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Abstract. In this study, a mathematical model based on a system of ordinary differential equations is formulated

to describe the dynamics of tungiasis infection incorporating protection as a control strategy against infection.

The basic reproduction number is computed using the next generation matrix approach. The existence of the

steady states of the model are determined and the stability analysis of the model carried out. By Routh-Hurwitz

criterion the disease free (DFE) and the endemic equilibrium (EE) points are found to be locally asymptotically

stable. Numerical simulation of the model carried out showed that a high protection rate leads to a low tungiasis

prevalence in a given population.
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1. INTRODUCTION

Tungiasis is a parasitical infestation caused by a female ectoparasite called Tunga penetrans

commonly known as the jigger flea. Tunga penetrans is the smallest known flea at only 1mm in

length and is usually recognizable in its parasitic phase. However, when attached beneath the
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skin, it can reach up to 1cm in length [1]. Epidemiologically, human-to-human transmission is

not possible. The jigger must go through phases of its life cycle in sandy or dusty soil before

becoming infective to another human. Animals, mostly mammals, can also be infected with

jiggers and serve as reservoir hosts thus continuing the cycle and contamination of the environ-

ment [2].

The first evidence of the infection is a tiny black lesion on the skin at the point penetration.

The area around the embedded flea becomes very itchy and inflamed leading to ulcerations and

accumulation of pus. The spread of HIV/AIDS can be passed from one person to anther due

to sharing of pins and needles while extracting the flea [3]. Other possible infections include

Tetanus, Lumphangitis, Gangrene and Bacterium [7]. The disease is endemic in developing

countries along the tropics particularly where poverty and poor standards of basic hygiene exist

like in the resource poor communities of South America, the Carribean and Sub-Saharan Africa

[10]. Possible treatment may be natural extrusion of the flea and/or egg sac with a sterile pin,

followed by an antiseptic dressing [3]. Benzyl benzoate emulsion and potassium permanganate

are commonly used to treat the infection. If it is possible to locate the area of the soil where

the flea originates, it could be burnt off or sprayed with a suitable insecticide in an effort to kill

the fleas. It is worth noting that thorough fumigation of homes is necessary for complete eradi-

cation of the infection. Tungiasis can be prevented by observing high standards of cleanliness,

encouraging wearing of shoes and use of flea repellants on the skin [2].

In order to control, prevent and treat Tungiasis effectively, it is vital to understand its transmis-

sion dynamics. Nthiiri [4] formulated an SIR model for the transmission dynamics of jigger

infection incorporating treatment as a control strategy and found out that effective treatment of

jigger infection prevents rapid progression of the disease. Kahuru et al [9], carried out a re-

search on an optimal control technique in a mathematical model for the dynamics of Tungiasis

in a community. The authors found out that controlling of infected soils and animal reservoirs

with insecticides, environmental hygiene may serve as possible approach to control Tungiasis.

In this study, we look into the impact of protection on the transmission dynamics of Tungiasis.
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2. MODEL FORMULATION

In the model we divided the total population (N) into three epidemiological classes; susceptible

individuals (S), individuals who are protected against tungiasis (P) and infectious individuals

(I) and schematically described the dynamics of the model in the Figure 1;

FIGURE 1. Flow chart

From the Figure 1, the model can be presented as the system ODEs;

dS
dt

= Λ−
[
(1−ω)βcI

N
+η +µ

]
S+σ I

dP
dt

= ηS−
[
(1−ω)πβcI

N
+µ

]
P(1)

dI
dt

=
(1−ω)βcI

N
S+

(1−ω)πβcI
N

P− (σ +δ +µ)I

where; Λ represents recruitment rate of the susceptibles, µ represents the natural mortality

rate, β is the probability of an individual getting infected by an infectious individual , c is the

per capita contact rate, π is a modification parameter, 0 ≤ ω ≤ 1 is the measure of protection

efficacy, η is the rate at which susceptibles progress to protected class, σ represent recovery

rate without immunity, and finally δ is tungiasis disease induced death rate.



MATHEMATICAL MODEL ON THE IMPACT OF PROTECTION AGAINST TUNGIASIS 2811

3. ANALYSIS OF THE MODEL

Since the system (1) describes human population, all the solutions of state variable with

non-negative initial conditions are non-negative ∀ t > 0 and they are bounded in the feasible

region Γ = {(S,P, I) ∈ R3
+;S > 0,P, I ≥ 0;N ≤ Λ

µ
}

3.1. Disease Free Equilibrium (DFE). The disease-free equilibrium denoted by E0 a point

where the disease is not present in the population. The DFE of the system (1) is given by

E0


S0

P0

I0

= E0


Λ

(η+µ)

ηΛ

(η+µ)µ

0


3.2. The Protection Reproduction Number. The protection reproduction number (RP) is

the expected number of secondary infections produced in a completely susceptible population

by a typical infected individual during his/her infectious lifetime in the presence of protection.

