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Abstract: In this research article, we give a new concept of common 𝛼-fixed point, 𝛼-compatible mappings, 

weakly 𝛼-compatible mappings, 𝛼-commuting mappings, weakly 𝛼-commuting mappings, and 𝛼-continuous 

mappings and then prove some common 𝛼-fixed point theorems for these mappings under new contractive 

conditions. Further, we generalize the results of Singh and Chouhan [17] for common 𝛼-fixed points and give some 

results for common 𝛼-fixed points under this newly introduced concept along with 𝛼- contractive conditions. Many 

examples have also been given and proved in support of our concept and results. 
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1. INTRODUCTION 

The fixed point theory is an important area in the fast-growing fields of non-linear analysis and 

non-linear operators. Using fixed point techniques, it is possible to analyze several concrete 

problems from science and engineering, where one is concerned with a system of 
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differential/integral/functional equations. Fixed point theorems are the most important tools for 

proving the existence and the uniqueness of the solutions to various mathematical models 

(differential, integral and partial differential equations and variational inequalities, etc.), 

representing phenomena arising in a different field such as steady-state temperature distribution, 

chemical reactions, Neutron transport theories, economic theories, epidemic and flow of fluids. In 

1886, the notion of fixed point theory was first introduced by Poincare[12]. He established the first 

result on a fixed point on using a continuous function. 

Some interesting results on fixed point theorems in metric spaces are given by Edelstein[4], 

Assad and Kirk[1], Sehgal[13], Iseki et al.[5], Kubiak [11] and Sehgal and Bharucha-Reid[14]. 

Browder [3] proved the following useful theorem in1912. Browder’s fixed point theorems are 

fundamental theorems in the area of fixed point theory and its applications.  The Browder’s 

fixed point theorem states that “If 𝐶 is a unit ball in 𝐸𝑛  (Euclidean 𝑛-dimensional space) and 

𝑇: 𝐶 → 𝐶 a continuous function. Then 𝑇 has a fixed point in 𝐶 or 𝑇𝑥 =  𝑥 has a solution.” 

In 1922 the concept of contraction type mappings in metric space was investigated by Banach [2]. 

He proved an interesting result in metric space, using the condition of contraction mapping. This 

result is known as the Banach contraction principle which states that “Every contraction mapping 

of a complete metric space into itself has a unique fixed point”.  

Banach contraction principle has many fruitful applications but it has one serious drawback that 

it requires the continuity of the function throughout the space. Avoiding this drawback Kannan 

[10] proved the modified result in fixed point theory. He proved that “let 𝑇 be a self-mapping of 

complete metric space X satisfying the following inequality 𝑑( 𝑇𝑥, 𝑇𝑦)  ≤  𝑘 [𝑑 (𝑥, 𝑇𝑥)  +

 𝑑 (𝑦, 𝑇𝑦)] for all 𝑥, 𝑦 ∈ 𝑋, 0 <  𝑘 <   1/2, then 𝑇 has a unique fixed point”. 

Jungck [6] proved a common fixed point theorem for commuting maps generalizing the 

Banach’s fixed point theorem. Banach fixed point theorem has many applications but suffers 

from one drawback, the definition requires continuity of the function. There then follows a flood 

of papers involving contractive definitions that do not require the continuity of the function. This 

result was further generalized and extended in various ways by many authors.  
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In 1982, Sessa [15] generalized the result of Jungck [6] and introduced the concept of 

weakly commuting mappings in metric space and proved that the two commuting mappings also 

commute weakly, but two weakly commuting mappings are not necessarily commuting. 

In 1986 , Jungck [7] , introduced the concept of compatible mappings which is the 

generalization of commuting mappings. After this result, Jungck et al. [8], generalized his own 

result and proved some common fixed point theorem under the condition of compatible 

mappings of type (𝐴). Jungck and Rhoades [9] introduced the concept of weakly compatible 

mappings and proved fixed point theorems for set-valued mappings without continuity. 

Many mathematicians have studied in great detail fixed point theorems for compatible mappings, 

compatible mappings of type(𝐴), weak compatible mappings, and weak compatible mappings of 

type (𝐴). 

The purpose and objective of this paper is to give a new concept of common 𝛼-fixed point, 

𝛼 -compatible mappings, weakly 𝛼 -compatible mappings, 𝛼 -commuting mappings, weakly 

𝛼-commuting mappings, and 𝛼-continuous mappings and then proving some common 𝛼-fixed 

point theorems for these mappings under new contractive conditions and generalizing results of 

Singh and Chouhan [17] for the common 𝛼-fixed point under these concepts and 𝛼-contractive 

conditions. 

 

2. PRELIMINARIES 

Definition 2.1 ([4]): Let 𝑇: 𝑋 →  𝑋 is a function on a set 𝑋. A point 𝑥 ∈  𝑋 is called a fixed 

point of 𝑇 if 𝑇(𝑥)  =  𝑥, i.e. a point, which remains invariant under the transformation 𝑇, is 

called a fixed point and theorems concerning with the properties and existence of fixed points are 

known as fixed point theorems. 

Definition 2.2 ([6]): Two self maps 𝑓 and 𝑔 of a metric space 𝑋 are said to be commuting if 

𝑓𝑔𝑥 = 𝑔𝑓𝑥  for all 𝑥 ∈ 𝑋. 

Definition 2.3 ([15]): A pair of self maps 𝑓 and 𝑔 of a metric space (𝑋, 𝑑) is called weakly 

commuting maps if  𝑑(𝑓𝑔𝑥, 𝑔𝑓𝑥) ≤ 𝑑(𝑓𝑥, 𝑔𝑥) for all 𝑥 ∈ 𝑋. 
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Definition 2.4 ([7]):  If (𝑋, 𝑑) is a metric space,two self maps  𝑓 and 𝑔 of  𝑋 is called 

compatible maps if  lim
𝑛→∞

𝑑(𝑓𝑔𝑥𝑛, 𝑔𝑓𝑥𝑛) = 0   whenever {𝑥𝑛} is a sequence in 𝑋  such that 

lim
𝑛→∞

𝑓𝑥𝑛 = lim
𝑛→∞

𝑔𝑥𝑛 = 𝑡 for some 𝑡 ∈ 𝑋. 

Definition 2.5 ([16]): Two self maps 𝑓 and 𝑔 are called weakly compatible or coincidently 

commuting if 𝑓 and 𝑔 commute at coincidence points. 

Definition 2.6 ([8]): Two self maps 𝑆 and 𝑇 of a metric space (𝑋, 𝑑) are called compatible of 

type (𝐴)  if lim
𝑛→∞

𝑑(𝑇𝑆𝑥𝑛, 𝑆𝑆𝑥𝑛) = 0   and lim
𝑛→∞

𝑑(𝑆𝑇𝑥𝑛, 𝑇𝑇𝑥𝑛) = 0   whenever {𝑥𝑛}  is a 

sequence in 𝑋 such that lim
𝑛→∞

𝑆𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 = 𝑡 for some 𝑡 ∈ 𝑋. 

Definition 2.7 ([2]):Let 𝑋 be a non-empty set. A function 𝑑: 𝑋 × 𝑋 → 𝑅 is said to be metric on 

𝑋 if it satisfies the followings: 

(𝑖) 𝑑(𝑥, 𝑦) ≥ 0, for all 𝑥, 𝑦 ∈ 𝑋 

(𝑖𝑖) 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦  for all 𝑥, 𝑦 ∈ 𝑋 

(𝑖𝑖𝑖) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),  for all 𝑥, 𝑦 ∈ 𝑋 

(𝑖𝑣) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧)  for all 𝑥, 𝑦, 𝑧 ∈ 𝑋  

The ordered pair (𝑋, 𝑑) is called a metric space. 

A map 𝑑: 𝑅𝑛 × 𝑅𝑛 → 𝑅 defined by 𝑑(𝑥, 𝑦) = |𝑥𝑖 − 𝑦𝑖| where 𝑥 = {𝑥𝑖}𝑖=1
∞  and 𝑦 = {𝑦𝑖}𝑖=1

∞  

is a metric on 𝑅𝑛,(𝑅𝑛, 𝑑) is called Euclidean metric space. 

Definition 2.8 ([2]): A sequence {𝑥𝑛} in a metric space (𝑋, 𝑑) is said to converge to a point, if 

for 𝜀 > 0 there exists 𝑛0 ∈ 𝑁 such that 𝑑(𝑥𝑛, 𝑥) < 𝜀 for all 𝑛 ≥ 𝑛0. 

(or) symbolically we write lim
𝑛→∞

𝑥𝑛 = 𝑥. 

Definition 2.9 ([2]): Let  {𝑥𝑛} be a sequence in a metric space (𝑋, 𝑑). Then {𝑥𝑛} is called a 

Cauchy sequence if for given any 𝜀 > 0  there exists 𝑛0 ∈ 𝑁  such that 𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝜀,  

𝑚, 𝑛 ≥ 𝑛0. 

Definition 2.10 ([2]): A metric space (𝑋, 𝑑) is said to be complete if every Cauchy sequence in 

(𝑋, 𝑑) is convergent in (𝑋, 𝑑). 

