

COUPLED FIXED POINT THEOREM FOR WEAK COMPATIBLE MAPPINGS IN MENGER SPACES

MANISH JAIN¹, NARESH KUMAR², SANJAY KUMAR^{2,*} AND NEETU GUPTA³

¹Department of Mathematics, Ahir College, Rewari 123401, India ²Department of Mathematics, DCRUST, Murthal, Sonepat, India

³HAS Department, YMCAUST, Faridabad, India

Abstract: In this paper, we prove coupled fixed point theorems for a pair of weakly compatible mappings under ϕ -contractive conditions in Menger spaces without appeal to continuity of mappings. We support our result by providing a suitable example. At the end, we give an application of our result. **Keywords:** Weakly compatible maps; Menger space, t-norm of H-type. **2000 AMS Subject Classification:** 47H10; 54H25

1. Introduction

In 1942 Menger [7] introduced the notion of a probabilistic metric space (PM-space) which is in fact, a generalization of metric space. The idea in probabilistic metric space is to associate a distribution function with a point pair, say (p, q), denoted by F(p, q, t) where t > 0 and interpret this function as the probability that distance between p and q is less than t, whereas in the metric space the distance function is a single positive number. Sehgal [9] initiated the study of fixed points in probabilistic metric spaces. The study of these spaces was expanded rapidly with the pioneering works of Schweizer-Sklar [11].

In 1991, Mishra[8] introduced the notion of compatible mappings in the

^{*}Corresponding author

Received July 2, 2012

setting of probabilistic metric space. In 1996, Jungck [5] introduce the notion of weakly compatible mappings as follows:

Two self mappings S and T are said to be weakly compatible if they commute at their coincide points, i.e., Tu = Su for some $u \in X$, then TSu = STu.

Further, Singh and Jain [10] proved some results for weakly compatible in Menger spaces.

Fang [3] defined ϕ -contractive conditions and proved some fixed point theorems under ϕ -contractions for compatible and weakly compatible maps in Menger PMspaces using t-norm of H-type, introduced by Hadžíc [4].

Recently, Bhaskar and Lakshmikantham [2], Lakshmikantham and \hat{C} iri \hat{c} [6] gave some coupled fixed point theorems in partially ordered metric spaces.

Now, we prove a coupled fixed point theorem for a pair of weakly compatible maps satisfying ϕ -contractive conditions in Menger PM-space with a continuous t-norm of H-type. We support our result by an example. At the end, we give an application of our result.

2. Preliminaries

First, recall that a real valued function f defined on the set of real numbers is known as a distribution function if it is non-decreasing, continuous and inf. f(x) = 0, sup. f(x)= 1. In what follows H(x) denotes the distribution function defined as follows:

$$\mathbf{H}(\mathbf{x}) = \begin{cases} 0 & if \ x \le 0, \\ 1 & if \ x > 0. \end{cases}$$

Definition 2.1. A probabilistic metric space (PM-space) is a pair (X, F) where X is a set and F is a function defined on $X \times X$ into the set of distribution functions such that if x, y and z are points of X, then

$$(F-1) F(x, y; 0) = 0,$$

(F-2) F(x, y; t) = H(t) iff x = y,

(F-3) F(x, y; t) = F(y, x; t),

(F-4) if F(x, y; s) = 1 and F(y, z; t) = 1, then F(x, z; s+t) = 1 for all x, y, $z \in X$ and s, t ≥ 0 .

For each x and y in X and for each real number $t \ge 0$, F(x, y; t) is to be thought

of as the probability that the distance between x and y is less than t.

It is interesting to note that, if (X, d) is a metric space, then the distribution function F(x, y; t) defined by the relation F(x, y; t) = H(t - d(x, y)) induces a PMspace.

Definition 2.2. A t-norm t is a 2-place function, $t : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following:

(i) t(0,0) = 0,

(ii) t(0,1) = 1,

(iii) t(a,b) = t(b,a),

(iv) if $a \le c, b \le d$, then $t(a,b) \le t(c,d)$,

(v) t(t(a,b),c) = t(a,t(b,c)) for all a, b, c in [0,1].

