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1. Introduction 

In 1942 Menger [7] introduced the notion of a probabilistic metric space (PM-

space) which is in fact, a generalization of metric space.  The idea in probabilistic 

metric space is to associate a distribution function with a point pair, say (p, q), 

denoted by  F(p, q, t) where t > 0 and interpret this function as the probability that 

distance between p and q is less than t, whereas in the metric space the distance 

function is a single positive number. Sehgal [9] initiated the study of fixed points in 

probabilistic metric spaces. The study of these spaces was expanded rapidly with the 

pioneering works of Schweizer-Sklar [11]. 

 In 1991, Mishra[8] introduced the notion of compatible mappings in the 
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setting of probabilistic metric space.  In 1996, Jungck [5] introduce the notion of 

weakly compatible mappings as follows: 

Two self mappings S and T are said to be weakly compatible if they commute 

at their coincide points, i.e., Tu = Su for some u ∈ X , then TSu = STu.  

  Further, Singh and Jain [10] proved some results for weakly compatible in 

Menger spaces. 

Fang [3] defined 𝜙-contractive conditions and proved some fixed point theorems 

under 𝜙-contractions for compatible and weakly compatible maps in Menger PM-

spaces using t-norm of H-type, introduced by Had�̌��́�c [4].  

Recently, Bhaskar and Lakshmikantham [2], Lakshmikantham and �́� iri �́�  [6] gave 

some coupled fixed point theorems in partially ordered metric spaces. 

Now, we prove a coupled fixed point theorem for a pair of weakly compatible 

maps satisfying 𝜙-contractive conditions in Menger PM-space with a continuous t-

norm of H-type. We support our result by an example. At the end, we give an 

application of our result. 

2. Preliminaries  

First, recall that a real valued function f defined on the set of real numbers is known 

as a distribution function if it is non-decreasing, continuous and inf. f(x) = 0, sup. f(x) 

= 1. In what follows H(x) denotes the distribution function defined as follows: 

                              H(x) = {
0    𝑖𝑓  𝑥 ≤ 0,
1    𝑖𝑓  𝑥 > 0.

 

Definition 2.1. A probabilistic metric space (PM-space) is a pair (X, F) where X is a 

set and F is a function defined on X × X into the set of distribution functions such that 

if x, y and z are points of X, then 

(F-1) F(x, y; 0) = 0, 

(F-2) F(x, y; t) = H(t) iff x = y, 

(F-3) F(x, y; t) = F(y, x; t), 

(F-4) if F(x, y; s) = 1 and F(y, z; t) = 1, then F(x, z; s+t) = 1 for all x, y, z ∈ X and s, t 

≥ 0. 

         For each x and y in X and for each real number t ≥ 0, F(x, y; t) is to be thought 
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of as the probability that the distance between x and y is less than t. 

         It is interesting to note that, if (X, d) is a metric space, then the distribution 

function F(x, y; t)  defined by the relation F(x, y; t) = H(t – d(x, y)) induces a PM-

space. 

Definition 2.2. A t-norm t is a 2-place function, t : [0,1] × [0,1] → [0,1] satisfying the 

following: 

(i) t(0,0) = 0, 

(ii) t(0,1) = 1, 

(iii) t(a,b) = t(b,a), 

(iv) if a ≤ c, b ≤ d, then t(a,b) ≤ t(c,d), 

(v) t(t(a,b),c) = t(a,t(b,c)) for all a, b, c in [0,1]. 

Definition 2.3. A Menger PM-space is a triplet (X, F, t) where (X, F) is a PM-space 

and t is a t-norm with the following condition: 

(F-5) F(x, z; s + t) ≥ t(F(x, y; s), F(y, z; t)), for all x, y, z in X and s, t  ≥ 0. 

This inequality is known as Menger’s triangle inequality. 

In our theory, we consider (X, F, t) to be a Menger PM-space along with the following 

condition: 

(F-6) lim𝑡 →∞ 𝐹(𝑥, 𝑦, 𝑡) = 1, for all x, y in X. 

Definition 2.4[4]. Let 
𝑠𝑢𝑝.

0 < 𝑡 < 1
∆(t, t) = 1. A t-norm ∆ is said to be of H-type if the 

family of functions {∆𝑚(𝑡)}𝑚=1
∞  is equicontinuous at t = 1, where 

                       ∆1(𝑡) = t, ∆𝑚+1(𝑡) = t ∆ (∆𝑚(𝑡)), m= 1, 2…, t ∈ [0, 1]. 