For all 𝑥, 𝑦 ∈ 𝑅, let 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|.Then the metric space (𝑅, 𝑑) is complete. 
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Definition 2.11 ([2]): A mapping 𝑇 from a metric space (𝑋, 𝑑) into itself is called contraction 

if  𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ 𝑘 < 1. 

 Now, we give the notion of common 𝛼 -fixed point, 𝛼 -compatible mappings, weakly 

𝛼 -compatible mappings, 𝛼 -commuting mappings, weakly 𝛼 -commuting mappings and 

𝛼-continuous mappings under the followings. 

Definition 2.12: A point 𝑧 ∈ 𝑋 is said to be 𝑎𝑛 𝛼-fixed point of a map 𝑇: 𝑋 → 𝑋 if (𝛼𝑜𝑇)𝑧 = 𝑧. 

Remark 2.13: A fixed point is not necessarily 𝛼 -fixed point and the 𝛼 -fixed point is not 

necessarily a fixed point If 𝛼 = 1, the identity map, the notions coincide. 

Example 2.14: Let 𝑇, 𝛼: 𝑅 → 𝑅 be defined by 𝑇(𝑥) = 𝑥 + 1  and 𝛼(𝑥) = 𝑥2 − 1. 

Two points 0 and −1 are 𝛼-fixed points but not fixed points. 

Example 2.15: Let 𝑋 = [0,1].Define map 𝑇, 𝛼: 𝑋 → 𝑋 be defined by 𝑇(𝑥) =
𝑥

2
  and 𝛼(𝑥) = 𝑥2 

(𝛼𝑜𝑇)(𝑥) = 𝛼[𝑇(𝑥)] = 𝛼(𝑥

2
) =

𝑥2

4
 . 

0 is 𝑡ℎ𝑒 𝛼-fixed point of 𝑇 which is a fixed point of 𝑇. 

Example 2.16: Let 𝑇, 𝛼: 𝑅 → 𝑅 be defined by 𝑇(𝑥) = √𝑥  and 𝛼(𝑥) =
𝑥2

2
. 0  is the 𝛼-fixed 

point of 𝑇 which is a fixed point of 𝑇. 

Definition 2.17:  A pair of self maps 𝑓 and 𝑔 of a metric space 𝑋 is said to be 𝛼-commuting if 

(𝛼𝑜𝑓) and (𝛼𝑜𝑔) are commuting. 

i.e. ((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))𝑥 = ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))𝑥 for all 𝑥 ∈ 𝑋. 

The following examples show the relation between commuting and 𝛼-commuting maps. 

Example 2.18: Let 𝑓, 𝑔, 𝛼: 𝑅 → 𝑅 be defined by 𝑓(𝑥) =  𝑥2 ,   𝑔(𝑥) = √𝑥 , and 𝛼(𝑥) = 2𝑥  

for all 𝑥 ∈ 𝑅.   

𝑓𝑔(𝑥) = 𝑓(√𝑥) = 𝑥 , 𝑔𝑓(𝑥) = 𝑔(𝑥2) = 𝑥 .Therefore 𝑓𝑔(𝑥) = 𝑔𝑓(𝑥). 

 Hence, 𝑓 and 𝑔 are commuting maps. 

Also for 𝑥 ∈ 𝑅,  (𝛼𝑜𝑓)(𝑥) = 𝛼(𝑥2) = 2𝑥2 , (𝛼𝑜𝑔)(𝑥) = 𝛼(√𝑥) = 2√𝑥 

((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) = (𝛼𝑜𝑓)(2√𝑥) = (𝛼𝑜𝑓)(2√𝑥) = 2(2√𝑥)2 = 8𝑥 
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((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) = (𝛼𝑜𝑔)(2𝑥2) = 2√2𝑥 

Therefore,((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) ≠ ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) . 

Hence, 𝑓 and 𝑔 are 𝛼-commuting maps. 

Example 2.19: Let 𝑓, 𝑔, 𝛼: ( 𝑅 − {0}) → (𝑅 − {0}) be defined by  𝑓(𝑥) =  𝑥2 ,   𝑔(𝑥) = 𝑥3 

and 𝛼(𝑥) = 1/𝑥  for all 𝑥 ∈ 𝑅.   

𝑓𝑔(𝑥) = 𝑓(𝑥3) = 𝑥6 , 𝑔𝑓(𝑥) = 𝑔(𝑥2) = 𝑥6. Therefore, 𝑓𝑔(𝑥) = 𝑔𝑓(𝑥). 

 Hence, 𝑓 and 𝑔 are commuting maps. 

 Also for 𝑥 ∈ 𝑅 − {0},  (𝛼𝑜𝑓)(𝑥) = 𝛼(𝑥2) =
1

𝑥2 , (𝛼𝑜𝑔)(𝑥) = 𝛼(𝑥3) =
1

𝑥3. 

((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) = (𝛼𝑜𝑓) (
1

𝑥3
) =

1

(
1

𝑥3)2
= 𝑥6 

((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) = (𝛼𝑜𝑔) (
1

𝑥2) =
1

(
1

𝑥2)3
= 𝑥6. 

Therefore,((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) = ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) . 

Hence, 𝑓 and 𝑔 are 𝛼-commuting maps. 

Example 2.20:  Let 𝑓, 𝑔, 𝛼: 𝑅 → 𝑅 be defined by  𝑓(𝑥) =  𝑥2 ,   𝑔(𝑥) = 2𝑥 and 𝛼(𝑥) = 𝑥/2  

for all 𝑥 ∈ 𝑅.   

𝑓𝑔(𝑥) = 𝑓(2𝑥) = 4𝑥2 , 𝑔𝑓(𝑥) = 𝑔(𝑥2) = 2𝑥2 . Therefore 𝑓𝑔(𝑥) ≠ 𝑔𝑓(𝑥). 

 Hence, 𝑓 and 𝑔 are not commuting maps. 

 Also for 𝑥 ∈ 𝑅,  (𝛼𝑜𝑓)(𝑥) = 𝛼(𝑥2) = 𝑥2/2 , (𝛼𝑜𝑔)(𝑥) = 𝛼(2𝑥) =
2𝑥

2
= 𝑥 

((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) = (𝛼𝑜𝑓)(𝑥) =  𝑥2/2 

((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) = (𝛼𝑜𝑔)(𝑥) =  𝑥2/2. 

Therefore,((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) = ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) . 

Hence, 𝑓 and 𝑔 are 𝛼-commuting maps. 

Example 2.21: Let   𝑓, 𝑔, 𝛼: (𝑅 − {0}) → (𝑅 − {0}) be defined by  𝑓(𝑥) =  𝑥2 ,   𝑔(𝑥) = 2𝑥 

and 𝛼(𝑥) = 1/𝑥  for all 𝑥 ∈ 𝑅.   
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𝑓𝑔(𝑥) = 𝑓(2𝑥) = 4𝑥2 , 𝑔𝑓(𝑥) = 𝑔(𝑥2) = 2𝑥2. Therefore, 𝑓𝑔(𝑥) ≠ 𝑔𝑓(𝑥). 

 Hence, 𝑓 and 𝑔 are not commuting maps. 

 Also for 𝑥 ∈ 𝑅 − {0},  (𝛼𝑜𝑓)(𝑥) = 𝛼(𝑥2) =
1

𝑥2 , (𝛼𝑜𝑔)(𝑥) = 𝛼(2𝑥) =
1

2𝑥
. 

((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) = (𝛼𝑜𝑓) (
1

2𝑥
) =

1

(
1

2𝑥
)2

= 4𝑥2 

((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) = (𝛼𝑜𝑔) (
1

𝑥2) =
1

2(
1

𝑥2)
=

𝑥2

2
. 

Therefore,((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) ≠ ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) . 

Hence, 𝑓 and 𝑔 are not 𝛼-commuting maps also. 

Definition 2.22:  A pair of self maps 𝑓  and 𝑔  of a metric space (𝑋, 𝑑)  is called weakly 

𝛼-commuting maps if (𝛼𝑜𝑓) and (𝛼𝑜𝑔) are weakly commuting maps. 

i.e. 𝑑(((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥), ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) ) ≤ 𝑑((𝛼𝑜𝑓)(𝑥), (𝛼𝑜𝑔)(𝑥)) for all 𝑥 ∈ 𝑋. 

Definition 2.23:  The self maps 𝑓, 𝑔 : (𝑋, 𝑑) → (𝑋, 𝑑) are called 𝛼-compatible maps if (𝛼𝑜𝑓) 

and (𝛼𝑜𝑔)  are compatible if whenever {𝑥𝑛}  is a sequence in 𝑋  such that 

(𝛼𝑜𝑓)(𝑥𝑛), (𝛼𝑜𝑔)(𝑥𝑛) → 𝑡 ∈ 𝑋, then 𝑑(((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥𝑛), ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥𝑛) ) → 0. 

Definition 2.24:  Two self maps 𝑓  and 𝑔   are called weakly 𝛼 -compatible if (𝛼𝑜𝑓)  and 

(𝛼𝑜𝑔) are weakly compatible, i.e (𝛼𝑜𝑓) and (𝛼𝑜𝑔) commute at coincidence points. 