Definition 2.3. A Menger PM-space is a triplet (X, F, t) where (X, F) is a PM-space and t is a t-norm with the following condition:

(F-5) $F(x, z; s + t) \ge t(F(x, y; s), F(y, z; t))$, for all x, y, z in X and s, $t \ge 0$.

This inequality is known as Menger's triangle inequality.

In our theory, we consider (X, F, t) to be a Menger PM-space along with the following condition:

(F-6) $\lim_{t\to\infty} F(x, y, t) = 1$, for all x, y in X.

Definition 2.4[4]. Let $\sup_{0 \le t \le 1} \Delta(t, t) = 1$. A t-norm Δ is said to be of H-type if the family of functions $\{\Delta^m(t)\}_{m=1}^{\infty}$ is equicontinuous at t = 1, where

$$\Delta^{1}(t) = t, \Delta^{m+1}(t) = t \Delta (\Delta^{m}(t)), m = 1, 2..., t \in [0, 1].$$

The t-norm Δ_M = min. is an example of t-norm of H-type.

Remark 2.1. Δ is a H-type t-norm iff for any $\lambda \in (0, 1)$, there exists $\delta(\lambda) \in (0, 1)$ such that $\Delta^m(t) > (1-\lambda)$ for all $m \in \mathbb{N}$, when $t > (1-\delta)$.

Definition 2.5. A sequence $\{x_n\}$ in a Menger PM space (X, F, t) is said

- (i) to converge to a point x in X if for every $\epsilon > 0$ and $\lambda > 0$, there is an integer n_0 such that $F(x_n, x, \epsilon) > 1 \lambda$, for all $n \ge n_0$.
- (ii) to be Cauchy if for each $\epsilon > 0$ and $\lambda > 0$, there is an integer n_0 such that $F(x_n, x_m, \epsilon) > 1 \lambda$, for all $n, m \ge n_0$.

(iii) to be complete if every Cauchy sequence in it converges to a point of it.

Definition 2.6[3]. Define $\boldsymbol{\Phi} = \{ \phi : \mathbb{R}^+ \to \mathbb{R}^+ \}$, where $\mathbb{R}^+ = [0, +\infty)$ and each $\phi \in \boldsymbol{\Phi}$ satisfies the following conditions:

 $(\phi$ -1) ϕ is non-decreasing;

 $(\phi$ -2) ϕ is upper semicontinuous from the right;

 $(\phi-3) \sum_{n=0}^{\infty} \phi^n(t) < +\infty$ for all t > 0, where $\phi^{n+1}(t) = \phi(\phi^n(t))$, $n \in \mathbb{N}$.

Clearly, if $\phi \in \boldsymbol{\Phi}$, then $\phi(t) < t$ for all t > 0.

Definition 2.7[3]. An element $x \in X$ is called a common fixed point of the mappings

f: $X \times X \rightarrow X$ and g: $X \rightarrow X$ if

$$\mathbf{x} = \mathbf{f}(\mathbf{x}, \mathbf{x}) = \mathbf{g}(\mathbf{x}).$$

Definition 2.8[6]. An element $(x, y) \in X \times X$ is called a

(i) coupled fixed point of the mapping f: $X \times X \rightarrow X$ if

$$f(x, y) = x$$
, $f(y, x) = y$.

(ii) coupled coincidence point of the mappings $f: X \times X \to X$ and $g: X \to X$ if

$$f(x, y) = g(x), \quad f(y, x) = g(y).$$

(iii) common coupled fixed point of the mappings $f: X \times X \to X$ and $g: X \to X$ if

x = f(x, y) = g(x), y = f(y, x) = g(y).

Definition 2.9[3]. The mappings $f: X \times X \to X$ and $g: X \to X$ are called commutative if

$$gf(x, y) = f(gx, gy)$$
, for all $x, y \in X$.

Abbas, Khan and Redenovi \dot{c} [1] introduced the notion of w-compatible mappings as follows:

The mappings $f : X \times X \rightarrow X$ and $g : X \rightarrow X$ are called w-compatible if

g(f(x, y)) = f(gx, gy) whenever g(x) = f(x, y) and g(y) = f(y,x).

Definition 2.10.The maps f: $X \times X \rightarrow X$ and g: $X \rightarrow X$ are called weakly compatible if f(x, y) = g(x), f(y, x) = g(y) implies gf(x, y) = f(gx, gy), gf(y, x) = f(gy, gx), for all x, y in X.