By using the next generation matrix approach [6], (RP) is given by the spectral radius of the

matrix FV−1.

the matrices F and V are given by

F =

 0 0

0 (1−ω)βcΛ

N(η+µ) + (1−ω)πβcηΛ

N(η+µ)µ


V =

 [η +µ] (1−ω)βc
N

Λ

(η+µ) −σ

0 (σ +δ +µ)


and it follows that

FV−1 =

 0 0

0 (1−ω)βcΛ

(σ+δ+µ)

(
µ+πη

N(η+µ)µ

)


Thus

RP = βc
(σ+δ+µ)

(
(1−ω)Λ(µ+πη)

N(η+µ)µ

)
3.3. Relation of the protection reproduction number to the basic reproduction number.

The basic reproduction number or the reproduction number without protection is given by

R0 =
βc

(σ+δ+µ)

Thus
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RP = R0

(
(1−ω)Λ(µ+πη)

N(η+µ)µ

)
Since

(1−ω)Λ(µ +πη)< N(η +µ)µ ,

RP = R0

(
(1−ω)Λ(µ+πη)

N(η+µ)µ

)
< R0 for 0 < η < 1

and RP = R0 for η = 0.

Thus the protection will always reduce the basic reproduction number of tungiasis.

3.4. Local stability of disease free equilibrium point. In this section we analyze the

stability of the disease free equilibrium point. This is carried out to predict the long term

behaviour of the solutions of the model. The Jacobian Matrix of System (1) is given as:

J =


−
[
(1−ω)βcI

N +η +µ

]
0 − (1−ω)βc

N S+σ

η −
[
(1−ω)πβcI

N +µ

]
− (1−ω)πβc

N P
(1−ω)βcI

N
(1−ω)πβcI

N
(1−ω)βc

N S+ (1−ω)πβc
N P− (σ +δ +µ)



Theorem 3.1. The disease free equilibrium (E0) is locally asymptotically stable for RP < 1,

otherwise unstable.

Proof. E0 of system (1) is locally asymptotically stable if Re(λ )< 0 where λ can be evaluated

from the relation |λ I− J(E0)|= 0, where J(E0) is the Jacobian matrix of system (1) at E0

J(E0) is given by

J(E0) =


−(η +µ) 0 − (1−ω)βcΛ

N(η+µ) +σ

η −µ − (1−ω)πβcηΛ

N(η+µ)µ

0 0 (1−ω)βcΛµ+(1−ω)πβcηΛ

N(η+µ)µ − (σ +δ +µ)


By using the relation |λ I− J(E0)|= 0, we obtain Re(λ ) as

λ1 =−(η +µ)

λ2 =−µ

λ3 =
(1−ω)βcΛµ+(1−ω)πβcηΛ

N(η+µ)µ − (σ +δ +µ)

Clearly, λ1,λ2 < 0 and λ3 < 0 forRP < 1 and λ3 > 0 forRP > 1

Thus E0 is locally asymptotically stable for RP < 1 and unstable for RP > 1 �
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This implies that for a small perturbation of the DFE, the solutions of system (1) will eventually

converge to the DFE whenever RP < 1. Epidemiologically, it implies that if a few infectious in-

dividuals are introduced into a fully susceptible population, the disease would die out whenever

RP < 1, otherwise the disease would spread.

3.5. Global Stability of the Disease Free Equilibrium Point. Now we use comparison

theorem as in Lakshmikantham et al. [5] , to prove the global stability of DFE.

Theorem 3.2. The disease-free equilibrium of the system (1) is globally asymptotically stable

when the reproduction number RP < 1 and unstable when RP > 1.