Remark 2.25: It is clear that 𝜶-commuting maps are weakly 𝜶-commuting maps, weakly 

𝜶-commuting maps are 𝛼-compatible maps and 𝛼-compatible maps are weakly 𝛼-compatible 

maps. But the converse is not true in any case. These facts are elaborated in the following example: 

Example 2.26:  Let 𝑓, 𝑔, 𝛼: ( 𝑅 − {0}) → (𝑅 − {0}) be defined by  𝑓(𝑥) =  𝑥3,   𝑔(𝑥) = 𝑥2, 

and 𝛼(𝑥) = 1/𝑥  for all  𝑥 ∈ 𝑅.   

Also for 𝑥 ∈ 𝑅 − {0},  (𝛼𝑜𝑓)(𝑥) = 𝛼(𝑥3) =
1

𝑥3 , (𝛼𝑜𝑔)(𝑥) = 𝛼(𝑥2) =
1

𝑥2. 

((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) = (𝛼𝑜𝑓) (
1

𝑥2
) =

1

(
1

𝑥2
)3

= 𝑥6 

((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) = (𝛼𝑜𝑔) (
1

𝑥3) =
1

(
1

𝑥3)
2 = 𝑥6. 
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Therefore,((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥) = ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) . 

Hence, 𝑓 and 𝑔 are   𝛼-commuting maps. Also for  𝑥 ∈ 𝑅 − {0} 

𝑑(((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥), ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) ) = |𝑥6 − 𝑥6| = 0 

𝑑((𝛼𝑜𝑓)(𝑥), (𝛼𝑜𝑔)(𝑥)) = |
1

𝑥3
−

1

𝑥2
| = |

1 − 𝑥

𝑥3
| 

𝑑(((𝛼𝑜𝑓)𝑜(𝛼𝑜𝑔))(𝑥), ((𝛼𝑜𝑔)𝑜(𝛼𝑜𝑓))(𝑥) )  = 0 

≤ |
1 − 𝑥

𝑥3
| 

= 𝑑((𝛼𝑜𝑓)(𝑥), (𝛼𝑜𝑔)(𝑥)) 

Hence, 𝑓 and 𝑔 are weakly   𝛼-commuting maps. 

(𝛼𝑜𝑓)(𝑥𝑛) =
1

𝑥𝑛
3 , (𝛼𝑜𝑔)(𝑥𝑛) =

1

𝑥𝑛
2. 

𝑑((𝛼𝑜𝑓)(𝑥𝑛), (𝛼𝑜𝑔)(𝑥𝑛)) = |
1

𝑥𝑛
3 −

1

𝑥𝑛
2| → 0 as 𝑥𝑛 → 1. 

Hence,𝑓 and 𝑔 are 𝛼-compatible maps. 

Definition 2.27:  The mapping  𝑇: (𝑋, 𝑑) → (𝑋, 𝑑) is said to be 𝛼 -continuous if (𝛼𝑜𝑇)  is 

continuous. In other words for every 𝜀 ≥ 0, ∀𝛿 > 0 such that 

𝑑(𝑥, 𝑦) ≤ 𝛿 ⇒ 𝑑((𝛼𝑜𝑇)𝑥, (𝛼𝑜𝑇)𝑦) ≤ 𝜀. 

 

3. MAIN RESULTS 

In the present section, we prove four common 𝛼-fixed point theorems. Out of which the first two 

common 𝛼-fixed point theorems (3.1 and 3.2) have been proved by taking a new contraction 

inequality and the rest two common 𝛼-fixed point theorems generalized the theorem of Singh and 

Chouhan [17]. An example has also been given in support of our theorem. 

Theorem 3.1. Let 𝛼, 𝑆 and 𝑇 be self-mappings of a complete metric space (𝑋, 𝑑) satisfying: 

(𝐼)   𝑑((𝛼𝑜𝑆)𝑥, (𝛼𝑜𝑇)𝑦) ≤ 𝑎
[𝑑(𝑥,(𝛼𝑜𝑆)𝑥]2+[𝑑(𝑥,(𝛼𝑜𝑇)𝑦]2

𝑑(𝑥,(𝛼𝑜𝑆)𝑥)+𝑑(𝑥,(𝛼𝑜𝑇)𝑦)
+ 𝑏𝑑(𝑥, 𝑦)   , where  𝑑(𝑥, (𝛼𝑜𝑆)𝑥) +

𝑑(𝑥, (𝛼𝑜𝑇)𝑦) ≠ 0  for all 𝑥, 𝑦 in 𝑋 and 0 ≤ 3𝑎 + 𝑏, 0 ≤ 𝑎, 𝑏. Then 𝑆 and 𝑇 have a unique 

common 𝛼-fixed point. 
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Proof. Let 𝑥0 be any arbitrary point in X. We define a sequence {𝑥𝑛} in 𝑋 such that 

𝑥𝑛 = (𝛼𝑜𝑆)𝑥𝑛−1 and 𝑥𝑛+1 = (𝛼𝑜𝑇)𝑥𝑛 for 𝑛 = 1,2,3, …  

Then 𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑((𝛼𝑜𝑆)𝑥𝑛−1, (𝛼𝑜𝑇)𝑥𝑛) 

≤ 𝑎
[𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1]2 + [𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑥𝑛]2

𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1) + 𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑥𝑛)
+ 𝑏𝑑(𝑥𝑛−1, 𝑥𝑛) 

= 𝑎
[𝑑(𝑥𝑛−1, 𝑥𝑛)]2 + [𝑑(𝑥𝑛−1, 𝑥𝑛+1)]2

𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛−1, 𝑥𝑛+1)
+ 𝑏𝑑(𝑥𝑛−1, 𝑥𝑛) 

≤ 𝑎
[𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛−1, 𝑥𝑛+1)]2

𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛−1, 𝑥𝑛+1)
+ 𝑏𝑑(𝑥𝑛−1, 𝑥𝑛) 

≤ 𝑎[𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛−1, 𝑥𝑛+1)] + 𝑏𝑑(𝑥𝑛−1, 𝑥𝑛) 

≤ 𝑎𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑎𝑑(𝑥𝑛−1, 𝑥𝑛+1) + 𝑏𝑑(𝑥𝑛−1, 𝑥𝑛) 

 ≤ (𝑎 + 𝑏)𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑎[𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥𝑛+1)] 

𝑑(𝑥𝑛, 𝑥𝑛+1) ≤
2𝑎 + 𝑏

1 − 𝑎
𝑑(𝑥𝑛−1, 𝑥𝑛) 

𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ 𝛽𝑑(𝑥𝑛−1, 𝑥𝑛) , where 𝛽 =
2𝑎+𝑏

1−𝑎
< 1. 

Similarly, 𝑑(𝑥𝑛−1, 𝑥𝑛) ≤ 𝛽𝑑(𝑥𝑛−2, 𝑥𝑛−1) and so on. 

Hence, 𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ 𝛽𝑛𝑑(𝑥0, 𝑥1) → 0 as 𝑛 → ∞,  since 0 < 𝛽 < 1. 

This proves that {𝑥𝑛} is a Cauchy sequence in 𝑋 which is complete so it converges to a point 𝑧 

in 𝑋. 

Now, 𝑑(𝑧, (𝛼𝑜𝑇)𝑧) ≤ 𝑑(𝑧, 𝑥𝑛) + 𝑑(𝑥𝑛, (𝛼𝑜𝑇)𝑧) 

≤ 𝑑(𝑧, 𝑥𝑛) + 𝑑((𝛼𝑜𝑆)𝑥𝑛−1, (𝛼𝑜𝑇)𝑧) 

≤ 𝑑(𝑧, 𝑥𝑛) + 𝑎
[𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1)]2 + [𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑧)]2

𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1) + 𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑧)
+ 𝑏𝑑(𝑥𝑛−1, 𝑧) 

≤ 𝑑(𝑧, 𝑥𝑛) + 𝑎
[𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1) + 𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑧)]2

𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1) + 𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑧)
+ 𝑏𝑑(𝑥𝑛−1, 𝑧) 

= 𝑑(𝑧, 𝑥𝑛) + 𝑎[𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1) + 𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑧)] + 𝑏𝑑(𝑥𝑛−1, 𝑧) 

= 𝑑(𝑧, 𝑥𝑛) + 𝑎𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑎𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑧)] + 𝑏𝑑(𝑥𝑛−1, 𝑧) 

Taking limit as 𝑛 → ∞,  

𝑑(𝑧, (𝛼𝑜𝑇)𝑧) ≤ 𝑎𝑑(𝑧, (𝛼𝑜𝑇)𝑧) 

(1 − 𝑎)𝑑(𝑧, (𝛼𝑜𝑇)𝑧) ≤ 0 as 𝑛 → ∞ 

Which is a contradiction.Hence, 𝑑(𝑧, (𝛼𝑜𝑇)𝑧) = 0. 



96 

SHIVRAM SHARMA, PRAVEEN KUMAR SHARMA 

This implies that (𝛼𝑜𝑇)𝑧 = 𝑧 i.e., 𝑧 is the 𝛼-fixed point of 𝑇. 

