
Available online at http://scik.org

J. Math. Comput. Sci. 11 (2021), No. 1, 74-86

https://doi.org/10.28919/jmcs/5047

ISSN: 1927-5307

ON A v-ANALOGUE OF THE GAMMA FUNCTION AND SOME ASSOCIATED
INEQUALITIES

EMMANUEL DJABANG1,∗, KWARA NANTOMAH2, MOHAMMED MUNIRU IDDRISU2

1Department of Mathematics, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 25,

Legon, Accra, Ghana

2Department of Mathematics, Faculty of Mathematical Sciences, C.K. Tedam University of Technology and

Applied Sciences, P. O. Box 24, Navrongo, Upper-East Region, Ghana

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we introduce a new one-parameter deformation of the classical Gamma function, which we
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1. INTRODUCTION

The classical Euler’s Gamma function is defined for s ∈ R+ as

(1) Γ(s) =
∫

∞

0
ts−1e−tdt.

It was first introduced into the mathematical literature by Leonhard Euler in 1730 to extend

the factorial function to non negative integers. It was later studied by other mathematicians
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including Friederick Gauss and Karl Weierstrass who gave their respective definitions as

(2) Γ(s) = lim
n→∞

[
n!ns

s(s+1)(s+2) · · ·(s+n)

]
, s ∈ R+,

(3)
1

Γ(s)
= seγ

∞

∏
n=1

(
1+

s
n

)
e−

s
n , s ∈ R+,

where γ is the Euler-Mascheroni constant which is defined as

γ = lim
n→∞

(
n

∑
k=1

1
k
− lnn

)
.

Euler also defined the Gamma function in terms of its infinite product for s ∈ R+ as

(4) Γ(s) = s−1
∞

∏
n=1

(
1+

1
n

)s(
1+

s
n

)−1
.

For more information on the Gamma function and its properties, see [1, 2, 4] and the related

references.

The digamma and polygamma functions are closely related to the Gamma function. The

digamma function is the logarithmic derivative of the Gamma function. That is, ψ(s)= d
ds lnΓ(s).

It has the following series and integral representations:

(5) ψ(s) =−γ− 1
s
+

∞

∑
n=1

s
n(n+ s)

=−γ +
∫

∞

0

e−t− e−st

1− e−t dt,

where s ∈ R+ and γ is the Euler-Mascheroni constant. The polygamma function ψm(s) is the

mth derivative of the digamma function. That is, ψm(s) = dm

dsm ψ(s), m ∈ N. It also has the

following series and integral representations:

(6) ψ
m(s) = (−1)m+1 m!

∞

∑
n=1

1
(s+n)m+1 = (−1)m+1

∫
∞

0

tm

1− e−t e−stdt,

for s ∈ R+ and m ∈ N. For more information on digamma and polygamma functions, see

[2, 6, 7, 8].
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The generalization of the Gamma function has attracted much attention from many researchers.

For example, Euler and Jackson introduced the p and q-analogues of the Gamma function re-

spectively and established some properties of the said functions (see [3, 5, 12] and the refer-

ences therein). Chaudry and Zubair [9] established another p-analogue of the Gamma function

via its integral representation. Dı́az and Pariguan [10] later introduced the k- analogue of the

Gamma function by generalizing the Pochhammer k-symbol. Diaz and Teruel [11], Krasniqi

and Merovci [13] and Nantomah, Prempeh and Twum [14] introduced a two-parameter defor-

mation of the Gamma function. The authors respectively established the (q,k), (p,q) and (p,k)-

analogues of the Gamma function with applications to inequalities.

In this paper, we introduce a new one-parameter deformation of the integral, limit and product

representations of the Gamma function. We also establish some properties generalizing those

satisfied by the classical Gamma function. In addition, we establish some inequalities involving

this new function. We present our results in the following section.

2. PRELIMINARIES

In this section, we present some definitions and Lemmas which are well known in the litera-

ture and which play a key role in the proofs of our main results.

Definition 2.1. A function f : I→ (0,∞) is said to be logarithmically convex if ln f is convex

on I. That is,

(7) ln f (αx+βy)≤ α ln f (x)+β ln f (y),

or equivalently

(8) f (αx+βy)≤ ( f (x))α ( f (y))β ,

for each x,y ∈ I and α,β ∈ (0,1) such that α +β = 1.