Proof. Using the comparison theorem in Lakshmikantham et al. [5] we rewrite the disease

compartments as dS
dt

dI
dt

= (F−V )

 S

I

−
 −βcI

N (S0−S)
(1−ω)βcI

N (S0−S)+ (1−ω)πβcI
N (P0−P)


Where F and V are defined in section (3.2)

Since S≤ S0 =
Λ

(η+µ) and P≤ P0 =
ηΛ

(η+µ)µ ∀ t > 0, it follows that dS
dt

dI
dt

≤ (F−V )

 S

I


Where F−V =

 − [η +µ] − (1−ω)βcΛ

N(η+µ) +σ

0 (1−ω)βcΛ

N(η+µ) + (1−ω)πβcηΛ

N(η+µ)µ − (σ +δ +µ)


The characteristic equation is given by

−((η +µ)+λ )(( (1−ω)βcΛ

N(η+µ) + (1−ω)πβcηΛ

N(η+µ)µ − (σ +δ +µ))−λ ) = 0

λ1 =−(η +µ)

λ2 =
(1−ω)βcΛ

N(η+µ) + (1−ω)πβcηΛ

N(η+µ)µ − (σ +δ +µ)

Clearly λ1 < 0 and λ2 < 0 when RP < 1. Since all the eigenvalues of the matrix F −V have

negative real parts, then system (1) is stable whenever RP < 1. Therefore, (S, I)→ ( Λ

η+µ
,0)

as t→ ∞. By the comparison theorem, it follows that (S, I)→ ( Λ

η+µ
,0) and P→ ηΛ

(η+µ)µ Then

(S,P, I)→ E0 as t→ ∞. Thus, E0 is globally asymptotically stable for RP < 1. �

This implies that given a large perturbation of the DFE, the solutions of system (1) will eventu-

ally converge to the DFE whenever RP < 1. Epidemiologically, it implies that if a large number
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of infectious individuals are introduced in to a fully susceptible population the disease would

die out whenever RP < 1, otherwise, the disease would spread.

3.6. Existence of endemic equilibrium point. Let E∗(S∗,P∗, I∗) denote the endemic equi-

librium point of system (1).

Theorem 3.3. There exists a unique endemic equilibrium of system (1) when RP > 1.

Proof. Equating the right hand side of system (1) to zero and substituting E∗(S∗,P∗,S∗) for S,

P and I , we obtain

0 = Λ−
[
(1−ω)βcI∗

N
+η +µ

]
S∗+σ I∗

0 = ηS∗−
[
(1−ω)πβcI∗

N
+µ

]
P∗

0 =
(1−ω)βcI∗

N
S∗+

(1−ω)πβcI∗

N
P∗− (σ +δ +µ)I∗

(2)

From the first and second equations of system (2) we have

(3) S∗ =
N(Λ+σ I∗)

((1−ω)βcI∗+N(η +µ))

(4) P∗ =
N2η(Λ+σ I∗)

((1−ω)βcI∗+N(η +µ))((1−ω)πβcI∗+Nµ)

To solve for I∗, we substitute equations (3)and(4) in the last equation of system (2)and simplify

to get

(5) AI2∗+BI∗+C = 0

where

A = (δ +µ) (1−ω)2π(βc)2

N

B = (η +µ)(σ +δ +µ)(1−ω)πβc+µ(δ +µ)(1−ω)βc− (1−ω)2π(βc)2Λ

N − (1−ω)πβcησ

C =−(1−ω)βcΛ(µ +πη)+(σ +δ +µ)N(η +µ)µ

Clearly C < 0 when RP > 1 and A > 0. This implies that irrespective of the sign of B, equation

(5) has two real roots: positive root and negative root. Hence there exist a positive unique

endemic equilibrium. �
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3.7. Local stability of endemic equilibrium point.

Theorem 3.4. The endemic equilibrium of system (1) is locally asymptotically stable whenever

RP > 1

Proof. We use the trace and the determinant to investigate endemic equilibrium’s stability. The

The Jacobian matrix at E∗(S∗,P∗,S∗) is given by

(6)

J(E∗) =


−
(
(1−ω)βcI∗

N +η +µ

)
0 − (1−ω)βcS∗

N +σ

η −
(
(1−ω)πβcI∗

N +µ

)
− (1−ω)πβcP∗

N

(1−ω)βcI∗

N
(1−ω)πβcI∗

N
(1−ω)βcS∗

N + (1−ω)πβcP∗

N − (σ +δ +µ)



In view of the third equation of system (2) we have

(7)
(1−ω)βc

N
S∗+

(1−ω)πβc
N

P∗ = (σ +δ +µ)

Substituting equation (7) in the Jacobian matrix (6) we obtain

(8) J(E∗) =


−
(
(1−ω)βcI∗

N +η +µ

)
0 − (1−ω)βcS∗

N +σ

η −
(
(1−ω)πβcI∗

N +µ

)
− (1−ω)πβcP∗

N
(1−ω)βcI∗

N
(1−ω)πβcI∗

N 0



From the Jacobian matrix (8), the trace(tr(J(E∗))) and the determinant (Det(J(E∗))) are given

by
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tr(J(E∗)) =−
(
(1−ω)βcI∗

N + (1−ω)πβcI∗
N +2µ +η

)
Det(J(E∗)) =

(
(1− ω)βcI∗

N

)(
(1− ω)βcS∗

N

)(
(1− ω)βcI∗

N

)
+ (σ + δ + µ)