Now, 𝑑(𝑧, (𝛼𝑜𝑆)𝑧) ≤ 𝑑(𝑧, 𝑥𝑛) + 𝑑(𝑥𝑛, (𝛼𝑜𝑆)𝑧) 

≤ 𝑑(𝑧, 𝑥𝑛) + 𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑇)𝑥𝑛−1) 

≤ 𝑑(𝑧, 𝑥𝑛) + 𝑎
[𝑑(𝑧, (𝛼𝑜𝑆)𝑧)]2 + [𝑑(𝑧, (𝛼𝑜𝑇)𝑥𝑛−1)]2

𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑥𝑛−1)
+ 𝑏𝑑(𝑧, 𝑥𝑛−1) 

≤ 𝑑(𝑧, 𝑥𝑛) + 𝑎
[𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑥𝑛−1)]2

𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑥𝑛−1)
+ 𝑏𝑑(𝑧, 𝑥𝑛−1) 

= 𝑑(𝑧, 𝑥𝑛) + 𝑎[𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑥𝑛−1)] + 𝑏𝑑(𝑧, 𝑥𝑛−1) 

= 𝑑(𝑧, 𝑥𝑛) + 𝑎𝑑(𝑧, 𝑥𝑛) + 𝑎𝑑(𝑧, (𝛼𝑜𝑆)𝑧)] + 𝑏𝑑(𝑧, 𝑥𝑛−1) 

Taking limit as 𝑛 → ∞,  

𝑑(𝑧, (𝛼𝑜𝑆)𝑧) ≤ 𝑎𝑑(𝑧, (𝛼𝑜𝑆)𝑧) 

Which is a contradiction. Hence, 𝑑(𝑧, (𝛼𝑜𝑆)𝑧) = 0. 

This implies that (𝛼𝑜𝑆)𝑧 = 𝑧 i.e., 𝑧 is the 𝛼-fixed point of  𝑆. 

Consequently, 𝑧 is the common 𝛼-fixed point of 𝑆 and   𝑇.  

Now for the uniqueness of 𝑧, let 𝑧1 be another common 𝛼-fixed point of 𝑆 and 𝑇. 

Then 𝑑(𝑧, 𝑧1) = 𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑇)𝑧1) 

≤ 𝑎
[𝑑(𝑧, (𝛼𝑜𝑆)𝑧)]2 + [𝑑(𝑧, (𝛼𝑜𝑇)𝑧1)]2

𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑧1)
+ 𝑏𝑑(𝑧, 𝑧1) 

≤ 𝑎
[𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑧1)]2

𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑧1)
+ 𝑏𝑑(𝑧, 𝑧1) 

= 𝑎[𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑧1)] + 𝑏𝑑(𝑧, 𝑧1) 

= 𝑎𝑑(𝑧, 𝑧) + 𝑎𝑑(𝑧, 𝑧1)] + 𝑏𝑑(𝑧, 𝑧1) 

(1 − 𝑎 − 𝑏)𝑑(𝑧, 𝑧1) ≤ 0 

This implies that 𝑑(𝑧, 𝑧1) ≤ 0  

Which is a contradiction, so  𝑑(𝑧, 𝑧1) = 0 ⇔ 𝑧 = 𝑧1. 

This completes the proof. 

Theorem 3.2: Let 𝛼, 𝑆 and 𝑇 be self-mappings of a complete metric space (𝑋, 𝑑) satisfying: 

(𝐼)   𝑑((𝛼𝑜𝑆)𝑥, (𝛼𝑜𝑇)𝑦) ≤ 𝑎
[𝑑(𝑥,(𝛼𝑜𝑆)𝑥]2+[𝑑(𝑦,(𝛼𝑜𝑇)𝑦]2

𝑑(𝑥,(𝛼𝑜𝑆)𝑥)+𝑑(𝑥,(𝛼𝑜𝑇)𝑦)+𝑏𝑑(𝑥,𝑦)
  , where  𝑑(𝑥, (𝛼𝑜𝑆)𝑥) +

𝑑(𝑥, (𝛼𝑜𝑇)𝑦) ≠ 0  for all 𝑥, 𝑦 in 𝑋 and 2𝑎 < 𝑏, 0 ≤ 𝑎, 𝑏 < 1. Then 𝑆 and 𝑇 have a unique 

common 𝛼-fixed point. 
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Proof. Let 𝑥0 be any arbitrary point in X. We define a sequence {𝑥𝑛} in 𝑋 such that 

𝑥𝑛 = (𝛼𝑜𝑆)𝑥𝑛−1 and 𝑥𝑛+1 = (𝛼𝑜𝑇)𝑥𝑛 for 𝑛 = 1,2,3, …  

Then 𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑((𝛼𝑜𝑆)𝑥𝑛−1, (𝛼𝑜𝑇)𝑥𝑛) 

≤ 𝑎
[𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1]2 + [𝑑(𝑥𝑛, (𝛼𝑜𝑇)𝑥𝑛]2

𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1) + 𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑥𝑛 + 𝑏𝑑(𝑥𝑛−1, 𝑥𝑛)
 

= 𝑎
[𝑑(𝑥𝑛−1, 𝑥𝑛)]2 + [𝑑(𝑥𝑛, 𝑥𝑛+1)]2

𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛−1, 𝑥𝑛+1) + 𝑏𝑑(𝑥𝑛−1, 𝑥𝑛)
 

≤ 𝑎
[𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥𝑛+1)]2

𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛−1, 𝑥𝑛+1) + 𝑏𝑑(𝑥𝑛−1, 𝑥𝑛)
 

≤ 𝑎
[𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥𝑛+1)]2

𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑏𝑑(𝑥𝑛−1, 𝑥𝑛)
 

≤ (
𝑎

𝑏
)

[𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥𝑛+1)]2

𝑑(𝑥𝑛−1, 𝑥𝑛+1) +
1

𝑏
 𝑑(𝑥𝑛, 𝑥𝑛+1)

 

≤ (
𝑎

𝑏
)

[𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥𝑛+1)]2

𝑑(𝑥𝑛−1, 𝑥𝑛) +  𝑑(𝑥𝑛, 𝑥𝑛+1)
 

≤ (
𝑎

𝑏
)[𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥𝑛+1)] 

(1 −
𝑎

𝑏
)𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ (

𝑎

𝑏
)𝑑(𝑥𝑛−1, 𝑥𝑛) 

𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ (
𝑎

𝑏 − 𝑎
)𝑑(𝑥𝑛−1, 𝑥𝑛) 

𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ 𝛽𝑑(𝑥𝑛−1, 𝑥𝑛)  where 𝛽 = (
𝑎

𝑏−𝑎
) < 1. 

Similarly 𝑑(𝑥𝑛−1, 𝑥𝑛) ≤ 𝛽𝑑(𝑥𝑛−2, 𝑥𝑛−1) and so on.   

Hence, 𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ 𝛽𝑛𝑑(𝑥0, 𝑥1) → 0 as 𝑛 → ∞, since 0 < 𝛽 < 1. 

This proves that {𝑥𝑛} is a Cauchy sequence in 𝑋 which is complete so it converges to a point 𝑧 

in 𝑋. 

Now, 𝑑(𝑧, (𝛼𝑜𝑇)𝑧) ≤ 𝑑(𝑧, 𝑥𝑛) + 𝑑(𝑥𝑛, (𝛼𝑜𝑇)𝑧) 

≤ 𝑑(𝑧, 𝑥𝑛) + 𝑑((𝛼𝑜𝑆)𝑥𝑛−1, (𝛼𝑜𝑇)𝑧) 

≤ 𝑑(𝑧, 𝑥𝑛) + 𝑎
[𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1)]2 + [𝑑(𝑧, (𝛼𝑜𝑇)𝑧)]2

𝑑(𝑥𝑛−1, (𝛼𝑜𝑆)𝑥𝑛−1) + 𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑧) + 𝑏𝑑(𝑥𝑛−1, 𝑧)
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≤ 𝑑(𝑧, 𝑥𝑛) + 𝑎
[𝑑(𝑥𝑛−1, 𝑥𝑛)]2 + [𝑑(𝑧, (𝛼𝑜𝑇)𝑧)]2

𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛−1, (𝛼𝑜𝑇)𝑧) + 𝑏𝑑(𝑥𝑛−1, 𝑧)
 

→ 𝑎
[𝑑(𝑧,(𝛼𝑜𝑇)𝑧)]2

𝑑(𝑧,(𝛼𝑜𝑇)𝑧)
 as 𝑛 → ∞ 

i.e. 𝑑(𝑧, (𝛼𝑜𝑇)𝑧) ≤ 𝑎𝑑(𝑧, (𝛼𝑜𝑇)𝑧) 

(1 − 𝑎)𝑑(𝑧, (𝛼𝑜𝑇)𝑧) ≤ 0 

𝑑(𝑧, (𝛼𝑜𝑇)𝑧) ≤ 0 

Which is a contradiction so 𝑑(𝑧, (𝛼𝑜𝑇)𝑧) = 0. 

This implies that (𝛼𝑜𝑇)𝑧 = 𝑧 i.e., 𝑧 is the 𝛼-fixed point of 𝑇. 