The t-norm ∆𝑀 = min. is an example of t-norm of H-type. 

Remark 2.1. ∆ is a H-type t-norm iff for any 𝜆 ∈ (0, 1), there exists 𝛿(𝜆) ∈ (0, 1) such 

that   ∆𝑚(𝑡) > (1-𝜆) for all m ∈ N, when t > (1-𝛿). 

Definition 2.5. A sequence {xn} in a Menger PM space (X, F, t) is said  

(i) to converge to a point x in X if for every   > 0 and 𝜆 > 0, there is an 

integer n0 such that F(xn, x,  ) > 1 – 𝜆, for all n ≥ n0. 

(ii) to be Cauchy if for each   > 0 and 𝜆 > 0, there is an integer n0 such that 

F(xn, xm,  ) > 1 – 𝜆, for all n, m ≥ n0. 
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(iii) to be complete if every Cauchy sequence in it converges to a point of it. 

Definition 2.6[3]. Define 𝜱 = { 𝜙 : R+ → R+}, where R+ = [0, +  ) and each 𝜙 ∈ 𝜱 

satisfies the following conditions: 

(𝜙-1) 𝜙 is non-decreasing; 

(𝜙-2) 𝜙 is upper semicontinuous from the right; 

(𝜙-3) ∑ 𝜙 (𝑡)∞
 =  < +   for all t > 0, where 𝜙 +1(𝑡) = 𝜙(𝜙 (𝑡)), n ∈ N. 

Clearly, if 𝜙 ∈ 𝜱, then 𝜙(t) < t for all t > 0. 

Definition 2.7[3]. An element x ∈ X is called a common fixed point of the 

mappings 

f: X × X → X and g: X → X if 

                                         x = f(x, x) = g(x). 

Definition 2.8[6].  An element (x, y) ∈ X × X is called a  

(i) coupled fixed point of the mapping f: X × X → X if 

                                           f(x, y) = x ,      f(y, x) = y. 

(ii) coupled coincidence point of the mappings f: X × X → X and g: X → X 

if 

                                          f(x, y) = g(x),    f(y, x) = g(y). 

(iii) common coupled fixed point of the mappings f: X × X → X and g: X → 

X if 

                                         x = f(x, y) = g(x),    y = f(y, x) = g(y). 

Definition 2.9[3]. The mappings f: X × X → X and g: X → X are called commutative 

if 

                                                gf(x, y) = f(gx, gy),for all x, y ∈ X. 

Abbas, Khan and Redenovi �́�  [1] introduced the notion of w-compatible 

mappings as follows: 

The mappings f : X × X → X and g : X → X are called w-compatible if    

          g(f(x, y)) = f(gx, gy) whenever g(x) = f(x, y) and g(y) = f(y,x). 

Definition 2.10.The maps f: X × X → X and g: X → X are called weakly compatible 

if f(x, y) = g(x), f(y, x) = g(y) implies gf(x, y) = f(gx, gy), gf(y, x) = f(gy, gx), for all x, 

y in X. 
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3. Main results 

For convenience, we denote 

(3.1)                [F(x, y, t)]   = 
𝐹(𝑥, 𝑦, 𝑡) ∗ 𝐹(𝑥, 𝑦, 𝑡) ∗ … ∗ 𝐹(𝑥, 𝑦, 𝑡)⏟                      

𝑛
,  for all n ∈ N. 

Now we prove our main result. 

Theorem 3.1. Let (X, F, ∗) be Menger PM-Space, * being continuous t – norm of H-

type. Let f: X × X → X and g: X → X be two mappings and there exists 𝜙 ∈ Φ such 

that  

(3.2)    F(f(x, y), f(u, v), 𝜙(t)) ≥ 𝜓[F(gx, gu, t) ∗ F(gy, gv, t)], for all x, y, u, v in X and 

t > 0, where 𝜓: [0, 1] → [0, 1] is a continuous function such that 𝜓(t) ≥ t for all           

t ∈ [0, 1]. 

Suppose that f(X × X) ⊆ g(X), f and g are weakly compatible, range space of 

one of the maps f or g is complete. Then f and g have a coupled coincidence point. 

            Moreover, there exists a unique point x in X such that x = f(x, x) = g(x). 

Proof.  

Let x0, y0 be two arbitrary points in X. Since f(X × X) ⊆ g(X), we can choose x1, y1 in 

X such that  g(x1) = f(x0, y0), g(y1) = f(y0, x0). 