Lemma 2.2. Let A,B≥ 0 and k ≥ 1. Then the inequality Ak +Bk ≤ (A+B)k holds.
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Lemma 2.3. [15]

Let p > 1 and q > 1 such that 1
p +

1
q = 1. Let f and g be continuous functions on [a,b]. Then

Hölder’s inequality for integrals is given by

(9)
∫ b

a
f (t)g(t)dt ≤

(∫ b

a
f (t)pdt

) 1
p
(∫ b

a
g(t)qdt

) 1
q

.

Lemma 2.4. [15]

Let p > 1 and f and g be continuous functions on [a,b]. Then Minkowski’s inequality for

integrals is given as

(10)

 b∫
a

| f (t)+g(t)|pdt

 1
p

≤

 b∫
a

| f (t)|pdt

 1
p

+

 b∫
a

|g(t)|pdt

 1
p

.

3. MAIN RESULTS

Definition 3.1. Let s,v∈R+. Then the v-analogue (also called v-deformation or v-generalization)

of the Gamma function is defined as

(11) Γv(s) =
∫

∞

0

( t
v

) s
v−1

e−tdt.

Note that when v = 1, we have Γv(s) = Γ(s).

From the relation (11), we can easly show that

Γv(s+ v) = sv−2
Γv(s),(12)

Γv(s) = v1− s
v Γ

( s
v

)
,(13)

Γv(v) = 1.(14)

Proposition 3.2. Let s,v ∈ R+. Then the v-analogue of the Gamma function satisfies the rela-

tion:

(15) Γv(s) = lim
n→∞

n!
(n

v

)( s
v) vn+1

s(s+ v)(s+2v) · · ·(s+nv)
.
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Proof. Using the fact that
(
1− t

n

)n converges to e−t as n→ ∞, we write (11) as

Γv(s) = lim
n→∞

∫ n

0

( t
v

) s
v−1(

1+
t
n

)n
dt.

Repeated integration by parts yields

In =
∫ n

0

( t
v

) s
v−1(

1+
t
n

)n
dt

=

[
v2

s

( t
v

) s
v
(

1− t
n

)]n

0
+

nv2

ns

∫ n

0

( t
v

) s
v
(

1+
t
n

)n−1
dt

=
nv2

ns

∫ n

0

( t
v

) s
v
(

1+
t
n

)n−1
dt

...

=
nv2

ns
(n−1)v2

n(s+ v)
(n−2)v2

n(s+2v)
· · · v2

(s+(n−1)v)

∫ n

0

( t
v

) s
v+n−1

dt

=
n!
(n

v

) s
v vn+1

s(s+ v)(s+2v) · · ·(s+nv)
.

By taking limit on both sides, we obtain

Γv(s) = lim
n→∞

In = lim
n→∞

n!
(n

v

) s
v vn+1

s(s+ v)(s+2v) · · ·(s+nv)
,

which completes the proof.

Proposition 3.3. Let s,v∈R+. Then the v-analogue of the Gamma function can be expressed as

(16)
1

Γv(s)
= v

s
v−1se

γs
v

∞

∏
k=1

(
1+

s
kv

)
e−

s
kv ,

where γ is the Euler-Mascheroni constant.

Proof. By the relation (15), we write

Γ(s) = lim
n→∞

(n
v

) s
v v

s

(
v

s+ v

)(
2v

s+2v

)
· · ·
(

nv
s+nv

)
.

This implies that

1
Γ(s)

= lim
n→∞

(v
n

) s
v s

v

(
1+

s
v

)(
1+

s
2v

)
· · ·
(

1+
s

nv

)
= lim

n→∞

(v
n

) s
v s

v

n

∏
k=1

(
1+

s
kv

)
.
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To evaluate the above limit, we introduce a convergent factor e−
s

kv . This gives

1
Γ(s)

= lim
n→∞

(v
n

) s
v s

v
e

s
v(1+ 1

2+···+
1
n)

n

∏
k=1

(
1+

s
kv

)
e−

s
kv

= lim
n→∞

e
s
v(1+ 1

2+···+
1
n−lnn)v

s
v

s
v

n

∏
k=1

(
1+

s
kv

)
e−

s
kv

= v
s
v−1se

γs
v

∞

∏
k=1

(
1+

s
kv

)
e−

s
kv .