Now, 𝑑(𝑧, (𝛼𝑜𝑆)𝑧) ≤ 𝑑(𝑧, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, (𝛼𝑜𝑆)𝑧) 

≤ 𝑑(𝑧, 𝑥𝑛+1) + 𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑇)𝑥𝑛) 

≤ 𝑑(𝑧, 𝑥𝑛+1) + 𝑎
[𝑑(𝑧, (𝛼𝑜𝑆)𝑧)]2 + [𝑑(𝑥𝑛, (𝛼𝑜𝑇)𝑥𝑛)]2

𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑥𝑛) + 𝑏𝑑(𝑧, 𝑥𝑛)
 

≤ 𝑑(𝑧, 𝑥𝑛+1) + 𝑎
[𝑑(𝑥𝑛, 𝑥𝑛+1)]2 + [𝑑(𝑧, (𝛼𝑜𝑆)𝑧)]2

𝑑(𝑧, 𝑥𝑛+1) + 𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑏𝑑(𝑧, 𝑥𝑛)
 

→ 𝑎𝑑(𝑧, (𝛼𝑜𝑆)𝑧) as 𝑛 → ∞ 

(1 − 𝑎)𝑑(𝑧, (𝛼𝑜𝑆)𝑧) ≤ 0 

Which is a contradiction so  𝑑(𝑧, (𝛼𝑜𝑆)𝑧) = 0. 

This implies that (𝛼𝑜𝑆)𝑧 = 𝑧 i.e., 𝑧 is the 𝛼-fixed point of 𝑆. 

Consequently, 𝑧 is the common 𝛼-fixed point of 𝑆 and   𝑇.  

Now for the uniqueness of z, let 𝑧1 be another common 𝛼-fixed point of 𝑆 and 𝑇. 

Then 𝑑(𝑧, 𝑧1) = 𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑇)𝑧1) 

≤ 𝑎
[𝑑(𝑧, (𝛼𝑜𝑆)𝑧)]2 + [𝑑(𝑧, (𝛼𝑜𝑇)𝑧1)]2

𝑑(𝑧, (𝛼𝑜𝑆)𝑧) + 𝑑(𝑧, (𝛼𝑜𝑇)𝑧1) + 𝑏𝑑(𝑧, 𝑧1)
 

≤ 𝑎
[𝑑(𝑧, 𝑧)]2 + 𝑑(𝑧1, 𝑧1)]2

𝑑(𝑧, 𝑧) + 𝑑(𝑧, 𝑧1) + 𝑏𝑑(𝑧, 𝑧1)
 

𝑑(𝑧, 𝑧1) ≤ 0 

Which is a contradiction, so 𝑑(𝑧, 𝑧1) = 0 .This implies that 𝑧 = 𝑧1. 
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This completes the proof. 

Lemma 𝒍𝟏([17]): Let 𝐴 and 𝐵 be compatible maps from a metric space (𝑋, 𝑑) into itself such 

that 𝑙𝑖𝑚𝑛→∞(𝐴)𝑥𝑛 = 𝑙𝑖𝑚𝑛→∞(𝐵)𝑥𝑛 = 𝑡, for some 𝑡 ∈ 𝑋. 

Then 𝑙𝑖𝑚𝑛→∞(𝐵𝐴)𝑥𝑛 = (𝐴)𝑡 = 𝑡, if 𝐴 is continuous. 

Lemma  𝒍𝟐 ([17]):  Let   𝐴, 𝐵, 𝑆, and 𝑇   be a mapping  from a metric space (𝑋, 𝑑) into 

itself satisfying the following conditions: 

(1) 𝐴(𝑋) ⊆ 𝑇(𝑋) and 𝐵(𝑋) ⊆ 𝑆(𝑋) 

(2)  [𝑑(𝐴𝑥, 𝐵𝑦)]2 ≤ 𝑘1[𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑇𝑦) + 𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦)] +

𝑘2[𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑇𝑦) + 𝑑(𝐵𝑦, 𝑇𝑦)𝑑(𝐵𝑦, 𝑆𝑥)] 

Where 0 ≤ 𝑘1 + 2𝑘2 < 1; 𝑘1, 𝑘2 ≥ 0. 

(3) Let 𝑥0 ∈ 𝑋 then by (1) there exists  𝑥1 ∈ 𝑋 such that  𝑇𝑥1 = 𝐴𝑥0 and for 𝑥1 there exists 

𝑥2 ∈ 𝑋 such that 𝑆𝑥2 = 𝐵𝑥1 and so on .Continuing this process we can define a sequence {𝑦𝑛} 

in 𝑋 such that 𝑦2𝑛+1 = 𝑇𝑥2𝑛+1 = 𝐴𝑥2𝑛 and 𝑦2𝑛 = 𝑆𝑥2𝑛 = 𝐵𝑥2𝑛−1, then the sequence {𝑦𝑛} is 

Cauchy sequence in 𝑋. 

 

By applying the concept of lemmas 𝑙1 and 𝑙2 Singh and Chouhan [17] proved two theorems (A 

and B) under as follows: 

Theorem –A ([17]): Let   𝐴, 𝐵, 𝑆, and 𝑇   be self  maps of a complete metric space (𝑋, 𝑑) 

satisfying  conditions (1),(2) and (3) of lemma (𝑙2) and  

(4) One of 𝐴, 𝐵, 𝑆, or 𝑇 is continuous. 

(5) (𝐴, 𝑆) and (𝐵, 𝑇) are compatible on 𝑋. 

Then 𝐴, 𝐵, S, and 𝑇 have a unique common fixed point. 

Theorem –B ([17]): Let   𝐴 , 𝐵, 𝑆, and 𝑇   be self -maps  of  a complete metric space (𝑋, 𝑑) 

with: 𝐴𝑆 = 𝑆𝐴; 𝑇𝐵 = 𝐵𝑇, satisfying the condition (4) of theorem (A)  and there exists positive 

integers 𝑎, 𝑏, 𝑠 and 𝑡 such that 

(6) 𝐴𝑎(𝑋) ⊆ 𝑇𝑡(𝑋) and 𝐵𝑏(𝑋) ⊆ 𝑆𝑠(𝑋) 

(7)  [𝑑(𝐴𝑎𝑥, 𝐵𝑏𝑦)]2 ≤ 𝑘1[𝑑(𝐴𝑎𝑥, 𝑆𝑠𝑥)𝑑(𝐵𝑏𝑦, 𝑇𝑡𝑦) + 𝑑(𝐵𝑏𝑦, 𝑆𝑠𝑥)𝑑(𝐴𝑎𝑥, 𝑇𝑡𝑦)] +
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                                            𝑘2[𝑑(𝐴𝑎𝑥, 𝑆𝑠𝑥)𝑑(𝐴𝑎𝑥, 𝑇𝑡𝑦) + 𝑑(𝐵𝑏𝑦, 𝑇𝑡𝑦)𝑑(𝐵𝑏𝑦, 𝑆𝑠𝑥)] 

For all 𝑥, 𝑦 in 𝑋; Where 0 ≤ 𝑘1, 𝑘2 < 1. 

Then 𝐴, 𝐵, S, and 𝑇 have a unique common fixed point in 𝑋. 

Now under this section, we generalize above lemmas ( 𝑙1 & 𝑙2 ) and theorems (A & B).  

We generalize lemma 𝑙1 under as follows: 

Lemma 3.3: Let 𝐴 and 𝐵 be 𝛼-compatible maps from a metric space (𝑋, 𝑑) into itself such that 

𝑙𝑖𝑚𝑛→∞(𝛼𝑜𝐴)𝑥𝑛 = 𝑙𝑖𝑚𝑛→∞(𝛼𝑜𝐵)𝑥𝑛 = 𝑡, for some 𝑡 ∈ 𝑋. 

Then   𝑙𝑖𝑚𝑛→∞((𝛼𝑜𝐵)𝑜(𝛼𝑜𝐴))𝑥𝑛 = (𝛼𝑜𝐴)𝑡 = 𝑡, if 𝐴 is 𝛼-continuous. 

Proof.  𝑑((𝛼𝑜𝐵)𝑜(𝛼𝑜𝐴))𝑥𝑛, (𝛼𝑜𝐴)𝑡) ≤ 𝑑((𝛼𝑜𝐵)𝑜(𝛼𝑜𝐴))𝑥𝑛, (𝛼𝑜𝐴)𝑜(𝛼𝑜𝐵))𝑥𝑛) +

                                                                            𝑑((𝛼𝑜𝐴)𝑜(𝛼𝑜𝐵))𝑥𝑛, (𝛼𝑜𝐴)𝑡) 

Letting  𝑛 → ∞ , we have   𝑙𝑖𝑚𝑛→∞((𝛼𝑜𝐵)𝑜(𝛼𝑜𝐴))𝑥𝑛 = (𝛼𝑜𝐴)𝑡. 