3. Main results

For convenience, we denote

(3.1)
$$[F(x, y, t)]^{n} = \frac{F(x, y, t) * F(x, y, t) * \dots * F(x, y, t)}{n}, \text{ for all } n \in \mathbb{N}.$$

Now we prove our main result.

Theorem 3.1. Let (X, F, *) be Menger PM-Space, * being continuous t – norm of Htype. Let f: $X \times X \to X$ and g: $X \to X$ be two mappings and there exists $\phi \in \Phi$ such that

(3.2) $F(f(x, y), f(u, v), \phi(t)) \ge \psi[F(gx, gu, t) * F(gy, gv, t)]$, for all x, y, u, v in X and t > 0, where $\psi: [0, 1] \rightarrow [0, 1]$ is a continuous function such that $\psi(t) \ge t$ for all $t \in [0, 1]$.

Suppose that $f(X \times X) \subseteq g(X)$, f and g are weakly compatible, range space of one of the maps f or g is complete. Then f and g have a coupled coincidence point.

Moreover, there exists a unique point x in X such that x = f(x, x) = g(x).

Proof.

Let x_0 , y_0 be two arbitrary points in X. Since $f(X \times X) \subseteq g(X)$, we can choose x_1 , y_1 in X such that $g(x_1) = f(x_0, y_0)$, $g(y_1) = f(y_0, x_0)$.

Continuing in this way we can construct two sequences $\{x_n\}$ and $\{y_n\}$ in X such that

 $g(x_{n+1}) \ = \ f(x_n, \, y_n) \ \text{and} \ g(y_{n+1}) \ = \ f(y_n, \, x_n), \ \text{for al} \ n \geq 0.$

Step 1. We first show that $\{gx_n\}$ and $\{gy_n\}$ are Cauchy sequences.

Since * is a t-norm of H-type, for any $\varepsilon > 0$, there exists $\delta > 0$ such that

(3.3)
$$\underbrace{(1-\delta) * (1-\delta) * ... * (1-\delta)}_{p} \ge (1-\epsilon), \text{ for all } p \in \mathbb{N}.$$

Since $\lim_{t\to\infty} F(x, y, t) = 1$, for all x, y in X, there exists $t_0 > 0$ such that

 $F(gx_0, gx_1, t_0) \ge (1 - \delta)$ and $F(gy_0, gy_1, t_0) \ge (1 - \delta)$.

Also, since $\phi \in \Phi$, using condition (ϕ -3), we have $\sum_{n=1}^{\infty} \phi^n(t_0) < \infty$. Then for any t > 0, there exists $n_0 \in N$ such that

(3.4) $t > \sum_{k=n_0}^{\infty} \phi^k(t_0).$

Using condition (3.2), we have

 $F(gx_1, gx_2, \phi(t_0)) = F(f(x_0, y_0), f(x_1, y_1), \phi(t_0))$

$$\geq \psi[F(gx_0, gx_1, t_0) * F(gy_0, gy_1, t_0)]$$

$$\geq$$
 F(gx₀, gx₁, t₀) * F(gy₀, gy₁, t₀).

$$\begin{aligned} F(gy_1, gy_2, \phi(t_0)) &= F(f(y_0, x_0), f(y_1, x_1), \phi(t_0)) \\ &\geq \psi[F(gy_0, gy_1, t_0) * F(gx_0, gx_1, t_0)] \\ &\geq F(gy_0, gy_1, t_0) * F(gx_0, gx_1, t_0). \end{aligned}$$

Similarly, we can also get

$$F(gx_2, gx_3, \phi^2(t_0)) = F(f(x_1, y_1), f(x_2, y_2), \phi^2(t_0))$$

$$\geq \psi[F(gx_1, gx_2, \phi(t_0)) * F(gy_1, gy_2, \phi(t_0))]$$

$$\geq F(gx_1, gx_2, \phi(t_0)) * F(gy_1, gy_2, \phi(t_0))$$

$$\geq [F(gx_0, gx_1, t_0)]^2 * [F(gy_0, gy_1, t_0)]^2.$$

 $\begin{aligned} F(gy_2, gy_3, \phi^2(t_0)) &= F(f(y_1, x_1), f(y_2, x_2), \phi^2(t_0)) \\ &\geq \left[F(gy_0, gy_1, t_0)\right]^2 * \left[F(gx_0, gx_1, t_0)\right]^2. \end{aligned}$