Continuing in this way we can construct two sequences {xn} and {yn} in X such that 

g(xn+1)  =  f(xn, yn) and g(yn+1)  =  f(yn, xn), for al n ≥ 0. 

Step 1. We first show that {gxn} and{gyn} are Cauchy sequences. 

Since * is a t-norm of H-type, for any > 0, there exists 𝛿 > 0 such that 

(3.3)       (1 −  𝛿)  ∗  (1 −  𝛿)  ∗ …∗ (1 −  𝛿) ⏟                      
𝑝

  ≥  (1- ϵ), for all p ∈ N. 

Since lim𝑡→∞ 𝐹(𝑥, 𝑦, 𝑡) = 1, for all x, y in X, there exists t0 > 0 such that 

F(gx0, gx1, t0) ≥ (1 −  𝛿)  and F(gy0, gy1, t0) ≥ (1 −  𝛿). 

Also, since 𝜙 ∈ Φ, using condition (𝜙-3), we have ∑ 𝜙 (𝑡 )
∞
 =1  <  . Then for any t > 

0, there exists n0 ∈ N such that 

(3.4)         t > ∑ 𝜙𝑘(𝑡 )
∞
𝑘= 0

. 

Using condition (3.2), we have 

F(gx1, gx2, 𝜙(t0)) = F(f(x0, y0), f(x1, y1), 𝜙(t0)) 

                       ≥ 𝜓[F(g𝑥 , g𝑥1, 𝑡 )  ∗  F(g𝑦 , g𝑦1, 𝑡 )] 
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                            ≥ F(gx0, gx1, t0) * F(gy0, gy1, t0). 

F(gy1, gy2, 𝜙(t0)) = F(f(y0, x0), f(y1, x1), 𝜙(t0)) 

                       ≥ 𝜓[F(g𝑦 , g𝑦1, 𝑡 )  ∗  F(g𝑥 , g𝑥1, 𝑡 )] 

                            ≥ F(gy0, gy1, t0) * F(gx0, gx1, t0). 

Similarly, we can also get 

F(gx2, gx3, 𝜙2(t0)) = F(f(x1, y1), f(x2, y2), 𝜙2(t0)) 

                           ≥ 𝜓[F(g𝑥1, g𝑥2, 𝜙(𝑡 ))  ∗  F(g𝑦1, g𝑦2, 𝜙(𝑡 ))] 

                               ≥ F(gx1, gx2, 𝜙(t0)) * F(gy1, gy2, 𝜙(t0)) 

                                ≥ [F(gx0, gx1, t0)]
2
 * [F(gy0, gy1, t0)]

2
. 

F(gy2, gy3, 𝜙2(t0)) = F(f(y1, x1), f(y2, x2), 𝜙2(t0)) 

                                ≥ [F(gy0, gy1, t0)]
2
 * [F(gx0, gx1, t0)]

2
. 

Continuing in this way, we can get 

F(gxn, gxn+1, 𝜙 (t0)) ≥ [F(gx , gx1, t )]
2𝑛−1* [F(gy , gy1, t )]

2𝑛−1 . 

F(gyn, gyn+1, 𝜙 (t0)) ≥ [F(gy , gy1, t )]
2𝑛−1* [F(gx , gx1, t )]

2𝑛−1. 

So, from (3.3) and (3.4), for m > n ≥ n0, we have 

F(gxn, gxm, t) 

≥ F(gxn, gxm, ∑ 𝜙𝑘(𝑡 )
∞
𝑘= 0

) 

≥ F(gxn, gxm, ∑ 𝜙𝑘(𝑡 )
𝑚−1
𝑘= ) 

≥ F(gxn, gxn+1, 𝜙 (t0)) * F(gxn+1, gxn+2, 𝜙 +1(t0)) *…* F(gxm-1, gxm, 𝜙𝑚−1(t0)) 

≥ {[F(gx , gx1, t )]
2𝑛−1 ∗ [F(gy , gy1, t )]

2𝑛−1} *  

    * {[F(gx , gx1, t )]
2𝑛 ∗ [F(gy , gy1, t )]

2𝑛} * 

                                    … 

    * {[F(gx , gx1, t )]
2𝑚−2 ∗ [F(gy , gy1, t )]

2𝑚−2} 

= [F(gx , gx1, t )]
2𝑛−1(2𝑚−𝑛−1) ∗ [F(gy , gy1, t )]

2𝑛−1(2𝑚−𝑛−1) 

≥  (1 −  𝛿)  ∗  (1 −  𝛿)  ∗ … ∗ (1 −  𝛿) ⏟                      
2𝑛(2𝑚−𝑛−1)

  ≥  (1- ϵ),which implies that 

          F(gxn, gxm, t) ≥ (1- ϵ), for all m, n ∈ N with m > n ≥ n0 and t >  0. 

