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Abstract. A total domination coloring of a graph G is a proper coloring of G in which open neighbourhood of

each vertex contains at least one color class and each color class is dominated by at least one vertex. The minimum

number of colors required for a total domination coloring of G is called the total domination chromatic number of

G and is denoted by χtd(G). In this paper, we study the total domination chromatic number of some graph classes.

The bounds of total domination chromatic number with respect to the graph parameters such as the domination

number, chromatic number, total dominator chromatic number and total domination number are also studied.
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1. INTRODUCTION

For the terminology and results of graph theory, we refer to [4], for more about domination in

graphs refer to [5] and for the terminology of graph coloring, we refer [2]. All graphs mentioned

in this article are simple, connected, finite and undirected.

Let G = (V,E) be a graph on n vertices and m edges. The degree of a vertex v is denoted

by deg(v). The minimum degree and maximum degree of G are denoted by δ (G) and ∆(G),

respectively. The open neighbourhood of a vertex v of G, denoted by N(v), is the set of all
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adjacent vertices of v. Similarly, the closed neighbourhood of v, denoted by N[v], is defined to

be N(v)∪{v}. Note that any subset of N[v] is dominated by v.

We denote a path on n vertices by Pn, a cycle on n vertices by Cn and a complete graph on n

vertices by Kn. A complete multi-partite graph with partitions containing r and s vertices is de-

noted by Kr,s and a complete multi-partite graph with k partitions is represented by Kr1,r2,r3...,rk ,

where the i-th partition contains ri vertices.

A set D⊂V (G) is said to be a dominating set of a graph G if every vertex in V−D is adjacent

to at least one vertex in D. A minimal dominating set of G is a dominating set of G such that no

proper subset of it is a dominating set of G. The minimum cardinality of a minimal dominating

set is called the domination number of G, denoted by γ(G). A dominating set D of G is called

a total dominating set of G if every element in V (G) is adjacent to some vertex in D. The

minimum cardinality of a minimal total dominating set is called the total domination number

of G, γt(G).

Like domination in graphs, graph coloring is also an interesting area of research in graph

theory. In graph coloring, we assign colors to vertices, edges or both subject to some pre-

defined conditions. In a proper vertex coloring c of a graph G, we color the vertices in such

a way that the adjacent vertices receive different colors and the minimum number of colors

required to color G is called the chromatic number of G and is denoted by χ(G). The set of all

vertices of a graph G with same color is known as a color class of G. Throughout this paper,

we denote color of a vertex by ci, i ≤ n and color class by Vi which is the set consisting of all

vertices with color ci. If v ∈ Vi and Vi contains only one vertex v, then v is called a solitary

vertex.

Many types of graph colorings based on domination properties of graphs have been intro-

duced and studied extensively in the literature. The notion of dominator coloring of graphs is

the first of all such colorings, which is defined to be a proper vertex coloring in which each

vertex dominates at least one color class and the minimum number of colors used in a dom-

inator coloring of G is called the dominator chromatic number of G, denoted by χd(G), was

introduced by Gera at el. [3]. If a vertex v dominates a color class, then we refer to that color
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class as the dom-color class of v. A dom-color class is a subset of N[v]. Here, note that {v} can

possibly be the dom-color class of a vertex v.

If we impose one more condition to dominator coloring that a dom-color class of a vertex

v does not contain the vertex v, then the new coloring is called a total dominator coloring of

the graph G. In other words, total dominator coloring of a graph G is a dominator coloring

such that a dom-color class of a vertex v is a subset of N(v) with respect to a given domination

coloring of G and the minimum cardinality of a minimal total dominating set is called the total

dominator chromatic number of G and is denoted by χ t
d and in this case a dom color class is

known as a proper dom-color class. This coloring has been introduced and explored by Kazemi

[6]. In the above mentioned colorings every vertex dominates some color class and it is not

necessary that all the color classes are dominated by some vertex. Imposing this condition in

dominator coloring, Zhuo and Zhao ([7]) introduced the concept of domination coloring as a

proper coloring in which every vertex of G dominates some color class and every color class

is dominated by some vertex of G. In this paper, we introduce another variation of domination

coloring, called total domination coloring, obtained by imposing some new conditions to the

coloring protocol.

2. TOTAL DOMINATION COLORING

The domination coloring of a given graph need not be unique. For example, FIGURE 1

illustrate domination coloring of P4 in two different ways.
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FIGURE 1. Domination coloring of P4.

In FIGURE 1(A) the dom-color class of v4 is {v4} whereas in FIGURE 1(B) the dom-color

class of v4 is {v3}. Note that in the second case, v4 has a proper dom-color class. In this

context, the type of domination coloring of a graph G with respect to which all the vertices of

G have a proper dom-color classes would of interest for further study. Motivated by this fact,

we introduce the notion of the total domination coloring of a graph as follows.
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Definition 2.1. A total domination coloring of a graph G is a proper vertex coloring of G in

which each vertex v of G dominates at least one color class (other than {v}) and each color

class of G is dominated by at least one vertex of G. The minimum number of colors required

for the total domination coloring of G is called the total domination chromatic number of G and

is denoted by χtd(G).

