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1. Introduction

All graphs considered in this paper are finite, simple and undirected.

Graphs and in particular graph products arise in a variety of different contexts, from

computer science to theoretical biology, computational engineering or in studies on social

networks. In the last few years graph products became again a very flourishing topic in

graph theory. The revival of interest seems to be mostly due to the algorithmic point of

view. In particular, algorithms for decomposing a graph with respect to a given product

and for isometrically embedding a graph into a (Cartesian) product of graphs were pro-

posed [3, 12, 14, 18, 45, 46]. Furthermore, retracts of graph products, the reconstruction of

products and some other properties of products were investigated [11, 26, 27, 31, 32, 36].
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Finding a (prime factor) decomposition of a given graph with respect to a graph product

is one of the basic problems in studying graph products from the algorithmic point of

view. Among the four most interesting graph products (the lexicographic, the direct, the

Cartesian and the strong product) the Cartesian product [3, 12, 46] and the strong product

[14] are known to have polynomial algorithms for finding prime factor decompositions of

connected graphs. An overview of complexity results for other products can be found

in [14]. Because of Feigenbaum and Schaffer’s polynomial result, it seems to be of vital

interest to study those parameters of strong products of graphs whose determination is

in general NP-complete.

2. Preliminaries

For any graph G, we let V (G) be the vertex set of G, E(G) the edge set G, and

l(G) =| V (G) | the number of vertices in G. Two graphs G and H with the same number

of vertices are said to be isomorphic, denoted G ∼= H, if there exists a bijection from V (G)

to V (H) that preserves adjacency. Such a bijection is called an isomorphism from G to

H. In the case when G and H are identical, this bijection is called an automorphism of G.

The collection of all automorphisms of G, denoted autG, constitutes a group called the

automorphism group of G.We call the isomorphism classes of graphs unlabeled graphs. If

G is a graph with n vertices, L(G) is the number of graphs isomorphic to G with vertex

set [n]. It is well-known that

(1) L(G) =
l(G)!

| aut(G) |
.

We use the notation
n∑

i=1

Gi = G1 + G2 + ... + Gn to mean the disjoint union of a set of

graphs {Gi}i=1,...,n.

Definition 1. The Cartesian product of graphs G1 and G2, denoted G1 ×G2, as defined

by Sabidussi [39] under the name weak Cartesian product, is the graph whose vertex set

is V (G1 × G2) = V (G1) × V (G2) = {(u, v) : u ∈ V (G1), v ∈ V (G2)},in which (u, v) is

adjacent to (w, z) if either u = w and {v, z} ∈ E(G2) or v = z and {u,w} ∈ E(G1).
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Figure 1. The Cartesian product of a graph with vertex set {1, 2, 3, 4}

and a graph with vertex set {1′, 2′, 3′} is a graph with vertex set {(i, j)},

where i ∈ [4] and j ∈ [3]′.

Proposition 1. Let G1, G2 and G3 be graphs. Then (commutativity) G1×G2
∼= G2×G1;

(associativity) (G1 ×G2)×G3
∼= G1 × (G2 ×G3).

These properties allow us to talk about the Cartesian product of a set of graphs {Gi}i∈I ,

denoted ×i∈IGi. We denote by Gm the Cartesian product of n copies of G.

Definition 2. A graph G is prime with respect to Cartesian product if G is a connected

graph with more than one vertex such that G ∼= H1 ×H2 implies that either H1 or H2 is

a singleton vertex.

Two graphs G and H are called relatively prime with respect to Cartesian product if

and only if G ∼= G1 × J and H ∼= H1 × J imply that J is a singleton vertex.

If G is a connected graph, then G can be decomposed into prime factors, that is, there

is a set {Pi}i∈I of prime graphs such that G ∼= ×i∈IPi. In Figure, a connected graph G

with 24 vertices is decomposed into the product of prime graphs P1, P2, P3 with 3,2 and

4 vertices, respectively.

3.Sabidussi’s Results
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Figure 2. The decomposition of a connected graph into prime graphs.

Theorem 1 (Sabidussi[39]). For any non-trivial connected graph G, the factorization of

G into the Cartesian product of prime powers is unique up to isomorphism.

The automorphism groups of the Cartesian product of a set of graphs was studied by

Sabidussi [39] and Palmer [37].

Theorem 2 (Sabidussi). Let {Gi}i=1,...,n be a set of graphs. Then the automorphism

group of the Cartesian product of {Gi}i=1,...,n is isomorphic to the automorphism group of

the sum of {Gi}i=1,...,n. That is,

aut(×n
i=1Gi) ∼= aut(

n∑
i=1

Gi).

