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Abstract: This present paper considers the approximate-analytical solution of some classical Riccati Differential 

Equations (RDEs). Here, an efficient numerical method referred to as Daftardar-Gejji Jafari Method (DJM) for 

solving the functional differential equations is applied. Three numerical examples are considered to show the 

accuracy of the proposed method. 
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1. INTRODUCTION 

The Riccati differential equation is one of the essential classes of differential equations, which is 

very useful in the area of sciences and engineering. To be considered in this work is the general 

Riccati differential equation (RDEs) of the form [1]:  
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( ) 2 2

1 1 1 2 2 1

0 2

( ),

,

yZ f y z a z a a a f y

Z a

 = + − −


=                                         (1.1) 

such that: 

( ) ( ) ( )
1

2 1 ,Z a y E f y y dy 
−

 = + −
                           (1.2) 

represents the general solution of (1.1). By definition, 

( ) ( )1 2 1exp 2y a y a f y dy  = +
    and E  is an arbitrary constant. 

This particular type of differential equation plays a very significant role in applied sciences and 

engineering [2]. The idea was initiated by the Italian Scholar Jacopo Francesco Riccati [3]. 

Riccati differential equations can be applied to different areas such as diffusion process, control 

theory, stochastic processes, rheology, damping laws, and so on [4-9]. 

Due to the nonlinear nature of the Riccati Differential equation, the general solution (1.1), may 

not be easily obtained. Hence, the need to apply numerical (iterative) methods for obtaining the 

approximate solutions [10]. This problem has drawn the attention of many researchers as widely 

investigated and remarked. Different numerical methods such as Adomian Decomposition, 

Homotopy Perturbation Variational Iteration, Differential Transform, Taylor Matrix, Chebyshev 

polynomials,  Legendre wavelet, and He’s variational methods have been applied to Riccati 

differential equations [11-22]. The integrability of RDEs was studied in [23]; the general solution 

of the RDEs was considered via the analytical method [24, 25].  Riccati differential equation 

was transformed from first-order into the second-order form by proposing a new and efficient 

transformation in [26]. Bezier Curves Method (BCM) was introduced to obtain the approximate 

solution of RDEs in [27], Chebyshev cardinal functions and Cubic B-spline scaling functions 

have been used to solve the RDE, as presented in [28].  

There are so many works already in existence that discussed the application of the Daftar-Gejji 

Jafari method. This method was proposed in 2006 by two researchers Daftardar-Gejji and Jafari  

[29]. The technique is capable of handling any form of a functional differential equation (linear 

and nonlinear). DJM has been widely used by many researchers to solve problems relating to 

linear and nonlinear ODEs and PDEs, both in integer and fractional orders [30-37].  
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Approximate or analytical solution methods for linear and nonlinear differential models are 

linked to the following [38-42]. This present work considers the application of DJM for 

obtaining the approximate solution of some class of nonlinear Riccati differential equations. 

The remaining part of this work is organized as follows: nonlinear RDE is presented in section 2. 

Method of the solution is discussed in section 3; numerical examples are considered in section 4, 

and then, the concluding remarks are made in section 5. 

 

2. NONLINEAR RICCATI DIFFERENTIAL EQUATION (NRDES) 

Consider the nonlinear Riccati differential equations (RDEs) of the form:  

 
( ) ( ) ( ) ( )

( )

2

0

0

,   

,

fz t Q t z P t z h t t t t

z t 

 = + −  


=

                                   (2.1) 

where ( ) ( ),Q t P t  and ( )h t  are continuous,
0 , ft t and   are arbitrary constants, and ( )z t  is 

the unknown function. By comparing (2.1) and (1.1) we have: 

( ) ( )

( )

( ) ( )

2 2

1

1

2

1 2 2 1

,

,

,

.

y

dz
z

dt

f y z Q t z

a z P t z

a a a f y h t


 


 

 

 − 

                                 (2.2) 

As stated earlier, our approach follows the concept of using the Daftardar-Gejji Jafari method 

(DJM) to approximate the solution of ( )z t , and ( )N t . Here, ( )N t
 
is given in detail form in 

section 3. Furthermore, (2.1) is widely encountered in Engineering, Physical science, and other 

areas.  