This completes the proof.

Proposition 3.4. Let s,v ∈ R+. Then the v-analogue of the Gamma function satisfies the rela-

tion:

(17) Γv(s) = v−
s
v s−1

∞

∏
n=1

(
1+

1
n

) s
v (

1+
s

nv

)−1
.

Proof. By replacing s with s
v in (4) and using relation (13), we obtain

Γv(s) = v(1−
s
v )

[
v
s

∞

∏
n=1

(
1+

1
n

) s
v (

1+
s

nv

)−1
]

= v−
s
v s−1

∞

∏
n=1

(
1+

1
n

) s
v (

1+
s

nv

)−1
,

which completes the proof.

Remark 3.5. By letting v = 1 in Propositions (3.2), (3.3) and (3.4) we obtain (2), (3) and (4) as

special cases.

Proposition 3.6. Let s,v ∈ R+. Then the v-digamma function, ψv has the series representation

(18) ψv(s) =−
(lnv+ γ)

v
− 1

s
+

∞

∑
n=1

[
1
nv
− 1

s+nv

]
.

Proof. Taking log on both sides of (16) gives

lnΓv(s) =− lnv(
s
v−1)− lns− γs

v
−

∞

∑
n=1

ln
(

1+
s

nv

)
+

∞

∑
n=1

s
nv

.

By differentiating both sides with respect to s, we obtain

ψv(s) =−
lnv
v
− 1

s
− γ

v
−

∞

∑
n=1

1
nv+ s

+
∞

∑
n=1

1
nv

=−(lnv+ γ)

v
− 1

s
+

∞

∑
n=1

[
1
nv
− 1

s+nv

]
.
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This completes the proof.

Proposition 3.7. Let s,v∈R+. Then the v-digamma function, ψv has the integral representation

(19) ψv(s) =−
(

lnv+ γ

v

)
+

∞∫
0

e−vt− e−st

1− e−vt dt,

where γ is the Euler-Mascheroni constant.

Proof. By relation (18), we have

ψv(s) =−
(

lnv+ γ

v

)
− 1

s
+

∞

∑
n=1

(
1
nv
− 1

s+nv

)

=−
(

lnv+ γ

v

)
−

∞∫
0

e−stdt +
∞

∑
n=1

∞∫
0

(
e−nvt− e−(s+nv)t

)
dt

=−
(

lnv+ γ

v

)
−

∞∫
0

e−stdt +
∞

∑
n=1

∞∫
0

e−nvt (1− e−st)dt

=−
(

lnv+ γ

v

)
−

∞∫
0

e−stdt +
∞∫

0

(
1− e−st) ∞

∑
n=1

e−nvtdt

=−
(

lnv+ γ

v

)
−

∞∫
0

e−stdt +
∞∫

0

(
1− e−st)( e−vt

1− e−vt

)
dt

=−
(

lnv+ γ

v

)
+

∞∫
0

e−vt− e−st

1− e−vt dt,

which completes the proof.

Proposition 3.8. Let s,v ∈R+ and m ∈N. Then the v-polygamma function, ψ
(m)
v has the series

representation

(20) ψ
(m)
v (s) = (−1)m+1 m!

∞

∑
n=0

1

(s+nv)m+1 .

Proof. By differentiating (18) successively, we have

ψ
(1)
v (s) =

∞

∑
n=0

1
(s+nv)2 , ψ

(2)
v (s) =−

∞

∑
n=0

2
(s+nv)3 , ψ

(3)
v (s) =

∞

∑
n=0

6
(s+nv)4 . . .

The mth order derivative yields

ψ
(m)
v (s) = (−1)m+1 m!

∞

∑
n=1

1
(s+nv)m+1 ,
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which completes the proof.

Proposition 3.9. Let s,v ∈ R+ and m ∈ N. Then the v-polygamma function, ψ
(m)
v has the inte-

gral representation

(21) ψ
(m)
v (s) = (−1)m+1

∫
∞

0

tme−st

1− e−vt dt.