Theorem 3 (Sabidussi). Let G1, G2, ...Gn be connected graphs which are pairwise rela-

tively prime with respect to Cartesian multiplication. Then the automorphism group of the

Cartesian product of {Gi}i=1,...,n is isomorphic to the product of each of the automorphisms

groups of {Gi}i=1,...,n. That is,

aut(×n
i=1Gi) ∼=

n∏
i=1

aut(Gi).

We introduce in the following an important theorem by Sabidussi about the automor-

phism group of a connected graph using its prime factorization.

Theorem 4 (Sabidussi). Let G be connected graph with prime factorization

G ∼= P s1
1 × P s2

2 × ...× P sk
k ,
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where for r = 1, 2, ..., k, all Pr are distinct prime graphs, and all sr are positive integers.

Then we have

(2) aut(G) ∼=
k∏

r=1

aut(P sr
r ) ∼=

k∏
r=1

aut(Pr)
ϱsr .

In other words, the automorphism group of G is generated by the automorphism groups

of the factors and the transpositions of isomorphic factors.

4.Unlabeled Prime Graphs

In this section all graphs considered are unlabeled and connected.

Definition 3. The (formal) Dirichlet series of a sequence {an}n=1,2,...,∞ is defined to be∑∞
n=1 an/n

s.

The multiplication of Dirichlet series is given by

(3)
∑
n≥1

an
ns

.
∑
m≥1

bn
ns

=
∑
n≥1

(
∑
k|n

akbn/k)
1

ns
.

Definition 4. A monoid is a semigroup with a unit. A free commutative monoid is a

commutative monoid M with a set of primes P ⊆ M such that each element m ∈ M can

be uniquely decomposed into a product of elements in P up to rearrangement.

Let M be a free commutative monoid. We get a monoid algebra CM , in which the

elements are all formal sums
∑

m∈M cmm, where cm ∈ C, with addition and multiplication

defined naturally.

For each m ∈ M , we associate a length l(m) that is compatible with the multiplication

in M . That is, for any m1,m2 ∈ M , we have l(m1)l(m2) = l(m1m2).

It is well-known that the monoid algebra yields the following identity:
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Proposition 2. Let M be a free commutative monoid with prime set P . The following

identity holds in the monoid algebra CM :

(4)
∑
m∈M

m =
∏
p∈P

1

1− p
.

Furthermore, we can define a homomorphism from M to the ring of Dirichlet series under

which each m ∈ M is sent to 1/l(m)s, where l is a length function of M . Therefore,

(5)
∑
m∈M

1

l(m)s
=

∏
p∈P

1

1− l(p)−s
.

Example 1. Let N denote the set of all natural numbers, and let P denote the set of all

prime numbers. Then N is a free commutative monoid with prime set P , and the length

function is given by l(n) = n for all n ∈ N . As an application of Proposition 2, we have

the following well-known identity for expressing the zeta function:

(6) ζ(s) =
∑
n∈N

1

ns
=

∏
p∈P

1

1− p−s
.

Recall that C is the set of unlabeled connected graphs under the operation of Cartesian

product. The unique factorization theorem of Sabidussi gives C the structure of a com-

mutative free monoid with a set of primes P, where P is the set of unlabeled prime graphs.

This is saying that every element of C has a unique factorization of the form be11 be22 ...bekk ,

where the bi are distinct primes in P. Let l(G), the number of vertices in G, be a length

function for C. We have the following proposition.

Lemma 1. Let C and P be the set of unlabeled connected graphs and the set of unlabeled

prime graphs, respectively. We have

(7)
∑
G∈C

1

l(G)s
=

∏
P∈P

1

1− l(P )−s
.

The enumeration of prime graphs was studied by Raphael Bellee [6]. We use Dirichlet

series to count unlabeled connected prime graphs.
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Theorem 5. Let c̃n be the number of unlabeled connected graphs on n vertices, and let

bm be the number of nlabeled prime graphs on m vertices. Then we have

(8)
∑
n≥1

c̃n
ns

=
∏
m≥2

1

(1−m−s)bm
.

Furthermore, if we define numbers dn for positive integers n by

(9)
∑
n≥1

dn
ns

= log
∑
n≥1

c̃n
ns

,

then

(10) dn =
∑
ml=n

bm
l

where the sum is over all pairs (m, l) of positive integers with ml = n.