Continuing in this way, we can get

$$F(gx_n, gx_{n+1}, \phi^n(t_0)) \ge [F(gx_0, gx_1, t_0)]^{2^{n-1}} * [F(gy_0, gy_1, t_0)]^{2^{n-1}}.$$

$$F(gy_n, gy_{n+1}, \phi^n(t_0)) \ge [F(gy_0, gy_1, t_0)]^{2^{n-1}} * [F(gx_0, gx_1, t_0)]^{2^{n-1}}.$$

So, from (3.3) and (3.4), for $m > n \ge n_0$, we have

• • •

 $F(gx_n, gx_m, t)$

$$\geq F(gx_n, gx_m, \sum_{k=n_0}^{\infty} \phi^k(t_0))$$

$$\geq F(gx_{n}, gx_{m}, \sum_{k=n}^{m-1} \phi^{k}(t_{0}))$$

$$\geq F(gx_{n}, gx_{n+1}, \phi^{n}(t_{0})) * F(gx_{n+1}, gx_{n+2}, \phi^{n+1}(t_{0})) * ... * F(gx_{m-1}, gx_{m}, \phi^{m-1}(t_{0}))$$

$$\geq \left\{ [F(gx_{0}, gx_{1}, t_{0})]^{2^{n-1}} * [F(gy_{0}, gy_{1}, t_{0})]^{2^{n-1}} \right\} *$$

$$* \left\{ [F(gx_{0}, gx_{1}, t_{0})]^{2^{n}} * [F(gy_{0}, gy_{1}, t_{0})]^{2^{n}} \right\} *$$

$$* \left\{ [F(gx_0, gx_1, t_0)]^{2^{m-2}} * [F(gy_0, gy_1, t_0)]^{2^{m-2}} \right\}$$

$$= [F(gx_0, gx_1, t_0)]^{2^{n-1}(2^{m-n}-1)} * [F(gy_0, gy_1, t_0)]^{2^{n-1}(2^{m-n}-1)}$$

$$\ge \underbrace{(1-\delta) * (1-\delta) * ... * (1-\delta)}_{2^{n}(2^{m-n}-1)} \ge (1-\epsilon), \text{which implies that}$$

 $F(gx_n, gx_m, t) \geq (1 \text{-} \varepsilon), \text{ for all } m, n \in N \text{ with } m > n \geq n_0 \text{ and } t > 0.$

Therefore, $\{gx_n\}$ is a Cauchy sequence. Similarly, we can get that $\{gy_n\}$ is a Cauchy

sequence.

Step 2. To show that f and g have a coupled coincidence point.

Without loss of generality, one can assume that g(X) is complete, then there exists

points x, y in g(X) so that $\lim_{n\to\infty} g(x_{n+1}) = x$, $\lim_{n\to\infty} g(y_{n+1}) = y$.

For x, y \in g(X) implies the existence of p, q in X such that g(p) = x, g(q) = y and hence $\lim_{n\to\infty} g(x_{n+1}) = \lim_{n\to\infty} f(x_n, y_n) = g(p) = x$,

$$\lim_{n\to\infty} g(y_{n+1}) = \lim_{n\to\infty} f(y_n, x_n) = g(q) = y.$$

From (3.2), we have

$$F(f(x_n, y_n), f(p, q), \phi(t)) \ge \psi[F(gx_n, g(p), t) * F(gy_n, g(q), t)]$$

 $\geq F(gx_n, g(p), t) * F(gy_n, g(q), t).$

Taking limit as $n \to \infty$, we get

 $F(g(p), f(p, q), \phi(t)) = 1$ that is, f(p, q) = g(p) = x.

Similarly, f(q, p) = g(q) = y.

But f and g are weakly compatible, so that f(p, q) = g(p) = x and f(q, p) = g(q) = yimplies gf(p, q) = f(g(p), g(q)) and gf(q, p) = f(g(q), g(p)), that is g(x) = f(x, y) and g(y) = f(y, x).

Hence f and g have a coupled coincidence point.