Remark 2.1: If 0t =  (2.1) becomes linear. So, 0t   for our nonlinear cases. 

 

3. DAFTARDAR-GEJJI JAFARI METHOD (DJM) 

Consider the general functional equation defined as follows 

( )  ,z a L z N z= + +                                                      (3.1) 
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where a  is a known function  L   and  N   are the linear and nonlinear operators, 

respectively. Suppose we define [ ]N z  as: 

[ ] [ ] [ ],N z L z N z= +                                                       (3.2) 

then (3.1) becomes: 

[ ]y b N z= + .                                      (3.3) 

Now considering a solution, z of (3.2) having the infinite series form: 

0

0

,

[ ]  

i

i

i

i

z z

N z N z



=



=


=




  =    




.                                                      (3.4) 

The nonlinear operator N can now be decomposed as 

 
1

0

0 1 0 0

, 1,  2...
m m

i i i

i i i i

N z N z N z N z m
  −

= = = =

      
= + − =      

      
                      (3.5)              

Therefore, putting (3.4) and (3.5) into (3.3), we obtain 

 
1

0

0 1 0 0

  1,  2,... .
m m

i i i

i i i i

z b N z N z N z m
  −

= = = =

    
= + + − =    

    
                           (3.6) 

Hence, the recurrence relation is gotten as: 

0

1 0

1

1

0 0

( )

,  1,  2,...
m m

m i i

i i

z a

z N z

z N z N z m
−

+

= =


 =



=


    = − =       
 

                                (3.7) 

such that:  

1 0

.i i

i i

z a z z
 

= =

= + =                                                      (3.8) 

Bhaleka et al., [43] discussed the convergence of this method in detail.  
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4. ILLUSTRATIVE EXAMPLES 

This section presents some illustrative examples following the method as mentioned above. The 

numerical results are given in figures and tables to show the effectiveness of the proposed 

method. 

Example 4.1 

Consider the following RDE [27, 44] 

 
( ) ( ) ( )

( )

2 ,

2 0 1.

z t z t z t

z

 = −


=

                                                    (4.1) 

 

The exact solution of (4.1) was given as: 

 

( )
( )

( )
*

exp
.

1 exp

t
z t

t

−
=

+ −
  

In integral form, (4.1) yields: 

( ) ( ) ( )2

0 0

1
.

2

t t

z t z s ds z s ds= + −                                 (4.2) 

Now,  

( )  z t a N z= + . 

This implies that: 

  ( ) ( )2

0 0

2 1,

.

t t

a

N z z s ds z s ds

=



= −


 
                                   (4.3) 

For the linearity concept, the following are remarked: 

 

  ( )   ( )2

0 0

,  .

t t

L z z s ds N z z s ds


= =


 
  

By applying DJM to (4.2), the following is obtained: 
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  ( ) ( )

( )

0

2

1 0

0 0

2

0 0

0

2 1

,

                 = .

t t

t

z

z N z z s ds z s ds

z z ds

=

= = −

−

 


   

   

( ) ( ) ( ) ( )( )

3 0 1 2 0 1

1 2 1

2 2

0 1 2 0 1 2 0 1 0 1

0 0

,

1 1
    = ,

2 2

    = .

t t

z N z z z N z z

N z z N z

z z z z z z ds z z z z ds

= + + − +

   
+ + − +   

   

 
 + + − + + − + + −  

 
 

 

( )
3

0

.i
i

z t z
=

=  

Example 4.2: Consider the classical RDE [3, 27, and 45] 

( ) ( ) ( )

( )

2 2 1,

0 0.

z t z t z t

z

 = − + +


=

                             (4.4) 

The exact solution for (4.4) is given as: 

 ( )

0.5

* 2 1
1 2 tanh 2 log

2 1
z t t

  −
 = + +    +  

. 