Therefore, {gxn} is a Cauchy sequence. Similarly, we can get that {gyn} is a Cauchy 
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sequence. 

Step 2. To show that f and g have a coupled coincidence point. 

Without loss of generality, one can  assume that g(X) is complete, then there exists 

points x, y in g(X) so that  lim →∞ 𝑔(𝑥 +1) = x, lim →∞ 𝑔(𝑦 +1) = y. 

For x, y ∈ g(X) implies the existence of p, q in X such  that g(p) = x, g(q) = y and 

hence lim →∞ 𝑔(𝑥 +1) = lim →∞ 𝑓(𝑥 , 𝑦 ) = g(p) = x, 

lim →∞ 𝑔(𝑦 +1) = lim →∞ 𝑓(𝑦 , 𝑥 ) = g(q) = y. 

From (3.2),we have 

F(𝑓(𝑥 , 𝑦 ), f(p, q), 𝜙(t)) ≥ 𝜓[F(g𝑥 , g(p), t)  ∗  F(g𝑦 , g(q), t)] 

                                         ≥ F(gxn, g(p), t) * F(gyn, g(q), t). 

Taking limit as n →  , we get 

F(g(p), f(p, q), 𝜙(t)) = 1 that is, f(p, q) = g(p) = x. 

Similarly, f(q, p) = g(q) = y. 

But f and g are weakly compatible, so that f(p, q) = g(p) = x and f(q, p) = g(q) = y 

implies gf(p, q) = f(g(p), g(q)) and gf(q, p) = f(g(q), g(p)), that is g(x) = f(x, y) and g(y) 

= f(y, x). 

Hence f and g have a coupled coincidence point. 

Step 3. To show that g(x) = x and g(y) = y. 

Since * is a t-norm of H-type, for any ϵ > 0, there exists 𝛿 > 0 such that 

               (1 −  𝛿)  ∗  (1 −  𝛿)  ∗ … ∗ (1 −  𝛿) ⏟                      
𝑝

  ≥  (1- ϵ), for all p ∈ N. 

Since lim𝑡→∞ 𝐹(𝑥, 𝑦, 𝑡) = 1, for all x, y in X, there exists t0 > 0 such that 

F(gx, x, t0) ≥ (1 −  𝛿)  and F(gy, y, t0) ≥ (1 −  𝛿). 

Also, since 𝜙 ∈ Φ, using condition (𝜙-3), we have ∑ 𝜙 (𝑡 )
∞
 =1  <  .  

Then for any t > 0, there exists n0 ∈ N such that 

                            t > ∑ 𝜙𝑘(𝑡 )
∞
𝑘= 0

. 

From  (3.2), we have 

F(gx, x, 𝜙(t0)) = F(f(x, y), f(p, q), 𝜙(t0)) 

                        ≥ 𝜓[F(g𝑥, gp, 𝑡 )  ∗  F(gy, gq, 𝑡 )] 

                        ≥ F(gx, gp, t0) * F(gy, gq, t0) 
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                        = F(gx, x, t0) * F(gy, y, t0). 

Similarly, F(gy, y, 𝜙(t0)) ≥ F(gy, y, t0) * F(gx, x, t0). 

Continuing in a same way, we have for  all n ∈ N, 

F(gx, x, 𝜙 (t0)) ≥ [F(gx, x, t )]
2𝑛−1* [F(gy, y, t )]

2𝑛−1. 

Thus, we have 

F(gx, x, t) ≥ F(gx, x, ∑ 𝜙𝑘(𝑡 )
∞
𝑘= 0

) 

              ≥ F(gx, x, 𝜙 0(𝑡 )) 

              ≥ [F(gx, x, t )]
2𝑛0−1 ∗ [F(gy, y, t )]

2𝑛0−1 

              ≥  (1 −  𝛿)  ∗  (1 −  𝛿)  ∗ … ∗ (1 −  𝛿) ⏟                      
2𝑛0

  ≥  (1- ϵ). 