Here, we generalize lemma 𝑙2 under as follows: 

Lemma 3.4: Let 𝛼, 𝐴, 𝐵, 𝑆, and 𝑇   be a mapping  from a metric space (𝑋, 𝑑) into itself 

satisfying the following conditions: 

(1) (𝛼𝑜𝐴)(𝑋) ⊆ (𝛼𝑜𝑇)(𝑋) and (𝛼𝑜𝐵)(𝑋) ⊆ (𝛼𝑜𝑆)(𝑋) 

(2)  [𝑑((𝛼𝑜𝐴)𝑥, (𝛼𝑜𝐵)𝑦)]
2

≤ 𝑘1[𝑑((𝛼𝑜𝐴)𝑥, (𝛼𝑜𝑆)𝑥)𝑑((𝛼𝑜𝐵)𝑦, (𝛼𝑜𝑇)𝑦) +

𝑑((𝛼𝑜𝐵)𝑦, (𝛼𝑜𝑆)𝑥)𝑑((𝛼𝑜𝐴)𝑥, (𝛼𝑜𝑇)𝑦)] + 𝑘2[𝑑((𝛼𝑜𝐴)𝑥, (𝛼𝑜𝑆)𝑥)𝑑((𝛼𝑜𝐴)𝑥, (𝛼𝑜𝑇)𝑦) +

𝑑((𝛼𝑜𝐵)𝑦, (𝛼𝑜𝑇)𝑦)𝑑((𝛼𝑜𝐵)𝑦, (𝛼𝑜𝑆)𝑥)] 

where 0 ≤ 𝑘1 + 2𝑘2 < 1; 𝑘1, 𝑘2 ≥ 0. 

(3) Let 𝑥0 ∈ 𝑋 then by (1) there exists  𝑥1 ∈ 𝑋 such that  (𝛼𝑜𝑇)𝑥1 = (𝛼𝑜𝐴)𝑥0  and for 𝑥1 

there exists 𝑥2 ∈ 𝑋 such that (𝛼𝑜𝑆)𝑥2 = (𝛼𝑜𝐵)𝑥1 and so on .Continuing this process we can 

define a sequence {𝑦𝑛}  in 𝑋  such that 𝑦2𝑛+1 = (𝛼𝑜𝑇)𝑥2𝑛+1 = (𝛼𝑜𝐴)𝑥2𝑛  and 𝑦2𝑛 =

(𝛼𝑜𝑆)𝑥2𝑛 = (𝛼𝑜𝐵)𝑥2𝑛−1, then the sequence {𝑦𝑛} is Cauchy sequence in 𝑋. 

Proof. By condition (2) and (3), we have 
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[𝑑(𝑦2𝑛+1, 𝑦2𝑛)]2 = [𝑑((𝛼𝑜𝐴)𝑥2𝑛, (𝛼𝑜𝐵)𝑥2𝑛−1)]
2

≤ 𝑘1[𝑑((𝛼𝑜𝐴)𝑥2𝑛, (𝛼𝑜𝑆)𝑥2𝑛)𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑇)𝑥2𝑛−1)

+ 𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑆)𝑥2𝑛)𝑑((𝛼𝑜𝐴)𝑥2𝑛, (𝛼𝑜𝑇)𝑥2𝑛−1)]

+ 𝑘2[𝑑((𝛼𝑜𝐴)𝑥2𝑛, (𝛼𝑜𝑆)𝑥2𝑛)𝑑((𝛼𝑜𝐴)𝑥2𝑛, (𝛼𝑜𝑇)𝑥2𝑛−1)

+ 𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑇)𝑥2𝑛−1)𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑆)𝑥2𝑛)] 

≤ 𝑘1[𝑑(𝑦2𝑛+1, 𝑦2𝑛)𝑑(𝑦2𝑛, 𝑦2𝑛−1)] + 𝑘2[𝑑(𝑦2𝑛+1, 𝑦2𝑛)𝑑(𝑦2𝑛+1, 𝑦2𝑛−1)] 

[𝑑(𝑦2𝑛+1, 𝑦2𝑛)]2 ≤ [𝑘1𝑑(𝑦2𝑛, 𝑦2𝑛−1) + 𝑘2𝑑(𝑦2𝑛+1, 𝑦2𝑛−1)]𝑑(𝑦2𝑛+1, 𝑦2𝑛)] 

i.e., 𝑑(𝑦2𝑛+1, 𝑦2𝑛) ≤ 𝑘1𝑑(𝑦2𝑛, 𝑦2𝑛−1) + 𝑘2𝑑(𝑦2𝑛+1, 𝑦2𝑛−1) 

≤ 𝑘1𝑑(𝑦2𝑛, 𝑦2𝑛−1) + 𝑘2[𝑑(𝑦2𝑛+1, 𝑦2𝑛) + 𝑑(𝑦2𝑛, 𝑦2𝑛−1)] 

𝑑(𝑦2𝑛+1, 𝑦2𝑛) − 𝑘2𝑑(𝑦2𝑛+1, 𝑦2𝑛) ≤ (𝑘1 + 𝑘2)𝑑(𝑦2𝑛, 𝑦2𝑛−1) 

𝑑(𝑦2𝑛+1, 𝑦2𝑛) ≤ (
𝑘1 + 𝑘2

1 − 𝑘2
) 𝑑(𝑦2𝑛, 𝑦2𝑛−1) = 𝑝 𝑑(𝑦2𝑛, 𝑦2𝑛−1) 

𝑑(𝑦2𝑛+1, 𝑦2𝑛) ≤ 𝑝 𝑑(𝑦2𝑛, 𝑦2𝑛−1)  where 𝑝 = (
𝑘1+𝑘2

1−𝑘2
) < 1. 

Similarly, 𝑑(𝑦2𝑛, 𝑦2𝑛−1) ≤ 𝑝 𝑑(𝑦2𝑛−1, 𝑦2𝑛−2) and so on. 

Hence,  𝑑(𝑦2𝑛+1, 𝑦2𝑛) ≤ 𝑝𝑛 𝑑(𝑦1, 𝑦0) → 0 as 𝑛 → ∞ since 0 < 𝑝 < 1. 

Hence {𝑦𝑛} is a Cauchy sequence.  

Now by applying the concept of lemmas 3.3 and 3.4 we give our main results as theorems 3.5 and 

3.7. 

We generalize Theorem-A under as follows: 

Theorem 3.5:  Let  𝛼 , 𝐴, 𝐵, 𝑆, and 𝑇    be self  maps of a complete metric space (𝑋, 𝑑) 

satisfying  conditions (1),(2) and (3) of lemma (3.4) and  

(4) One of 𝐴, 𝐵, 𝑆, or 𝑇 is 𝛼-continuous. 

(5) (𝐴, 𝑆) and (𝐵, 𝑇) are 𝛼-compatible on 𝑋. 

Then 𝐴, B, S, and 𝑇 have a unique common 𝛼-fixed point. 

Proof. By lemma 3.4, {𝑦𝑛} is Cauchy sequence, and since 𝑋 is complete so there exists a point 

𝑧 ∈ 𝑋  such that lim 𝑦𝑛 = 𝑧  as 𝑛 → ∞ . Consequently, the subsequences 
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(𝛼𝑜𝐴)𝑥2𝑛, (𝛼𝑜𝑆)𝑥2𝑛, (𝛼𝑜𝐵)𝑥2𝑛−1 and (𝛼𝑜𝑇)𝑥2𝑛+1 also converge to 𝑧. 

Suppose 𝑆 is 𝛼-continuous then by 𝛼-compatibility of (𝐴, 𝑆) and by Lemma 3.3, we have 

((𝛼𝑜𝑆)𝑜(𝛼𝑜𝑆))𝑥2𝑛 → (𝛼𝑜𝑆)𝑧 and ((𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆))𝑥2𝑛 → (𝛼𝑜𝑆)𝑧 as 𝑛 → ∞.  

Now by condition (2) of lemma 3.4, we have 

[𝑑(((𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆))𝑥2𝑛, (𝛼𝑜𝐵)𝑥2𝑛−1)]2

≤ 𝑘1[𝑑(((𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆))𝑥2𝑛), ((𝛼𝑜𝑆)𝑜(𝛼𝑜𝑆))𝑥2𝑛)𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑇)𝑥2𝑛−1)

+ 𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, ((𝛼𝑜𝑆)𝑜(𝛼𝑜𝑆))𝑥2𝑛)𝑑(((𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆))𝑥2𝑛, (𝛼𝑜𝑇))𝑥2𝑛−1)]

+ 𝑘2 [𝑑(((𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆))𝑥2𝑛, ((𝛼𝑜𝑆)𝑜(𝛼𝑜𝑆))𝑥2𝑛)𝑑(((𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆))𝑥2𝑛, (𝛼𝑜𝑇))𝑥2𝑛−1

+ 𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑇)𝑥2𝑛−1)𝑑 ((𝛼𝑜𝐵)𝑥2𝑛−1, ((𝛼𝑜𝑆))𝑜(𝛼𝑜𝑆)𝑥2𝑛)]. 

