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Abstract. Let P = {V1,V2, · · · ,Vk} be a partition of vertex set V of G. The k−complement of G denoted by GP
k is

defined as follows: for all Vi and Vj in P, i 6= j, remove the edges between Vi and Vj and add edges between Vi and

Vj which are not in G. The graph G is k-self complementary with respect to P if GP
k
∼= G. The k(i)-complement

GP
k(i) of a graph G with respect to P is defined as follows: for all Vr ∈ P, remove edges inside Vr and add edges

which are not in Vr. In this paper we provide sufficient conditions for GP
k and GP

k(i) to be disconnected, regular, line

preserving and Eulerian.
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1. INTRODUCTION

All graphs considered in this paper will be assumed to be simple, finite and undirected. Let G

be a graph with vertex set V (G) and edge set E(G). A graph is connected if every pair of vertices

are joined by a path and a disconnected graph is a graph consists at least two components. The

complement of a graph G, denoted by G has the same vertex set as that of G, but two vertices

are adjacent in G if and only if they are not adjacent in G. The number of edges incident to a
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vertex v in G is called degree of vertex v and is denoted by d(v). The minimum degree among

vertices of G is denoted by δ (G), while ∆(G) denotes maximum degree among vertices of G.

If δ (G) = ∆(G) = r, then all the vertices have same degree and G is called regular of degree r.

A graph is Eulerian if it has a closed trail containing all edges [3]. E. Sampathkumar et.al [6]

introduced k-complement and k(i)-complement of graphs as follows.

Let P = {V1,V2, . . . ,Vk} be a partition of vertex set V of G. The k−complement of G denoted

by GP
k is defined as follows: for all Vi and Vj in P, i 6= j, remove the edges between Vi and Vj

and add edges between Vi and Vj which are not in G. The graph G is k-self complementary with

respect to P if GP
k
∼= G. The k(i)-complement GP

k(i) of a graph G with respect to P is defined

as follows: for all Vr ∈ P, remove the edges inside Vr and add edges which are not in Vr. Any

graph G is k(i)-self complementary if GP
k(i)
∼= G.

In a graph G, the in-degree [5] of a vertex v denoted by di(v), defined with respect to the

partition P of V (G) is the number of edges incident at v each of whose other ends are also in

Vi for all i = 1,2, · · · ,k. The out-degree [5] of a vertex v ∈ Vi denoted by do(v), defined with

respect to the partition P of V (G) is the number of edges incident at v each of whose other ends

are not in Vi for all i = 1,2, · · · ,k.

Graph partitioning problem arises in various areas of computer science, engineering and re-

lated fields. Recently, the concept of graph partition has gained importance due to its application

in route planning, clustering and detection of cliques in social, pathological/biological networks

and high performance computing.

For more information on generalized complements of graphs, refer to [1],[2],[4],[5],[6] and [7].

In this paper we provide some sufficient conditions for GP
k and GP

k(i) to be disconnected, regular,

line preserving and Eulerian.

2. MAIN RESULTS

Theorem 1. The k-complement of a disconnected graph G is disconnected if it satisfies the

following conditions,

(1) G = H∪rK1 and there exists a partite Vi such that 〈Vi〉= rK1∪v j and v j ∈V (H) covers

all vertices of H.
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(2) If G has at least one complete subgraph Kr and there exists a partite Vi such that Vi =

{(V −V (Kr))+ v j : v j ∈V (Kr)}.

Proof. Let P = {V1,V2, · · · ,Vk} be a partition of a disconnected graph G of order n.

(1) Let G = H ∪ rK1 be a disconnected graph of order n. Consider any partite Vi so that

〈Vi〉 = rK1 ∪ v j, where v j covers all the vertices of H. Then by the definition of k-

complement of graph, vertex v j becomes isolated vertex in GP
k . Therefore GP

k is discon-

nected.

(2) Let G be a disconnected graph with at least one complete subgraph Kr as a component.

Suppose Vi is a partite consists of vertices of all components of G along with v j of Kr.

Since in-degree of v j is zero and out-degree of v j is r−1, by definition of k-complement

of a graph the vertex v j becomes isolated in GP
k . Thus GP

k is disconnected.

�

Theorem 2. The k-complement of a connected graph G is disconnected if it satisfies the follow-

ing conditions,

(1) There exists a partite Vi consists of independent set of vertices v j such that every v j ∈Vi

covers all vertices of other partites.