(
(1− ω)βcI∗

N

)
η + (σ + δ + µ)

(
(1− ω)βcI∗

N

)
µ

+ σ

(
(1− ω)πβcI∗

N

)
η + σ

(
(1− ω)πβcI∗

N

)(
(1− ω)βcI∗

N

)
+ σ

(
(1− ω)βcI∗

N

)
µ −

(
(1− ω)βcI∗

N

)
(σ + δ + µ)

(
(1− ω)βcI∗

N

)
−
(
(1− ω)βcS∗

N

)(
(1− ω)βcI∗

N

)
η −

(
(1− ω)βcS∗

N

)(
(1− ω)βcI∗

N

)
µ

−
(
(1− ω)βcS∗

N

)(
(1− ω)πβcI∗

N

)
η

−
(
(1− ω)βcS∗

N

)(
(1− ω)πβcI∗

N

)(
(1− ω)βcI∗

N

)
−
(
(1− ω)βcS∗

N

)(
(1− ω)βcI∗

N

)
µ

Clearly tr(J(E∗))< 0 and Det(J(E∗))> 0 if

(9)(
(1− ω)βcI∗

N

)(
(1− ω)βcS∗

N

)(
(1− ω)βcI∗

N

)
+ (σ + δ + µ)

(
(1− ω)βcI∗

N

)
η

+ (σ + δ + µ)

(
(1− ω)βcI∗

N

)
µ + σ

(
(1− ω)πβcI∗

N

)
η

+ σ

(
(1− ω)πβcI∗

N

)(
(1− ω)βcI∗

N

)
+ σ

(
(1− ω)βcI∗

N

)
µ

>

(
(1− ω)βcI∗

N

)
(σ + δ + µ)

(
(1− ω)βcI∗

N

)
+

(
(1− ω)βcS∗

N

)(
(1− ω)βcI∗

N

)
η

+

(
(1− ω)βcS∗

N

)(
(1− ω)βcI∗

N

)
µ +

(
(1− ω)βcS∗

N

)(
(1− ω)πβcI∗

N

)
η

+

(
(1− ω)βcS∗

N

)(
(1− ω)πβcI∗

N

)(
(1− ω)βcI∗

N

)
+

(
(1− ω)βcS∗

N

)(
(1− ω)βcI∗

N

)
µ

From Theorem 3.3, a unique endemic equilibrium E∗(S∗,P∗, I∗) of system (1) exists when

RP > 1. Since tr(J(E∗)) and Det(J(E∗)) are functions of E∗(S∗,P∗,S∗) and tr(J(E∗)) < 0

and Det(J(E∗)) > 0 provided that inequality (9) is satisfied, we conclude that the endemic

equilibrium of system (1) is locally asymptotically stable whenever RP > 1 �
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This implies that for a small perturbation of the EE, the solutions of system (1) will always

converge to the EE whenever RP > 1. Epidemiologically, it implies that if a few infectious

individuals are introduced in a fully susceptible population with RP > 1, then the disease would

persist in the population.

4. NUMERICAL SIMULATION

We carry out numerical simulations of the model (1), using MATLAB ode45 solver. The pa-

rameter values used are presented in Table 1. Simulation results are presented in Figure 2.

TABLE 1. Parameter values of the model

Parameter symbol Value Source

Λ 4.4×10−3/day [12]

µ 1.6×10−2/day [12]

β 1.4989×10−2/day [13]

π 0.2-0.990 Assumed

δ 5.0×10−2/day [13]

ν 1.431×10−2/day Assumed

σ 4.27×10−1/day [13]

ω 0 < ω < 1 Assumed

FIGURE 2. The impact of protection on infectious individuals
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Figure 2, shows how protection can reduce the infected individuals. As the protection efficacy

increases, the infected individuals reduce. This implies that people need to enhance protection

measures in order eradicate tungiasis infection. This can be achieved through public awareness

campaign on protective measures .

5. CONCLUSION

We conclude that effective protection of tungiasis infection prevents its rapid progression in the

population. The government should also aim on improving the life standards of its citizens by

mobilizing observation proper sanitation standards, wearing of shoes for all schooling children,

provision of proper food to the venerable individuals and watering dusty floors in all public

places. This would drastically reduce new infections and re-infection of tungiasis.
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