Letting  𝑛 → ∞, we have 

[𝑑((𝛼𝑜𝑆)𝑧, 𝑧)]2

≤ 𝑘1[𝑑((𝛼𝑜𝑆))𝑧, (𝛼𝑜𝑆)𝑧)𝑑(𝑧, 𝑧) + 𝑑(𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝑆)𝑧, 𝑧)]

+ 𝑘2[𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝑆)𝑧, 𝑧) + 𝑑(𝑧, 𝑧)𝑑(𝑧, (𝛼𝑜𝑆)𝑧)] 

i.e., [𝑑((𝛼𝑜𝑆)𝑧, 𝑧)]2 ≤ 𝑘1[𝑑((𝛼𝑜𝑆)𝑧, 𝑧)]
2
 

Which is a contradiction. Hence, 𝑑((𝛼𝑜𝑆)𝑧, 𝑧) = 0. So 𝑧 is 𝛼-fixed point of 𝑆. 

Now,  [𝑑((𝛼𝑜𝐴), (𝛼𝑜𝐵)𝑥2𝑛−1)]
2

≤ 𝑘1[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑇)𝑥2𝑛−1) +

𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑇)𝑥2𝑛−1)] +

𝑘2[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑇)𝑥2𝑛−1) +

𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑇)𝑥2𝑛−1)𝑑((𝛼𝑜𝐵)𝑥2𝑛−1, (𝛼𝑜𝑆)𝑧)] 

Letting 𝑛 → ∞, we have 

[𝑑((𝛼𝑜𝐴)𝑧, 𝑧)]2 ≤ 𝑘2 𝑑((𝛼𝑜𝐴)𝑧, 𝑧)𝑑((𝛼𝑜𝐴)𝑧, 𝑧) 

[𝑑((𝛼𝑜𝐴)𝑧, 𝑧)]2 ≤ 𝑘1[𝑑((𝛼𝑜𝐴)𝑧, 𝑧)]
2
. 

Hence (𝛼𝑜𝐴)𝑧 = 𝑧. 
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Now since  (𝛼𝑜𝐴)𝑧 = 𝑧, by condition (1)  𝑧 ∈ (𝛼𝑜𝑇)(𝑋) so there exists a point 𝑢 ∈ 𝑋 such 

that 𝑧 = (𝛼𝑜𝐴)𝑧 = (𝛼𝑜𝑇)𝑢. 

Moreover by condition (2) we obtain  

[𝑑(𝑧, (𝛼𝑜𝐵)𝑢)]2 = [𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐵)𝑢)]2

≤ 𝑘1[𝑑((𝛼𝑜𝐴))𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐵)𝑢, (𝛼𝑜𝑇)𝑢)

+ 𝑑((𝛼𝑜𝐵)𝑢, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑇)𝑢)]

+ 𝑘2[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑇)𝑢)

+ 𝑑((𝛼𝑜𝐵)𝑢, (𝛼𝑜𝑇)𝑢)𝑑((𝛼𝑜𝐵)𝑢, (𝛼𝑜𝑆)𝑧)] 

i.e. [𝑑(𝑧, (𝛼𝑜𝐵)𝑢)]2 ≤ 𝑘2[𝑑((𝛼𝑜𝐵)𝑢, 𝑧)]
2
. 

Hence (𝛼𝑜𝐵)𝑢 = 𝑧 i.e., 𝑧 = (𝛼𝑜𝑇)𝑢 = (𝛼𝑜𝐵)𝑢. 

By condition (5), we have 

𝑑((𝛼𝑜𝑇)𝑜(𝛼𝑜𝐵))𝑢, ((𝛼𝑜𝐵)𝑜(𝛼𝑜𝑇))𝑢) = 0. 

Hence 𝑑((𝛼𝑜𝑇)𝑧, (𝛼𝑜𝐵)𝑧) = 0 yields (𝛼𝑜𝑇)𝑧 = (𝛼𝑜𝐵)𝑧. 

Now using (2), we have 

[𝑑(𝑧, (𝛼𝑜𝑇)𝑧)]2 = [𝑑((𝛼𝑜𝐴))𝑧, ((𝛼𝑜𝐵)𝑧)]
2
 

≤ 𝑘1[𝑑((𝛼𝑜𝐴))𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐵)𝑧, (𝛼𝑜𝑇)𝑧) + 𝑑((𝛼𝑜𝐵)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑇)𝑧)]

+ 𝑘2[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑇)𝑧)

+ 𝑑((𝛼𝑜𝐵)𝑧, (𝛼𝑜𝑇)𝑧)𝑑((𝛼𝑜𝐵)𝑧, (𝛼𝑜𝑆)𝑧)] 

i.e. [𝑑(𝑧, (𝛼𝑜𝑇)𝑧)]2 ≤ 𝑘1[𝑑(𝑧, (𝛼𝑜𝑇)𝑧)]2. 

Which is a contradiction. Hence 𝑧 = (𝛼𝑜𝑇)𝑧  yields 𝑧 = (𝛼𝑜𝐵)𝑧 = (𝛼𝑜𝑇)𝑧. 

Therefore 𝑧 is a common 𝛼-fixed point of 𝐴, 𝐵, 𝑆, and 𝑇. 

Similarly, we can prove this when any one of 𝐴, B, or 𝑇 is 𝛼-continuous. 

Finally in order to prove the uniqueness of 𝑧, suppose 𝜔 be another common 𝛼-fixed point of 

𝐴, 𝐵, 𝑆 and 𝑇. Then we have 
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[𝑑(𝑧, 𝜔)]2 = [𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐵)𝜔)]2

≤ 𝑘1[𝑑((𝛼𝑜𝐴))𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐵)𝜔, (𝛼𝑜𝑇)𝜔)

+ 𝑑((𝛼𝑜𝐵)𝜔, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑇)𝜔)]

+ 𝑘2[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝑇)𝜔)

+ 𝑑((𝛼𝑜𝐵)𝜔, (𝛼𝑜𝑇)𝜔)𝑑((𝛼𝑜𝐵)𝜔, (𝛼𝑜𝑆)𝑧)] 

≤ 𝑘1[𝑑(𝑧, 𝑧)𝑑(𝜔, 𝜔) + 𝑑(𝜔, 𝑧)𝑑(𝑧, 𝜔)] + 𝑘2[𝑑(𝑧, 𝑧)𝑑(𝑧, 𝜔) + 𝑑(𝜔, 𝜔)𝑑(𝜔, 𝑧)] 

i.e., [𝑑(𝑧, 𝜔)]2 ≤ 𝑘1[𝑑(𝑧, 𝜔)]2. Hence 𝑑(𝑧, 𝜔) = 0 ⇔ 𝑧 = 𝜔 

This completes the proof. 

Example 3.6:  Let 𝑋 = [0,1] , 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|.Define maps 𝛼, 𝐴, 𝐵, 𝑆, 𝑇: 𝑋 → 𝑋  such that 

𝛼(𝑥) = 𝑥2, 𝐴(𝑥) = 0, 𝑇(𝑥) = √
𝑥

2
 , 𝐵(𝑥) = √

𝑥

8
, 𝑆(𝑥) = √𝑥, 

(𝛼𝑜𝐴)(𝑥) = 0, (𝛼𝑜𝑇)(𝑥) =
𝑥

2
, (𝛼𝑜𝐵)(𝑥) =

𝑥

8
 , (𝛼𝑜𝑆)(𝑥) = 𝑥.  

Here, (𝛼𝑜𝐴)(𝑋) ⊆ (𝛼𝑜𝑇)(𝑋), (𝛼𝑜𝐵)(𝑋) ⊆ (𝛼𝑜𝑆)(𝑋). 

(𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆)(𝑥) = (𝛼𝑜𝐴)(𝑥) = 0 and (𝛼𝑜𝑆)𝑜(𝛼𝑜𝐴)(𝑥) = 0 

𝑑((𝛼𝑜𝐴)𝑥𝑛, (𝛼𝑜𝑆)𝑥𝑛) = 𝑑(0, 𝑥𝑛) = |0 − 𝑥𝑛| → 0 as  𝑥𝑛 → 0 

𝑑 (((𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆))𝑥𝑛, ((𝛼𝑜𝑆)𝑜(𝛼𝑜𝐴)𝑥𝑛) = 0  as  𝑥𝑛 → 0. 

Hence, 𝐴, 𝑆 are 𝛼-compatible maps. Similarly 𝐵, 𝑇 are 𝛼-compatible maps. 