So, for any ϵ > 0, we have  F(gx, y, t) ≥  (1- ϵ), for all t > 0. 

This implies g(x) = x. Similarly, g(y) = y. 

Step 4. Next we shall show that x = y. 

Since * is a t-norm of H-type, for any ϵ > 0, there exists 𝛿 > 0 such that 

               (1 −  𝛿) ∗  (1 −  𝛿) ∗ … ∗ (1 −  𝛿) ⏟                      
𝑝

  ≥  (1- ϵ), for all p ∈ N. 

Since lim𝑡→∞ 𝐹(𝑥, 𝑦, 𝑡) = 1, for all x, y in X, there exists t0 > 0 such that 

                                  F(x, y, t0) ≥ (1 −  𝛿). 

Since 𝜙 ∈ Φ, using condition (𝜙-3), we have ∑ 𝜙 (𝑡 )
∞
 =1  <  . Then for any t > 0, 

there exists n0 ∈ N such that 

                                       t > ∑ 𝜙𝑘(𝑡 )
∞
𝑘= 0

. 

From (3.2), we have 

F(x, y, 𝜙(t0)) = F(f(p, q), f(q, p), 𝜙(t0)) 

                     ≥ 𝜓[F(gp, gq, 𝑡 )  ∗  F(gq, gp, 𝑡 )] 

                     ≥ F(gp, gq, t0) * F(gq, gp, t0) 

                     = [F(x, y, t )]
2. 

Continuing likewise, we have for all n ∈ N, that 

F(x, y, 𝜙 0(𝑡 )) ≥ [F(𝑥, 𝑦, 𝑡 )]
2𝑛0 . 

Thus, we have 
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F(x, y, t) ≥ F(x, y, ∑ 𝜙𝑘(𝑡 )
∞
𝑘= 0

) 

              ≥ F(x, y, 𝜙 0(𝑡 )) 

              ≥ [F(x, y, t )]
2𝑛0          

              ≥  (1 −  𝛿)  ∗  (1 −  𝛿)  ∗ … ∗ (1 −  𝛿) ⏟                      
2𝑛0

  ≥  (1- ϵ), which implies that x = y. 

Thus, we have proved that f and g have a common fixed point x in X. 

Step 5. We now prove the uniqueness of x. 

Let z be any point in X such that z ≠ x with g(z) = z = f(z, z). 

Since * is a t-norm of H-type, for any ϵ > 0, there exists 𝛿 > 0 such that 

               (1 −  𝛿)  ∗  (1 −  𝛿)  ∗ … ∗ (1 −  𝛿) ⏟                      
𝑝

  ≥  (1- ϵ), for all p ∈ N. 

Since  lim𝑡→∞ 𝐹(𝑥, 𝑦, 𝑡) = 1, for all x, y in X, there exists t0 > 0 such that 

                                  F(x, z, t0) ≥ (1 −  𝛿). 

Also, since 𝜙 ∈ Φ, using condition (𝜙-3), we have ∑ 𝜙 (𝑡 )
∞
 =1  <  . Then for any t > 

0, there exists  n0 ∈ N such that 

                                       t > ∑ 𝜙𝑘(𝑡 )
∞
𝑘= 0

. 

Using condition (3.2), we have 

F(x, z, 𝜙(t0)) = F(f(x, x), f(z, z), 𝜙(t0)) 

                     ≥ 𝜓[F(g(x), g(z), 𝑡 )  ∗  F(g(x), g(z), 𝑡 )] 

                     ≥ F(g(x), g(z), 𝑡 ) * F(g(x), g(z), 𝑡 ) 

                      = F(x, z, 𝑡 ) * F(x, z, 𝑡 ) 

                      = [F(x, z, 𝑡 )]
2. 

Thus, we have 

F(x, z, t) ≥ F(x, z, ∑ 𝜙𝑘(𝑡 )
∞
𝑘= 0

) 

              ≥ F(x, z, 𝜙 0(𝑡 )) 

              ≥ ([F(x, z, t )]
2𝑛0−1)

2
 

               = (F(x, z, t ))
2𝑛0

 

              ≥  (1 −  𝛿)  ∗  (1 −  𝛿)  ∗ … ∗ (1 −  𝛿) ⏟                      
2𝑛0

  ≥  (1- ϵ), which implies that x = y.
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Hence, f and g have a unique common fixed point in X. 

Next, we give an example in support of the Theorem 3.1. 