Remark 1. A quick observation from Equation (10) is that bn = dn whenever n is not of

the form rk for some k > 1.

In what follows, we introduce an interesting recursive formula for computing dn. To

start with, we differentiate both sides of Equation (9) with respect to s and simplify. We

get ∑
n≥2

log n
c̃n
ns

= (
∑
n≥1

c̃n
ns

)(
∑
n≥2

log n
dn
ns

),

which gives

(11) c̃n log n =
∑
ml=n

cmdl log l.

Since c1 is the number of connected graphs on 1 vertex, c1 = 1. It follows from Equation

(11) easily that dp = cp when p is a prime number. Therefore, if p is a prime number,

bp = dp = cp. This fact can be seen directly, since a connected graph with a prime number

of vertices is a prime graph.

Raphael Bellee used Equation (11) to find formulae for dn where n is a product of two

different primes or a product of three different primes:
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If n = pq where p ̸= q,

(12) dn = c̃n − cpcq;

If n = pqr where p, q and r are distinct primes,

(13) dn = c̃n + 2cpcqcr − cpcqr − cqcpr − crcpq.

In fact, Equations (12) and (13) are special cases of the following proposition.

Proposition 3. Let dn, c̃n be defined as above. Then we have

dn = c̃n −
1

2

∑
n1n2=n

cn1cn2 +
1

3

∑
n1n2n3=n

cn1cn2cn3 − ...

Proof. We can use the identity

log(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + ...

to compute from Equation (9) that

∑
n≥1

dn
ns

) = log(1 +
∑
n≥2

c̃n
ns

)

=
∑
n≥2

c̃n
ns

− 1

2
(
∑
n≥2

c̃n
ns

)2 +
1

3
(
∑
n≥2

c̃n
ns

)3 − ....

Equating coefficients of n−s on both sides, we get the desired result. �

Proof of Theorem 5. We start with

∑
m

1

l(m)s
=

∏
p

1

1− l(p)−s
,

where the left-hand side is summed over all connected graphs, and the right-hand side

is summed over all prime graphs. Regrouping the summands on the left-hand side with

respect to the number of vertices in m, we get the left-hand side of Equation (8). Re-

grouping the factors on the right-hand side with respect to the number of vertices in p,

we get the right-hand side of Equation (8).
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Taking the logarithm of both sides of Equation (8), we get

log
∑
n≥1

c̃n
ns

= log
∏
m≥2

1

(1−m−s)bm
=

∑
m≥2

bm log
1

(1−m−s)

=
∑
m≥2

(bm
∑
l≥1

m−sl

l
) =

∑
m≥2,l≥1

bm
lmst

,

and Equation (10) follows immediately.

Next we will compute the numbers bn in terms of the numbers dn using the following

lemma.

Lemma 2. Let {Di}i=1,2,... and {Ji}i=1,2,... be sequences of numbers satisfying

(14) Dk =
∑
l|k

Jk/l
l

,

and let µ be the Mobius function. Then we have

Jk =
1

k

∑
l|k

µ(
k

l
)lDl.

Proof. Multiplying by k on both sides of Equation (14), we get

kDk =
∑
l|k

k

l
Jk/l =

∑
l|k

lJl.

Applying the Mobius inversion formula, we get

kJk =
∑
l|k

µ(
k

l
)lDl.

Therefore,

Jk =
1

k

∑
l|k

µ(
k

l
)lDl.

�

Given any natural number n, let e be the largest number such that n = re for some r.

Note that r is not a power of a smaller integer. We let Dk = drk , Jk = brk . It follows that

Equation (10) is equivalent to Equation (14).
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Theorem 6. For any natural number n, let e, r be as described in above. Then we have

bn =
1

e

∑
l|e

µ(
e

l
)ldre .

Proof. The result follows straightforwardly from Lemma 1.2. �

Table 1 gives the numbers of unlabeled prime graphs bn compared with the numbers of

unlabeled connected graphs c̃n on no more than 12 vertices.