𝑑((𝛼𝑜𝐵)𝑥𝑛, (𝛼𝑜𝑇)𝑥𝑛) = |𝑥𝑛/8 − 𝑥𝑛/2| = |−6𝑥𝑛/16| → 0 as 𝑥𝑛 → 0 

((𝛼𝑜𝐵)𝑜(𝛼𝑜𝑇))𝑥𝑛 =
(𝛼𝑜𝐵)𝑥𝑛

2
=

𝑥𝑛

2

8
=

𝑥𝑛

16
 

((𝛼𝑜𝑇)𝑜(𝛼𝑜𝐵))𝑥𝑛 =
(𝛼𝑜𝑇)𝑥𝑛

8
=

𝑥𝑛

16
 

𝑑 (((𝛼𝑜𝐵)𝑜(𝛼𝑜𝑇))𝑥𝑛, ((𝛼𝑜𝑇)𝑜(𝛼𝑜𝐵)𝑥𝑛) → 0 as 𝑥𝑛 → 0 

[𝑑((𝛼𝑜𝐴)𝑥, (𝛼𝑜𝐵)𝑦)]
2

= |0 −
𝑦

8
|

2

= |
𝑦2

64
| = |

𝑦2

32
+

𝑥𝑦

94
| ∀𝑥, 𝑦 ∈ 𝑋 

=
1

4
 [𝑑((𝛼𝑜𝐴))𝑥, (𝛼𝑜𝑆)𝑥)𝑑((𝛼𝑜𝐵)𝑦, (𝛼𝑜𝑇)𝑦) + 𝑑((𝛼𝑜𝐵)𝑦, (𝛼𝑜𝑆)𝑥)𝑑((𝛼𝑜𝐴)𝑥, (𝛼𝑜𝑇)𝑦)] +
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1

3
[𝑑((𝛼𝑜𝐴)𝑥, (𝛼𝑜𝑆)𝑥)𝑑((𝛼𝑜𝐴)𝑥, (𝛼𝑜𝑇)𝑦) + 𝑑((𝛼𝑜𝐵)𝑦, (𝛼𝑜𝑇)𝑦)𝑑((𝛼𝑜𝐵)𝑦, (𝛼𝑜𝑆)𝑦)] . 

Hence all the assumptions of Theorem 3.5 are satisfied with 𝑘1 =
1

4
, 𝑘2 =

1

3
, and 0 is a unique 

𝛼-fixed point. 

Here, we generalize Theorem-B under as follows: 

Theorem 3.7: Let 𝛼, 𝐴 , 𝐵, 𝑆, and 𝑇   be self -maps  of  a complete metric space (𝑋, 𝑑) 

with: 

(𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆) = (𝛼𝑜𝑆)𝑜(𝛼𝑜𝐴) ; (𝛼𝑜𝑇)𝑜(𝛼𝑜𝐵) = (𝛼𝑜𝐵)𝑜(𝛼𝑜𝑇), satisfying the condition (4) of 

theorem 3.5 and there exists positive integers 𝑎, 𝑏, 𝑠 and 𝑡 such that 

(6) (𝛼𝑜𝐴𝑎)(𝑋) ⊆ (𝛼𝑜𝑇𝑡)(𝑋) and (𝛼𝑜𝐵𝑏)(𝑋) ⊆ (𝛼𝑜𝑆𝑠)(𝑋) 

(7) [𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝐵𝑏)𝑦)]
2

≤ 𝑘1 [𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑆𝑠)𝑥)𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑇𝑡)𝑦)

+ 𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑆𝑠)𝑥)𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑇𝑡)𝑦)]

+ 𝑘2 [𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑆𝑠)𝑥)𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑇𝑡)𝑦)

+ 𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑇𝑡)𝑦)𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑆𝑠)𝑥)] 

for all 𝑥, 𝑦 in 𝑋; where 0 ≤ 𝑘1, 𝑘2 < 1. 

Then 𝐴, 𝐵, S, and 𝑇 have a unique common 𝛼-fixed point in 𝑋. 

Proof. Since 𝐴 and 𝐵 are 𝛼-commute with 𝑆 and 𝑇 and so 𝐴𝑎 and 𝐵𝑏 also 𝛼-commute with 

𝑆𝑠 and 𝑇𝑡 respectively. Thus by Theorem 3.5, there exists 𝑧 in 𝑋 such that, 𝑧 = (𝛼𝑜𝐴𝑎)𝑧 =

(𝛼𝑜𝐵𝑏)𝑧 = (𝛼𝑜𝑆𝑠)𝑧 = (𝛼𝑜𝑇𝑡)𝑧. 

From this we obtain 

(𝛼𝑜𝐴)𝑧 = (𝛼𝑜𝐴)𝑜(𝛼𝑜𝐴𝑎)𝑧 = (𝛼𝑜𝐴𝑎)𝑜(𝛼𝑜𝐴)𝑧  

and (𝛼𝑜𝐴)𝑧 = (𝛼𝑜𝐴)𝑜(𝛼𝑜𝑆𝑠)𝑧 = (𝛼𝑜𝑆𝑠)𝑜(𝛼𝑜𝐴)𝑧. 

Therefore (𝛼𝑜𝐴)𝑧 is a common 𝛼-fixed point of 𝐴𝑎 and 𝑆𝑠. 

Similarly, we can show that (𝛼𝑜𝐵)𝑧 is a common 𝛼-fixed point of 𝐵𝑏 and 𝑇𝑡.  

Now putting 𝑥 = (𝛼𝑜𝐴)𝑧 and 𝑦 = (𝛼𝑜𝐵)𝑧 in (7) we have, 
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[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐵)𝑧)]
2

= [𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝐵𝑏)𝑥)]
2

≤ 𝑘1 [𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑆𝑠)𝑥)𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑇𝑡)𝑦)

+ 𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑆𝑠)𝑥)𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑇𝑡)𝑦)]

+ 𝑘2 [𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑆𝑠)𝑥)𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑇𝑡)𝑦)

+ 𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑇𝑡)𝑦)𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑆𝑠)𝑥)] 

= 𝑘1[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐴)𝑧)𝑑((𝛼𝑜𝐵)𝑧, (𝛼𝑜𝐵)𝑧) + 𝑑((𝛼𝑜𝐵)𝑧, (𝛼𝑜𝐴)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐵)𝑧)]

+ 𝑘2[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐴)𝑧)𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐵)𝑧)

+ 𝑑((𝛼𝑜𝐵)𝑧, (𝛼𝑜𝐵)𝑧)𝑑((𝛼𝑜𝐵)𝑧, (𝛼𝑜𝐴)𝑧)] 

= 𝑘1[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐵)𝑧)]
2
 

i.e.,[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐵)𝑧)]
2

≤ 𝑘1[𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐵)𝑧)]
2
 

Which is a contradiction. Hence 𝑑((𝛼𝑜𝐴)𝑧, (𝛼𝑜𝐵)𝑧) = 0. So that 𝑧 is common 𝛼-fixed point of 

𝐴𝑎, 𝐵𝑏, 𝑆𝑠 and 𝑇𝑡. 

Further, we obtain               (𝛼𝑜𝑆)𝑧 = (𝛼𝑜𝑆)𝑜(𝛼𝑜𝐴𝑎)𝑧 = (𝛼𝑜𝐴𝑎)𝑜(𝛼𝑜𝑆)𝑧   

and (𝛼𝑜𝑆)𝑧 = (𝛼𝑜𝑆)𝑜(𝛼𝑜𝑆𝑠)𝑧 = (𝛼𝑜𝑆𝑠)𝑜(𝛼𝑜𝑆)𝑧. 

Therefore (𝛼𝑜𝑆)𝑧  is a common 𝛼 -fixed point of 𝐴𝑎  and 𝑆𝑠 .  Also, (𝛼𝑜𝑇)𝑧  is a common 

𝛼-fixed point of 𝐵𝑏 and 𝑇𝑡. 

Now putting 𝑥 = (𝛼𝑜𝑆)𝑧 and 𝑦 = (𝛼𝑜𝑇)𝑧 in (7) we have, 

[𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑇)𝑧)]
2

= [𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝐵𝑏)𝑥)]
2

 

≤ 𝑘1 [𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑆𝑠)𝑥)𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑇𝑡)𝑦)

+ 𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑆𝑠)𝑥)𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑇𝑡)𝑦)]

+ 𝑘2 [𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑆𝑠)𝑥)𝑑((𝛼𝑜𝐴𝑎)𝑥, (𝛼𝑜𝑇𝑡)𝑦)

+ 𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑇𝑡)𝑦)𝑑((𝛼𝑜𝐵𝑏)𝑦, (𝛼𝑜𝑆𝑠)𝑥)] 
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= 𝑘1[𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝑇)𝑧, (𝛼𝑜𝑇)𝑧) + 𝑑((𝛼𝑜𝑇)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑇)𝑧)]

+ 𝑘2[𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑆)𝑧)𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑇)𝑧)

+ 𝑑((𝛼𝑜𝑇)𝑧, (𝛼𝑜𝑇)𝑧)𝑑((𝛼𝑜𝑇)𝑧, (𝛼𝑜𝑆)𝑧)] 

i.e.,[𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑇)𝑧)]
2

≤ 𝑘1[𝑑((𝛼𝑜𝑆)𝑧, (𝛼𝑜𝑇)𝑧)]
2
 

Which is a contradiction. Hence (𝛼𝑜𝑆)𝑧 = (𝛼𝑜𝑇)𝑧. 

Therefore (𝛼𝑜𝑆)𝑧 = (𝛼𝑜𝑇)𝑧 is a common 𝛼- the fixed point of 𝐴𝑎, 𝐵𝑏 ,   𝑆𝑠 , and 𝑇𝑡. But we 

have seen that 𝐴𝑎 , 𝐵𝑏 ,  𝑆𝑠, and 𝑇𝑡 have a unique common 𝛼- fixed point 𝑧. 

Hence 𝑧 = (𝛼𝑜𝐴)𝑧 = (𝛼𝑜𝐵)𝑧 = (𝛼𝑜𝑆)𝑧 = (𝛼𝑜𝑇)𝑧. 

This completes the proof. 
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