(2) Graph G has a single cut vertex vc, which belongs to the partite Vi such that |Vi|= 1.

(3) A partite Vi has independent set of vertices and every vertex in Vi is adjacent to each

vertex of other partites.

Proof. Let P = {V1,V2, · · · ,Vk} be a partition of vertex set of a connected graph G of order n.

(1) Suppose partite Vi consists only the independent set of vertices, which covers all vertices

of other k−1 partites. Since all vertices of Vi are independent, in-degree of each vertex

of Vi is zero. By definition of k-complement of a graph every vertex of Vi becomes

isolated. Hence GP
k is disconnected.

(2) Suppose G has a single cut vertex, which belongs to singleton partite Vi. By definition

of GP
k , n−1 edges will be removed from vc and hence vc will be isolated vertex. Thus

GP
k is a disconnected graph.
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(3) In-degree of all v j ∈Vi is zero since each vertex inside the partite is independent. Also

if every vertex from each partite is adjacent to all vertices of other partites, then by

definition of GP
k there will be no edges from vertices of one partite to other in GP

k .

Hence GP
k is disconnected graph.

�

Theorem 3. The GP
k(i) of non regular graph G is r-regular if r = di(v j)+do(v j), where di(v j) =

|Vi|−di(v j).

Proof. Let G be any non regular graph with |V (G)|= n and P = {V1,V2, · · · ,Vk} be a partition

of vertices of G. By the definition of GP
k(i), di(v j) edges are added to all vertices in Vi for all

i = 1,2, · · · ,k, where di(v j) = |Vi|−di(v j) and out-degree do(v j) of each v j ∈Vi remains same.

As di(v j)+do(v j) gives the degree of each vertex v j ∈V (GP
k(i)) and if di(v j)+do(v j) is constant

then GP
k(i) is a regular graph. �

Theorem 4. The GP
k of non regular graph G is r-regular if r = di(v j)+do(v j), where do(v j) =

|Vi|−do(v j).

Proof. It is similar to the proof of Theorem 3, noting GP
k
∼= GP

k(i) the result follows. �

Theorem 5. For any two non isomorphic graphs G(V,E1) and H(U,E2) of same order, if

∑
n
r=1

(
di(vr)+do(vr)

)
= ∑

n
s=1

(
di(us)+do(us)

)
then GP

k(i) and HP
k(i) are line preserving.

Proof. Let G(V,E1) and H(U,E2) be any two graphs of same order. di(vr)+ do(vr) = d(vr)

in GP
k(i) for all r = 1,2, · · · ,n and di(us)+ do(us) = d(us) in HP

k(i) for all s = 1,2, · · · ,n. Now

∑
n
r=1

(
di(vr)+do(vr)

)
and ∑

n
s=1

(
di(us)+do(us)

)
will be the degree sum of all vertices in

GP
k(i) and HP

k(i) respectively. If ∑
n
r=1

(
di(vr)+do(vr)

)
= ∑

n
s=1

(
di(us)+do(us)

)
, we say that

GP
k(i) and HP

k(i) are line preserving.

�

Corollary 6. For any two non isomorphic graphs G(V,E1) and H(U,E2) of same order, if

∑
n
r=1

(
di(vr)+do(vr)

)
= ∑

n
s=1

(
di(us)+do(us)

)
then GP

k and HP
k are line preserving.

Proof. It can be proved in the similar lines of Theorem 5. �
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Theorem 7. For any two non-isomorphic graphs G(V,E1) and H(U,E2) of same order, if

∑
n
r=1

(
di(vr)+do(vr)

)
= ∑

n
s=1

(
di(us)+do(us)

)
then GP

k(i) and HP
k are line preserving.

Proof. Let G(V,E1) and H(U,E2) be any two graphs of same order. di(vr)+ do(vr) = d(vr)

in GP
k(i), where r = 1,2, · · · ,n and di(us)+ do(us) = d(us) in HP

k , where s = 1,2, · · · ,n. Now

∑
n
j=1

(
di(v j)+do(v j)

)
and ∑

n
k=1

(
di(uk)+do(uk)

)
will be the degree sum of all vertices in

GP
k(i) and HP

k respectively. If ∑
n
r=1

(
di(vr)+do(vr)

)
= ∑

n
s=1

(
di(us)+do(us)

)
, we say that

GP
k(i) and HP

k are line preserving.