Equation (4.4) yields: 

 ( ) ( ) ( )2

0 0

2 ,

t t

z t t z s ds z s ds= − +                                              (4.5) 

in integral form. 

Now,  

( )  z t a N z= + . 

This implies that: 

  ( ) ( )2

0 0

,

2 .

t t

a t

N z z s ds z s ds

=



= − +


 
                            (4.3) 
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For the linearity concept, the following are remarked: 

  ( )   ( )2

0 0

2 ,  

t t

L z z s ds N z z s ds


= = −


 
 . 

By applying DJM to (4.5), the following is obtained: 

  ( ) ( )

( )

0

2

1 0

0 0

2

0 0

0 0

2 ,

                 = 2 .

t t

t t

z t

z N z z s ds z s ds

z ds z ds

=

= = − +

− +

 

 
   

   

   

( ) ( )  

2 0 1 0

1

2

0 1 0 1 1

0 0

,

    = ,

    =  2 .

t t

z N z z N z

N t z N t

z z ds z z ds z

= + −

+ −

 
− + − + − 
 
 

  

   

   

( ) ( ) ( ) ( )

3 0 1 2 0 1

1 2 1

2 2

0 1 2 0 1 2 0 1 0 1

0 0 0 0

,

    = ,

    = 2 2  .           

                 

t t t t

z N z z z N z z

N t z z N t z

z z z ds z z z ds z z ds z z ds

= + + − +

+ + − +

   
− + + + + + − − + + +   
   
   

 

 
( )

3

0

.i
i

z t z
=

=
 

Example 4.3  

Consider the following Riccati differential equation [3, 27, and 45]. 

( ) ( ) ( )

( )

2 28 16 5,

0 1.

z t z t tz t t

z

 = + + −


=

                                           (4.6) 

The exact solution of (4.6) is given as: 

   *( ) 1 4 .z t t= −   

In integral form, (4.6) yields: 
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 ( ) ( ) ( )3 2

0 0

16
1 5 8

3

t t

z t t t z s ds tz s ds= + + + +                                     (4.7) 

Now,  

( )  z t a N z= + . 

This implies that: 

  ( ) ( )

3

2

0 0

16
1 5 ,

3

8 .

t t

a t t

N z z s ds tz s ds


= + +



 = +


 
                            (4.8) 

 

For the linearity concept, the following are remarked: 

     ( )   ( )2

0 0

8 ,  

t t

L z tz s ds N z z s ds


= =


  . 

By applying DJM to (4.7), the following is obtained: 

3

0

16
1 5 ,

3
z t t= + +

 

  ( ) ( )

( )

2

1 0

0 0

2

0 0

0 0

8 ,

                 = 8 .

t t

t t

z N z z s ds tz s ds

z ds tz ds

= = +

+

 

 
 

   

( ) ( )  

2 0 1 0

2

0 1 0 1 1

0 0

,

    = 8 ,

t t

z N z z N z

z z ds t z z ds z

= + −

+ + + − 
 

   

( ) ( ) ( ) ( )

3 0 1 2 0 1

2 2

0 1 2 0 1 2 0 1 0 1

0 0 0 0

,

    = 8 8 ,

t t t t

z N z z z N z z

z z z ds t z z z ds z z ds t z z ds

= + + − +

 
+ + + + + − + + + 

 
   
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   

( ) ( )

( ) ( )

5 0 1 2 3 4 0 1 2 3

2

0 1 2 4 0 1 2 3 4

0 0

2

0 1 2 3 0 1 3

0 0

,

    = 3 8

     8 .

t t

t t

z N z z z z z N z z z z

z z z z z ds t z z z z z ds

z z z z ds t z z z ds

= + + + + − + + +

+ + + + + + + + +

 
− + + + + + + 
 

 

 
 

( )
5

0

.i
i

z t z
=

=
 

 

4.1 Numerical Results 

Here, the results are presented in tabular and graphical forms, as shown in Tables 4.1-4.3 and 

Figure 4.1-4.3.  