Proof. Recall relation (20):

ψ
m
v (s) = (−1)m+1

∞

∑
n=0

m!
(s+nv)m+1 .

We introduce the inverse Laplace transform of the summand to get

ψ
m
v (s) = (−1)m+1

∞

∑
n=0

∫
∞

0
tme−(s+nv)tdt

= (−1)m+1
∞

∑
n=0

m!
(s+nv)m+1

= (−1)m+1
∞

∑
n=0

∫
∞

0
tme−(s+nv)tdt

= (−1)m+1
∫

∞

0
tm

∞

∑
n=0

e−(s+nv)tdt

= (−1)m+1
∫

∞

0

tme−st

1− e−vt dt.

This completes the proof.

Theorem 3.10. Let r,s,v ∈ R+, p > 1 and 1
p +

1
q = 1. Then the inequality

(22) Γv

(
r
p
+

s
q

)
≤ [Γv(r)]

1
p [Γv(s)]

1
q

holds.
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Proof. By replacing s with r
p +

s
q in (11), we obtain

Γv

(
r
p
+

s
q

)
=

∞∫
0

( t
v

) r
pv+

s
qv−1

e−tdt

=

∞∫
0

( t
v

) r
pv+

s
qv−

1
p+

1
q

e−t
(

1
p+

1
q

)
dt

=

∞∫
0

( t
v

) 1
p(

r
v−1)

e−
t
p

( t
v

) 1
q(

s
v−1]

e−
t
q dt.

By applying Hölder’s inequality for integrals, we have

Γv

(
r
p
+

s
q

)
≤

 ∞∫
0

(( t
v

) 1
p(

r
v−1)

e−
t
p

)p

dt

 1
p
 ∞∫

0

(( t
v

) 1
q(

s
v−1)

e−
t
q

)q

dt

 1
q

=

 ∞∫
0

( t
v

)( r
v−1]

e−tdt

 1
p
 ∞∫

0

( t
v

)( s
v−1)

e−tdt

 1
q

= [Γv(r)]
1
p [Γv(s)]

1
q .

This completes the proof.

Definition 3.11. The nth derivative of the v-analogue of the gamma function is defined for

s,v ∈ R+ as

(23) Γ
(n)
v (s) =

∫
∞

0

( t
v

) s
v−1 [

ln
( t

v

)]n e−t

vn dt.

Theorem 3.12. Let r,s,v ∈ R+, k ≥ 1, and m,n ∈ {2h : h ∈ N}. Then the following inequality

holds.

(24)
[
Γ
(m)
v (r)+Γ

(n)
v (s)

] 1
k ≤

[
Γ
(m)
v (r)

] 1
k
+
[
Γ
(n)
v (s)

] 1
k
.
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Proof. From the relation (23), we have[
Γ
(m)
v (r)+Γ

(n)
v (s)

] 1
k

=

[∫
∞

0

( t
v

) r
v−1 [

ln
( t

v

)]m e−t

vm dt +
∫

∞

0

( t
v

) s
v−1

e−t
[
ln
( t

v

)]n e−t

vn dt
] 1

k

=

[∫ ∞

0

( t
v

) 1
k (

r
v−1) [

ln
( t

v

)]m
k e−

t
k

v
m
k

]k

+

∫ ∞

0

( t
v

) 1
k (

s
v−1) [

ln
( t

v

)] n
k e−

t
k

v
n
k

]k

dt

 1
k

.

By applying Lemma 4.3 to the above expression, we obtain

[
Γ
(m)
v (r)+Γ

(n)
v (s)

] 1
k ≤

[∫ ∞

0

( t
v

) 1
k (

r
v−1) [

ln
( t

v

)]m
k e−

t
k

v
m
k
+
∫

∞

0

( t
v

) 1
k (

s
v−1) [

ln
( t

v

)] n
k e−

t
k

v
n
k

]k

dt

 1
k

.