�

Theorem 8. The k(i)-complement of a connected graph is Eulerian if any one of the following

conditions hold,

(1) Each partite is of odd(even) order consists of independent set of vertices with out-degree

even(odd).

(2) Each vertex in a partite of even(odd) order has in-degree odd(even) and out-degree even

(odd).

Proof. Let G be a connected graph with partition P = {V1,V2, · · · ,Vk} of V (G).

(1) Suppose each odd order partite has independent set of vertices with out-degree even.

Then 〈Vi〉 will be totally disconnected. Then by definition of k(i)-complement of graph,

one can observe that every vertex of GP
k(i) will be of even degree. Therefore GP

k(i) is

Eulerian.

(2) Suppose each vertex in a partite of even order has in-degree odd(even) and out-degree

even (odd). Then in GP
k(i), we find that in-degree and out-degree of each vertex v in

every partite Vi will be even. Hence GP
k(i) is Eulerian.

�

Theorem 9. The k-complement of a disconnected graph G is Eulerian if any one of the following

conditions hold,

(1) The order of a totally disconnected graph G and cardinality of each partite are of either

even or odd.
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(2) |V (G)| is odd and G has complete subgraphs as its components such that 〈Vi〉 is a

complete graph.

Proof. Let G be a disconnected graph of order n with partition P = {V1,V2, · · · ,Vk} of V (G).

(1) Suppose order of a totally disconnected graph G and partites Vi are of either even or odd,

then from definition of k-complement of a graph, every vertex v in Vi will be connected

to every vertex v in Vj where i, j = 1,2, · · · ,k and i 6= j. Since both n and |Vi| are either

odd or even, degree of v in GP
k is even. Thus GP

k is Eulerian.

(2) Let G be a disconnected graph of complete subgraph as its components such that |V (G)|

be odd. Then from definition of k-complement of graphs, GP
k is isomorphic to complete

graph of odd order. Thus GP
k is an Eulerian graph.

�

Example 2.1.

FIGURE 1. G and Gp
3

FIGURE 2. G and Gp
2

Theorem 10. Let G be a disconnected graph such that every component of G be of even degree.

Then GP
k is Eulerian if every vertex in 〈Vi〉 is of even degree and any one of the following

conditions hold good.
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(1) |P| and |Vi| are odd.

(2) |P| and |Vi| are even.

(3) |P| is odd and |Vi| is even.

Proof. Let P = {V1,V2, · · · ,Vk} be a partition of vertex set of G, each component of G and 〈Vi〉

be Eulerian.

(1) Suppose |P|= k and |Vi| are both odd, as every component in each partite of G is Euler-

ian, in-degree of all vertices of Vi is even. By definition of k-complement, degree of

each vertex in GP
k is even. Hence GP

k is Eulerian.

(2) Suppose |P| = k and |Vi| are both even, as every component in each partite of G is

Eulerian, in-degree of all vertices of Vi is even. By definition of k-complement, degree

of each vertex in GP
k is even. Hence GP

k is Eulerian.

(3) Suppose |P| = k is odd and |Vi| is even, as every component in each partite of G is

Eulerian, in-degree of all vertices of Vi is even. By definition of k-complement, degree

of each vertex in GP
k is even. Hence GP

k is Eulerian.

�

Proposition 1. [6] The k-complement and k(i) complements are related as follows

(i) GP
k
∼= GP

k(i) and (ii) GP
k(i)
∼= GP

k .

Theorem 11. For any graph G

i. GP
k(i)
∼= G if and only if GP

k
∼= G.

ii. GP
k
∼= G if and only if GP

k(i)
∼= G.

Proof. (i) Consider,

(1) GP
k(i)
∼= G

GP
k(i)
∼= G→ GP

k(i)
∼= G

Assume that H = G. Then

HP
k(i)
∼= G
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From Proposition 1

(2) HP
k
∼= G→ GP

k
∼= G

Conversly,

(3) GP
k
∼= G

GP
k
∼= G→ HP

k
∼= G

From Proposition 1

(4) HP
k(i)
∼= G→ GP

k(i)
∼= G

Similarly we can prove (ii). �

3. CONCLUSION

In this paper we have obtained some sufficient conditions for GP
k and GP

k(i) to be disconnected,

regular, line preserving and Eulerian. To investigate the conditions for GP
k and GP

k(i) to be

Hamiltonian, connected and isomorphic is an open area of research.
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