Table 4.1: Error Analysis of ( )z t  and ( )*z t  for example 4.1 

t
 

Approximate Solution 

( )z t   

Exact Solution 

( )*z t  

( ) ( )*z t z t−
 

0.0 5.000000000000000E-01 5.000000000000000E-01 0.000E+00 

0.1 4.750208125062004E-01 4.750208125210600E-01 1.490E-11 

0.2 4.501660007936508E-01 4.501660026875221E-01 1.890E-09 

0.3 4.255574510602679E-01 4.255574831883410E-01 3.213E-08 

0.4 4.013121015873016E-01 4.013123398875480E-01 2.383E-07 

0.5 3.775395469060020E-01 3.775406687981455E-01 1.122E-06 

0.6 3.543397357142857E-01 3.543436937742045E-01 3.958E-06 

0.7 3.318007937934028E-01 3.318122278318340E-01 1.143E-05 

0.8 3.099970031746032E-01 3.100255188723876E-01 2.852E-05 

0.9 2.889869688058035E-01 2.890504973749960E-01 6.353E-05 

1.0 2.688120039682540E-01 2.689414213699951E-01 1.294E-04 
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Figure 4.1: Graphs of the approximate and exact solution for Example 4.1 

Table 4.2: Error Analysis of ( )z t  and  ( )*z t  for example 4.2 

t
 

Approximate Solution 

( )z t
 
 

Exact Solution 

( )*z t
 
 

( ) ( )*z t z t−  

0.0 0.000000000000000000 0.000000000000000000 0.000000 

0.1 1.102951630311075E-01 1.102951969169624E-01 3.389E-08 

0.2 2.419752508705418E-01 2.419767996211093E-01 1.549E-06 

0.3 3.950932307796952E-01 3.951048486603785E-01 1.162E-05 

0.4 5.677733163369734E-01 5.678121662929388E-01 3.885E-05 

0.5 7.559368137511863E-01 7.560143934313760E-01 7.758E-05 

0.6 9.534634383426247E-01 9.535662164719230E-01 1.0278E-04 

0.7 1.152856119841550E+00 1.152948966979624E+00 9.285E-05 

0.8 1.346306868262017E+00 1.346363655368376E+00 5.679E-05 

0.9 1.526893826443628eE+00 1.526911313280625E+00 1.749E-05 

1.0 1.689551055683199E+00 1.689498391594383E+00 5.266E-05 
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Figure 4.2: Graphs of the approximate and exact solution for Example 4.2 

Table 4. 3: Error Analysis of ( )z t  and  ( )*z t  for example 4.3 

t
 

Approximate Solution 

( )z t  

Exact Solution 

( )*z t  

( ) ( )*z t z t−
 

0.0 1.0000000000000000 1.00000000000000000 0.000000 

0.1 5.999999564819216E-01 6.000000000000000E-01 4.352E-08 

0.2 1.999973086173199E-01 2.000000000000000E-01 2.691E-06 

0.3 -2.000292456117776E-01 -2.000000000000000E-01 2.925E-05 

0.4 -6.001547258640714E-01 -6.000000000000001E-01 1.547E-04 

0.5 -1.000547997417370E+00 -1.00000000000000000 5.480-04 

0.6 -.401494265494364E+00 -1.400000000000000E+00 1.494E-03 

0.7 -1.803366280340690E+00 -1.800000000000000E+00 3.3662E-03 

0.8 -2.206474911496222E+00 -2.200000000000000E+00 6.475E-03 

0.9 2.610561005274426E+00 -2.600000000000000E+00 1.056E-02 

1.0 3.012510754974513E+00 -3.000000000000000000 1.251E-02 
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Figure 4.3: Graphs of the approximate and exact solution for Example 4.3 

 

5.  CONCLUSION 

This work considered the application of the Daftardar-Gejji  Jafari method for the approximate 

solution of some classical Riccati differential equations (RDES). This method is direct in terms 

of application, easy to use, and reduces computational stress. Three numerical examples were 

investigated to test the accuracy and efficiency of the proposed method. The results converged 

faster to the exact solutions when compared with some already existing methods. 
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