Step 3. To show that g(x) = x and g(y) = y.

Since * is a t-norm of H-type, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\underbrace{(1-\delta) * (1-\delta) * \dots * (1-\delta)}_{p} \ge (1-\epsilon), \text{ for all } p \in \mathbb{N}.$$

Since $\lim_{t\to\infty} F(x, y, t) = 1$, for all x, y in X, there exists $t_0 > 0$ such that

 $F(gx, x, t_0) \ge (1 - \delta)$ and $F(gy, y, t_0) \ge (1 - \delta)$.

Also, since $\phi \in \Phi$, using condition (ϕ -3), we have $\sum_{n=1}^{\infty} \phi^n(t_0) < \infty$.

Then for any t > 0, there exists $n_0 \in N$ such that

$$t > \sum_{k=n_0}^{\infty} \phi^k(t_0).$$

From (3.2), we have

$$F(gx, x, \phi(t_0)) = F(f(x, y), f(p, q), \phi(t_0))$$

$$\geq \psi[F(gx, gp, t_0) * F(gy, gq, t_0)]$$

$$\geq F(gx, gp, t_0) * F(gy, gq, t_0)$$

$$= F(gx, x, t_0) * F(gy, y, t_0)$$

Similarly, $F(gy, y, \phi(t_0)) \ge F(gy, y, t_0) * F(gx, x, t_0)$.

Continuing in a same way, we have for all $n \in N$,

 $F(gx, x, \phi^{n}(t_{0})) \ge [F(gx, x, t_{0})]^{2^{n-1}} * [F(gy, y, t_{0})]^{2^{n-1}}.$

Thus, we have

$$F(gx, x, t) \ge F(gx, x, \sum_{k=n_0}^{\infty} \phi^k(t_0))$$

$$\ge F(gx, x, \phi^{n_0}(t_0))$$

$$\ge [F(gx, x, t_0)]^{2^{n_0 - 1}} * [F(gy, y, t_0)]^{2^{n_0 - 1}}$$

$$\ge \underbrace{(1 - \delta) * (1 - \delta) * ... * (1 - \delta)}_{2^{n_0}} \ge (1 - \epsilon)$$

So, for any $\epsilon > 0$, we have $F(gx, y, t) \ge (1 - \epsilon)$, for all t > 0.

This implies g(x) = x. Similarly, g(y) = y.

Step 4. Next we shall show that x = y.

Since * is a t-norm of H-type, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\underbrace{(1-\delta)*(1-\delta)*...*(1-\delta)}_{p} \ge (1-\epsilon), \text{ for all } p \in \mathbb{N}$$

Since $\lim_{t\to\infty} F(x, y, t) = 1$, for all x, y in X, there exists $t_0 > 0$ such that

$$F(x, y, t_0) \ge (1 - \delta).$$

Since $\phi \in \Phi$, using condition (ϕ -3), we have $\sum_{n=1}^{\infty} \phi^n(t_0) < \infty$. Then for any t > 0, there exists $n_0 \in N$ such that

$$t > \sum_{k=n_0}^{\infty} \phi^k(t_0).$$

From (3.2), we have

$$F(\mathbf{x}, \mathbf{y}, \boldsymbol{\phi}(t_0)) = F(f(\mathbf{p}, \mathbf{q}), f(\mathbf{q}, \mathbf{p}), \boldsymbol{\phi}(t_0))$$

$$\geq \boldsymbol{\psi}[F(g\mathbf{p}, g\mathbf{q}, t_0) * F(g\mathbf{q}, g\mathbf{p}, t_0)]$$

$$\geq F(g\mathbf{p}, g\mathbf{q}, t_0) * F(g\mathbf{q}, g\mathbf{p}, t_0)$$

$$= [F(\mathbf{x}, \mathbf{y}, t_0)]^2.$$

Continuing likewise, we have for all $n \in N$, that

 $F(x, y, \phi^{n_0}(t_0)) \ge [F(x, y, t_0)]^{2^{n_0}}.$

Thus, we have

$$F(x, y, t) \ge F(x, y, \sum_{k=n_0}^{\infty} \phi^k(t_0))$$

$$\ge F(x, y, \phi^{n_0}(t_0))$$

$$\ge [F(x, y, t_0)]^{2^{n_0}}$$

$$\ge \underbrace{(1-\delta) * (1-\delta) * ... * (1-\delta)}_{2^{n_0}} \ge (1-\epsilon), \text{ which implies that } x = y.$$

Thus, we have proved that f and g have a common fixed point x in X.