Finally, we apply Minkowski’s inequality to get

[
Γ
(m)
v (r)+Γ

(n)
v (s)

] 1
k ≤

[∫
∞

0

( t
v

)( r
v−1) [

ln
( t

v

)]m e−t

vm dt

] 1
k

+

[∫
∞

0

( t
v

)( s
v−1) [

ln
( t

v

)]n e−t

vn dt

] 1
k

=
[
Γ
(m)
v (r)

] 1
k
+
[
Γ
(n)
v (s)

] 1
k
.

This completes the proof.

Remark 3.13. A similar results was proved for the (p,k)-gamma function, see Theorem 2.3 of

[14].

Theorem 3.14. Let r,s ∈ R+, m,n ∈ N and a > 1 such that m
a + n

b ∈ N. Then the inequality

(25)
∣∣∣∣ψ(m

a +
n
b)

v

( r
a
+

s
b

)∣∣∣∣≤ ∣∣∣ψ(m)
v (r)

∣∣∣ 1
a
+
∣∣∣ψ(n)

v (s)
∣∣∣ 1

b

holds.
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Proof. By using the integral representation (21), we obtain

∣∣∣∣ψ(m
a +

n
b)

v

( r
a
+

s
b

)∣∣∣∣=∫ ∞

0

t(
m
a +

n
b)e−(

r
a+

s
b)t

1− e−vt dt

=
∫

∞

0

t(
m
a +

n
b)e−(

r
a+

s
b)t

(1− e−vt)(
1
a+

1
b)

dt

=
∫

∞

0

(
t

m
a e−

r
a t

(1− e−vt)
1
a

t
n
b e−

s
b t

(1− e−vt)
1
b

)
dt

=
∫

∞

0

(
tme−rt

1− e−vt

) 1
a
(

tne−st

1− e−vt

) 1
b

dt,

and by applying Hölder’s inequality, we obtain

∫
∞

0

(
tme−rt

1− e−vt

) 1
a
(

tne−st

1− e−vt

) 1
b

dt ≤
[∫

∞

0

tme−rt

1− e−vt dt
] 1

a [∫
∞

0

tne−st

1− e−vt dt
] 1

b

=
∣∣∣ψ(m)

v (r)
∣∣∣ 1

a
∣∣∣ψ(n)

v (s)
∣∣∣ 1

b
.

This completes the proof.

Remark 3.15. A similar results was proved for the (p,k)-gamma function, see Theorem 2.5 of

[14].

Theorem 3.16. Let m, p ∈ N and k > 0. Then the following inequalities hold.

(26)
(

eψ
(m)
v (s)

)2

≥ eψ
(m+1)
v (s)eψ

(m−1)
v (s), (m is odd),

(27)
(

eψ
(m)
v (s)

)2

≤ eψ
(m+1)
v (s)eψ

(m−1)
v (s), (m is even).
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Proof. Using the integral representation (21), we obtain

ψ
(m)
v (s)− 1

2

(
ψ

(m+1)
v (s)+ψ

(m−1)
v (s)

)
= (−1)m+1

∫
∞

0

m!tme−st

1− e−vt dt− (−1)m+2

2

∫
∞

0

(m+1)!tm+1e−st

1− e−vt dt− (−1)m

2

∫
∞

0

(m−1)!tm−1e−st

1− e−vt dt

=
(−1)m+1

2

[∫
∞

0

2m(m−1)!tme−st

1− e−vt dt +
∫

∞

0

(m+1)m(m−1)!tm+1e−st

1− e−vt dt +
∫

∞

0

(m−1)!tm−1e−st

1− e−vt dt
]

=
(−1)m+1

2
(2m+m(m+1)+1)

∫
∞

0

(m−1)!tm−1e−st

1− e−vt dt

=
(−1)m+1

2
(
m2 +3m+1

)∫ ∞

0

(m−1)!tm−1e−st

1− e−vt dt

=


≥ 0, m is odd

≤ 0, m is even
.

This implies that the inequalities

(28) 2ψ
(m)
v (s)≥ ψ

(m+1)
v (s)+ψ

(m−1)
v (s)

and

(29) 2ψ
(m)
v (s)≤ ψ

(m+1)
v (s)+ψ

(m−1)
v (s)

hold respectively for odd m and even m. By exponentiating both sides of the inequalities (28)

and (29), we obtained the desired results.
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