Table 1. Values of c̃n and bn, for n ≤ 12.

n c̃n bn

1 1 0

2 1 1

3 2 2

4 6 5

5 21 21

6 112 110

7 853 853

8 11117 11111

9 261080 261077

10 11716571 11716550

11 1006700565 1006700565

12 164059830476 164059830354

5.Applications

In practical applications, we observe perturbed product structures, so-called approxi-

mate graph products, since structures derived from real-life data are notoriously incom-

plete and/or plagued by measurement errors. As a consequence, the structures need to

be analyzed in a way that is robust against inaccuracies, noise, and perturbations in the

data.
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The problem of computing approximate graph products was posed several years ago in

a theoretical biology context [44]. The authors provided a concept concerning the topo-

logical theory of the relationships between genotypes and phenotypes. In this framework

a so-called ”character” (trait or Merkmal) is identified with a factor of a generalized topo-

logical space that describes the variational properties of a phenotype. The notion of a

character can be understood as a property of an organism that can vary independently

of other traits from generation to generation. Characters thus are not necessarily the

same as observable properties such as arms, legs, fingers, a spinal chord, etc, although

such observables of course often are instantiations of characters. The important biological

distinction is whether such measurable attributes (or combinations thereof) form a ”coor-

dinate axis” along which the character states (e.g. the lengths of arms or fingers) can vary

independently of other traits, or whether the underlying genetics dictates dependencies

among the observables [33]. This question can be represented as a graph problem in the

following way:

Consider a set X of ”phenotypes”, that is, representations of distinct organisms, each

of which is characterized by a list of properties such as body shape, eye color, presence or

absence of certain bones, etc. If one knows about the phylogenetic relationships between

the members of X, we can estimate which combinations of properties are interconvertible

over short evolutionary time-scales. This evolutionary ”accessibility relation” introduces a

graph-structure on X [8, 15, 16, 40]. In particular, a phenotype space inherits its structure

from an underlying sequence space.

Sequence spaces are Hamming graphs, that is, Cartesian products of complete graph-

s, see [9, 10]. The structure of localized subsets turns out to be of particular interest.

Gavrilets [17], Grner [19], and Reidys [38], for example, describe subgraphs in sequence

spaces that correspond to the subset of viable genomes or to those sequences that give rise

to the same phenotype. The structure of these subgraphs is intimately related to the dy-

namics of evolutionary processes [25, 42]. However, since characters are only meaningfully

defined on subsets of phenotypes it is necessary to use a local definition [44]:A character
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corresponds to a factor in a factorizable induced subgraph with non-empty interior (where

x is an interior vertex of H ×G if x and all its neighbors within G are in H).

Other applications of graph products can be found in rather different areas as computer

graphics and theoretical computer science. In [1, 2], the authors provide a framework,

called TopoLayout, to draw undirected graphs based on the topological features they con-

tain. Topological features are detected recursively, and their subgraphs are collapsed into

single nodes, forming a graph hierarchy. The final layout is drawn using an appropriate

algorithm for each topological feature [1]. Graph products have a well understood struc-

ture, that can be drawn in an effective way. Hence, for an extension of this framework

in particular approximate graph products are of interest. Reasons and motivations to

study graph products or graphs that have a product-like structure can be found in many

other areas, e.g. for the formation of finite element models or construction of localized

self-equilibrating systems in computational engineering [28, 30]. Other motivations can

be found in discrete mathematics. A natural question is what can be said about a graph

invariant of an (approximate) product if one knows the corresponding invariants of the

factors. There are many contributions, treating this problem, e.g. [4, 7, 20, 21, 24, 34]. In

all applications of practical interest, the graphs in question have to be either obtained from

computer simulations (e.g. within the RNA secondary structure model as in [8, 15, 16])

or they need to be estimated from measured data. In both cases, they are known only ap-

proximately. In order to deal with such inaccuracies, a mathematical framework is needed

that allows us to deal with graphs that are only approximate products. Given a graph G

that has a product-like structure, the task is to find a graph H that is a nontrivial product

and a good approximation of G, in the sense that H can be reached from G by a small

number of additions or deletions of edges and vertices. In fact, a very small perturbation,

such as the deletion or insertion of a single edge, can destroy the product structure com-

pletely, modifying a product graph to a prime graph [13, 48].In [47] Yegnanarayanan one

of the two authors of this paper has obtained a number of results concerning applications

of Analytical Number theory to Graph Theory via Product Graphs.
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Before we conclude we would like to point out another vibrant area called Graph theory

zetas. The graph theory zetas first appeared in work of Ihara on p-adic groups in the

1960s. Soon the connection with graphs was found and many papers appeared. The main

authors in the 1980s and 90s were Sunada, Hashimoto [22], and Bass [5]. Other references

are Venkov and Nikitin [43] and Northshield’s paper in the volume of Hejhal et al [23]

See [41, 35] for more history and references. The main properties of the Riemann zeta

function have graph theory analogs, at least for regular graphs.
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