Step 5. We now prove the uniqueness of x.

Let z be any point in X such that $z \neq x$ with g(z) = z = f(z, z).

Since * is a t-norm of H-type, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\underbrace{(1-\delta) * (1-\delta) * \dots * (1-\delta)}_{p} \ge (1-\epsilon), \text{ for all } p \in \mathbb{N}.$$

Since $\lim_{t\to\infty} F(x, y, t) = 1$, for all x, y in X, there exists $t_0 > 0$ such that

$$F(x, z, t_0) \ge (1 - \delta).$$

Also, since $\phi \in \Phi$, using condition (ϕ -3), we have $\sum_{n=1}^{\infty} \phi^n(t_0) < \infty$. Then for any t > 0, there exists $n_0 \in N$ such that

$$t > \sum_{k=n_0}^{\infty} \phi^k(t_0).$$

Using condition (3.2), we have

$$F(x, z, \phi(t_0)) = F(f(x, x), f(z, z), \phi(t_0))$$

$$\geq \psi[F(g(x), g(z), t_0) * F(g(x), g(z), t_0)]$$

$$\geq F(g(x), g(z), t_0) * F(g(x), g(z), t_0)$$

$$= F(x, z, t_0) * F(x, z, t_0)$$

$$= [F(x, z, t_0)]^2.$$

Thus, we have

$$F(\mathbf{x}, \mathbf{z}, \mathbf{t}) \ge F(\mathbf{x}, \mathbf{z}, \sum_{k=n_0}^{\infty} \phi^k(t_0))$$

$$\ge F(\mathbf{x}, \mathbf{z}, \phi^{n_0}(t_0))$$

$$\ge \left([F(\mathbf{x}, \mathbf{z}, \mathbf{t}_0)]^{2^{n_0-1}} \right)^2$$

$$= \left(F(\mathbf{x}, \mathbf{z}, \mathbf{t}_0) \right)^{2^{n_0}}$$

$$\ge \underbrace{(1 - \delta) * (1 - \delta) * ... * (1 - \delta)}_{2^{n_0}} \ge (1 - \epsilon), \text{ which implies that } \mathbf{x} = \mathbf{y}.$$

Hence, f and g have a unique common fixed point in X.

Next, we give an example in support of the Theorem 3.1.

Example 3.1. Let X = [-2, 2), a * b = ab for all a, b ϵ [0, 1] and φ (t) = $\frac{t}{t+1}$. Then (X, F,

*) is a Menger space, where

$$F(x, y, t) = [\phi(t)]^{|x-y|}$$
, for all x, y in X and t > 0.

Let $\psi(t) = t$, $\phi(t) = \frac{t}{2}$, g(x) = x and the mapping $f : X \times X \to X$ be defined by f(x, y) $= \frac{x^2}{16} + \frac{y^2}{16} - 2.$

It is easy to check that $f(X \times X) \subseteq X = g(X)$. Further, $f(X \times X)$ is complete and the pair (f, g) is weakly compatible. We now check the condition (3.2),

$$F(f(x, y), f(u, v), \phi(t))$$

$$= F(f(x, y), f(u, v), \frac{t}{2})$$

$$= \left[\varphi\left(\frac{t}{2}\right)\right]^{|f(x,y) - f(u,v)|}$$

$$= \left[\frac{t}{t+2}\right]^{|x^2 + y^2 - u^2 - v^2|/16}$$

$$\geq \left[\frac{t}{t+2}\right]^{|x^2 + y^2 - u^2 - v^2|/8}$$

$$\geq \left[\frac{t}{t+1}\right]^{|x-u| + |y-v|}$$

$$= \left[\frac{t}{t+1}\right]^{|x-u|} \left[\frac{t}{t+1}\right]^{|y-v|}$$

 $= \psi[F(gx, gu, t) * F(gy, gv, t)]$, for every t > 0. Hence, all the conditions of Theorem 3.1, are satisfied. Thus f and g have a unique common coupled fixed point in X. Indeed, x = 4(1 - $\sqrt{2}$) is a unique common coupled fixed point of f and g.

