (7,12)
(V7,U7) (12,23) (V7,U7) (3,29)
(Vs,Us) (32,12) (Vs,Us) (14,15)
(V9, Ug) (9,22) (V9, Ug) (18,10)
(V10,U10) (10,21) (V10,U10) (13,0)
(V11,Un1) (12,32) (V11,Un1) (19,34)
(V12,Un2) (2,0) (V12,Un2) (14,18)
(V13,U13) (12,1) (V13,U13) (3.4)

(Vi4,U14) (10,12) (Vi4,U14) (7,21)
(V15,Uss) O.,11) (Vis,Uss) (24,11)
(Vie,Uie) (32,21) Vi, Uie) (29,12)
(V17,U17) (12,10) (V17,U17) (3,7)

(V1g,Uig) (13,0) (V1g,Uig) (25,15)
(Vig,Uy9) (12,23) (Vig,Uy9) (18,32)
(Va0,Uno) (32,12) (Va0,Uno) (2,0)

(Va1,Un1) 9.22) (Va1,Un1) (18,1)
(Va2,Un) (10,21) (Va2,Un) (25,18)
(Va3,Un3) (12,32) (Va3,U23) (3,26)
(Va4,Uns) (2,0) (Va4,Un4) (29,21)
(Vas,Uss) (12,1) (Vas,Uss) (24,22)
(Vas, Ung) (10,12) (Vas, Ug) (7,12)
(Va7,U27) 9,11) (Va7,U27) (3,29)
(Vas, Uzs) (32,21) (Vag,Uag) (14,15)
(V29,U29) (12,10) (V29,U29) (18,10)
(Va0,Us0) (13,0) (V30,Us0) (13,0)
(V31,U31) (12,23) (V31,U31) (18,23)
(V32,Usp) (32,12) (V32,Usp) (14,18)
(V33,Us3) (9,22) (V33,Us3) (3.4)

TABLE 1. Values of L(A,33) for (5) =1and () = —1
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L(A,37)
a=17,A=26,(§)=1and S(N)=36 | a=11,A=6,(§)=—1and S(N) =38
(Vo,Uo) (2,0) (Vo,Uo) (2,0)
(V],Ul) (17,1) (V],Ul) (11,1)
(V2,02) (28,17) (V2,Un) (8,11)
(V3,U3) (15,29) (V3,U3) (3.9)
(Va,Us) (5,32) (Va,Us) (25,14)
(Vs5,Us) (33,34) (Vs5,Us) (13,34)
(Vs, Us) (1,28) (Vs, Us) (7.27)
(V7,U7) (21,35) (V7,U7) (27.4)
(Vg,Ug) (23,12) (Vg,Ug) (31,17)
(Vo,Us) 0,21) (Vo,Us) (18,35)
(V10,Uo) (14,12) (V10,Uo) (19,35)
(V11,Un) (16,35) (V11,Un) (6,7)
(V12,Un2) (36,28) (V12,Un2) (10,4)
(V13,U13) (4,34) (V13,U13) (30,27)
(Vi4,U14) (32,32) (Vi4,U14) (24,34)
(Vis,Uss) (22,29) (V15,Uss) (12,14
(Vis,Ui6) 9,27) (Vis,Ui6) (34,9)
(V17,Un7) (20,1) (V17,Un7) (29,11)
(V1s,U1g) (35,0) (V1s,U1g) (26,1)
(V19,U19) (20,36) (V19,U19) (35,0)
(Va0,Un0) 9.3) (Va0,U20) (26,36)
(Va1,Un1) (22,8) (Va1,Un1) (29,26)
(Va2,Un2) (32,5) (Va2,Un2) (34,28)
(Va3,Un3) 4.3) (Va3,Un3) (12,23)
(Va4,Un) (36,9) (Va4,Un) (24.3)
(Vas, Us) (16,2) (Vas, Uss) (30,10)
(Vas,Uag) (14,25) (Vas, Uag) (10,33)
(Va7,U27) (0,16) (Va7,U27) (6,20)
(Vag,Ung) (23,25) (Vag,Ung) (19,2)
(Va9,Un9) (21,2) (Va9,Un9) (18,2)
(V30,Us0) (1,9) (V30,Us0) (31,20)
(Vay, U31) (33,3) (Vay, U31) (27,33)
(V32,U32) (5.5) (V32,U32) (7,10)
(V33,U33) (15,8) (V33,U33) (13,3)
(V34, U34) (28,20) (V34, U34) (25,23)
(V3s5,Uss) (17,1) (V3s5,Uss) (3,28)
(Va6,Uss) (2,0) (Va6,Uss) (8,26)
(V37,Us7) (17,1) (V37,Us7) (11,36)
(V38,Usg) (28,17) (V38,Usg) (2,0)

TABLE 2. Values of L(A,37) for (%) =1and (%) = —1
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In table 1 the shaded cells are depicting that the values of (VN_ (2 )(a, 1),U N—(& )(a, 1)) are
not equal to (Vo(a, 1),Uo(a, 1)) for composite N = 33, for all the choices of a and A and in
table 2 the shaded cells are depicting that the values of (VNf @ )(a, 1),Uy_ @ )(a, 1)) are equal
to <V0(a, 1),Uo(a, 1)) for prime N = 37, for all the choices of a and A.

4. CONCLUSION

There are several studies on Lucas sequences and their applications [7] [9]. Primality tests
with Lucas sequences by Lucas and Lehmer given in [9] are based on factorization of N &£ 1.
In this paper we proposed a primality test with pair of Lucas sequences (Vn(a, 1),Un(a, 1))
mod N from the set L(A,N) of S(N) distinct Lucas sequences for S(N) = LCM H pfi_] (pi -
(%) ) },S':J . An algorithm for primality test given, employing the addition chain as in [11] for
computation of (Vn(a, 1),Uy(a, 1)> :
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