Example 3.1. Let X = [-2, 2), a * b = ab for all a, b   [0, 1] and φ(t) = 
𝑡

𝑡+1
. Then (X, F, 

*) is a Menger space, where 

                                    F(x, y, t) = [φ(t)]|𝑥−𝑦|, for all x, y in X and t > 0. 

Let 𝜓(t) = t, 𝜙(t) = 
𝑡

2
, g(x) = x and the mapping f : X × X → X be defined by f(x, y)                 

= 
𝑥2

16
 + 

𝑦2

16
 - 2. 

It is easy to check that f(X × X) ⊆ X = g(X). Further, f(X × X) is complete and the 

pair (f, g) is weakly compatible. We now check the condition (3.2), 

F(f(x, y), f(u, v), 𝜙(t)) 

= F(f(x, y), f(u, v), 
𝑡

2
) 

= [φ (
𝑡

2
)]
|f(x,y)− f(u,v)|

 

= [
𝑡

𝑡+2
]
|𝑥2+ 𝑦2− 𝑢2− 𝑣2|/16

 

≥ [
𝑡

𝑡+2
]
|𝑥2+ 𝑦2− 𝑢2− 𝑣2|/8

 

≥ [
𝑡

𝑡+1
]
|𝑥−𝑢|+ |𝑦−𝑣|

 

= [
𝑡

𝑡+1
]
|𝑥−𝑢|

[
𝑡

𝑡+1
]
|𝑦−𝑣|

 

= 𝜓[F(gx, gu, t) ∗ F(gy, gv, t)], for every t > 0. Hence, all the conditions of Theorem 

3.1, are satisfied. Thus f and g have a unique common coupled fixed point in X. 

Indeed, x = 4(1 - √2) is a unique common coupled fixed point of f and g. 

Theorem 3.2.  Let (X, F, ∗) be Menger PM - Space, * being continuous t – norm of 

H-type. Let f: X × X → X and g: X → X be two mappings and there exists 𝜙 ∈ Φ 

satisfying (3.2) 

           Suppose that f(X × X) ⊆ g(X), f and g are w-compatible, range space of one of 

the mappings f or g is complete. Then there exists a unique point x in X such that x = 

f(x, x) = g(x). 

Proof. 
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It follows immediately from Theorem 3.1. 

Next we give an application of Theorem 3.1. 

4. An Application 

Theorem 4.1. Let (X, F, *) be a Menger PM - space, * being continuous t-norm 

defined by a * b = min.{a, b} for all a, b in X. Let M, N be weakly compatible self 

maps on X satisfying the following conditions: 

(4.1) M(X) ⊆ N(X),  

(4.2) there exists 𝜙 ∈ Φ such that 

                    F(Mx, My, 𝜙(t)) ≥ 𝜓[F(Nx, Ny, t)] for all x, y in X and t > 0, where 𝜓: [0, 

1] → [0, 1] is continuous and 𝜓(t) ≥ t for all t ∈ [0, 1]. 

If range space of any one of the maps M or N is complete, then M and N have a 

unique common fixed point in X. 

Proof. 

By taking f(x, y) = M(x) and g(x) = N(x) for all x, y ∈ X in theorem (3.1), we get the 

desired result. 

Taking  𝜙 (t) = kt, k ∈ (0, 1) and 𝜓(t) = t we have the following: 

Corollary 4.2. Let (X, F, *) be a Menger PM - space, * being continuous t-norm 

defined by a * b = min.{a, b} for all a, b in X. Let M, N be weakly compatible self 

maps on X satisfying  (4.1) and the following condition: 

(4.3) there exists k ∈ (0, 1) such that 

                    F(Mx, My, kt) ≥ F(Nx, Ny, t) for all x, y in X and t > 0. 

If range space of any one of the maps M or N is complete, then M and N have a 

unique common fixed point in X. 

Taking N = IX (the identity map on X) in Corollary 4.2, we have the following: 

Corollary 4.3. Let (X, F, *) be a Menger PM - space, * being continuous t-norm 

defined by a * b = min.{a, b} for all a, b in X. Let M, N be weakly compatible self 

maps on X satisfying  (4.1) and the following condition: 

(4.4) there exists k ∈ (0, 1) such that 

                    F(Mx, My, kt) ≥ F(x, y, t) for all x, y in X and t > 0. 

If range space of the map M is complete, then M and N have a unique common fixed 



400           MANISH JAIN, NARESH KUMAR, SANJAY KUMAR AND NEETU GUPTA 

point in X. 
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