Theorem 3.2. Let (X, F, *) be Menger PM - Space, * being continuous t – norm of H-type. Let f: $X \times X \to X$ and g: $X \to X$ be two mappings and there exists $\phi \in \Phi$ satisfying (3.2)

Suppose that $f(X \times X) \subseteq g(X)$, f and g are w-compatible, range space of one of the mappings f or g is complete. Then there exists a unique point x in X such that x = f(x, x) = g(x).

Proof.

It follows immediately from Theorem 3.1.

Next we give an application of Theorem 3.1.

4. An Application

Theorem 4.1. Let (X, F, *) be a Menger PM - space, * being continuous t-norm defined by a * b = min.{a, b} for all a, b in X. Let M, N be weakly compatible self maps on X satisfying the following conditions:

 $(4.1) \operatorname{M}(X) \subseteq \operatorname{N}(X),$

(4.2) there exists $\phi \in \Phi$ such that

 $F(Mx, My, \phi(t)) \ge \psi[F(Nx, Ny, t)] \text{ for all } x, y \text{ in } X \text{ and } t > 0, \text{ where } \psi: [0, 1] \rightarrow [0, 1] \text{ is continuous and } \psi(t) \ge t \text{ for all } t \in [0, 1].$

If range space of any one of the maps M or N is complete, then M and N have a unique common fixed point in X.

Proof.

By taking f(x, y) = M(x) and g(x) = N(x) for all $x, y \in X$ in theorem (3.1), we get the desired result.

Taking $\phi(t) = kt, k \in (0, 1)$ and $\psi(t) = t$ we have the following:

Corollary 4.2. Let (X, F, *) be a Menger PM - space, * being continuous t-norm defined by a * b = min.{a, b} for all a, b in X. Let M, N be weakly compatible self maps on X satisfying (4.1) and the following condition:

(4.3) there exists $k \in (0, 1)$ such that

 $F(Mx, My, kt) \ge F(Nx, Ny, t)$ for all x, y in X and t > 0.

If range space of any one of the maps M or N is complete, then M and N have a unique common fixed point in X.

Taking $N = I_X$ (the identity map on X) in Corollary 4.2, we have the following:

Corollary 4.3. Let (X, F, *) be a Menger PM - space, * being continuous t-norm defined by a * b = min.{a, b} for all a, b in X. Let M, N be weakly compatible self maps on X satisfying (4.1) and the following condition:

(4.4) there exists $k \in (0, 1)$ such that

 $F(Mx, My, kt) \ge F(x, y, t)$ for all x, y in X and t > 0.

If range space of the map M is complete, then M and N have a unique common fixed

point in X.

Acknowledgement. Authors(Sanjay Kumar and Naresh Kumar) are highly thankful to University Grants Commission, New Delhi- 11016, INDIA for providing Major research Project under F. No. 39-41/2010(SR).

REFERENCES

- M. Abbas, M. Ali Khan and S. Redenović, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217(2010), 195–202,.
- [2] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods and Applications, 65(7) (2006), 1379-1393.
- [3] J. X. Fang, Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Analysis: Theory, Methods and Applications, 71 (5-6) (2009), 1833-1843.
- [4] O. Hadžić and E.Pap, Fixed Point Theory in Probabilistic Metric Spaces, of Mathematics and its Applications, Kluwer Academic, Dordrecht, The Netherlands, 536 (2001).
- [5] G. Jungck, Common fixed points for non-continuous non-self maps on non-metric spaces, Far East J. Math. Sci., 4(2) (1996), 199-215.
- [6] V. Lakshmikantham and L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Applications, 70 (12) (2009), 4341-4349.
- [7] K. Menger, Statistical Metrices, Proc. Nat. Acad. Sci., U.S.A., 28 (1942), 535-537.
- [8] S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japonica, 36 (1991), 283-289.
- [9] V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. Systems Theory, 6(1972), 97-102.
- [10] B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. math. Anal. Appl., 301(2005), 439-448.
- [11] B. Schweizer and A.Sklar, Probabilistic Metric Spaces, North Holland Series in Probability and Applied Math., 5(1983).