In other words, a total domination coloring of G is a total dominator coloring in which each

color class is dominated by at least one vertex of G. Therefore, the graphs which admit total

domination coloring should be graphs without isolated vertices. The following theorem char-

acterizes graphs admitting total domination coloring. It follows from the fact that an n-coloring

of a graph of order n with δ (G)≥ 1, in which all vertices of G assume distinct colors, is a total

domination coloring of G.

Theorem 2.2. Any graph G with δ (G)≥ 1 admits a total domination coloring.

As consequence of the above theorem, we have the following result.

Corollary 2.3. For any graph of order n with δ (G)≥ 1, 2≤ χtd(G)≤ n.

It can also be observed that the total domination chromatic number χtd(G) of a graph G will

be an upper bound for the chromatic number χ(G), the dominator chromatic number χd(G),

the total dominator chromatic number χ t
d(G) and the domination chromatic number χdd(G) of

the graph.

Our next result is a necessary and sufficient condition for a graph to have total domination

chromatic number 2.

Theorem 2.4. For any graph G, χtd(G) = 2 if and only if G is a complete bipartite graph.

Proof. First assume that G is a complete bipartite graph. Then G is 2-colorable. It can be noted

that every vertex in V1 (with color c1) dominates the color class V2 (of the color c2) and vice

versa. Thus, we have χtd(G) = 2.

Conversely, assume that χtd(G) = 2. Therefore, G is 2-colorable and hence is bipartite. We

now have to prove that G is complete bipartite. Assume the contrary. Let G be a graph with
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χtd = 2, but not a complete bipartite graph. Consider the bipartition (V1,V2) of G. If a vertex

v∈V1 is not adjacent to some vertices in V2, then, v does not dominate a color class contradicting

to the fact that the coloring concerned is a total domination coloring. Thus, every vertex in V1 is

adjacent to all vertices in V2. Using the same argument, we can show that every vertex in V2 is

adjacent to all vertices in V1 as well. Therefore, G is complete bipartite. Hence the theorem. �

The following theorem provides an expression for the total domination chromatic number of

a disconnected graph in terms of the total domination chromatic number of its components.

Theorem 2.5. Let G be a disconnected graph with δ (G) ≥ 1 and let H1,H2,H3, . . . ,Hk be the

components of G. Then, χtd(G) = ∑
k
i=1 χtd(Hi).

Proof. Consider a total domination coloring c of G. Then vertices belonging to different com-

ponents cannot have the same color with respect to c. Therefore, χtd(G) = ∑
k
i=1 χtd(Hi). �

3. RELATION BETWEEN χtd(G) AND OTHER GRAPH PARAMETERS

In this section, the relation between total domination chromatic number and certain other

graph parameters such as domination number, total domination number and chromatic number

are discussed.

Theorem 3.1. Let G be a graph with δ (G)≥ 1. Then max{χ(G),γ(G)}≤ χtd(G)≤ χ(G)γ(G).

Proof. Since the total domination coloring is a proper coloring, we have, χ(G) ≤ χtd(G). We

know that in a total domination coloring all color classes are dominated by at least one ver-

tex. Consider a χtd-coloring of G. Let ui be a vertex dominating the color class Vi. Let D =

{u1,u2,u3, . . . ,uχtd}, be a dominating set of G. Then γ(G)≤ χtd(G). Therefore, max{χ(G),γ(G)}≤

χtd(G).

To prove the remaining part, consider a γ - set D of G. Color each of the vertices in D by

distinct colors. Then, in order to color the neighbourhood of one vertex in D, we require at most

χ(G)−1 colors. Therefore, in order to color the neighbourhood of D, at most γ(G)(1− χ(G))

colors are required. This coloring can easily be verified as a total domination coloring. Thus,

any total domination coloring of G has at most γ(G)+ γ(G)(1−χ(G)) = χ(G).γ(G) colors, as

required. �
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The bounds of the above theorem are sharp. For example, consider the complete graph

Kn;n ≥ 2, for which χ(Kn) = χtd(Kn) = n. Next we obtain bounds for the total domination

chromatic number for triangle-free graphs in terms of their total domination number.

Theorem 3.2. For any triangle-free graph G of order n, γt(G)≤ χtd(G)≤ 2γt(G).

Proof. Let G be a graph with total domination number γt(G) = r. Note that all total domination

colorings of G are total dominator colorings and hence γt(G)≤ χtd(G).

Consider the following coloring pattern of G. First color the r vertices in a minimum total

dominating set, say D, with r distinct colors and then take any one vertex v in D and color all

the vertices in the open neighbourhood N(v) which are not yet colored with (r + 1)-th color

(which is possible since G is triangle-free). Then, take the open neighbourhood of another

vertex in D and color all the vertices in the open neighbourhood which are not already colored

with the (r+2)-th color. Proceed with this coloring procedure until all vertices of G are colored.

Therefore, at most 2r colors are required to color G .

Now, it remains to prove that the above-mentioned coloring is a total domination coloring. It

is obvious that each vertex of G dominate at least one vertex in the set D and since all vertices

in D are solitary, all vertices of G will dominate at least one color class. Since each color class

is a part of an open neighbourhood of some vertices in D , they will be dominated by some

vertices of D. That is, the above defined coloring is a total domination coloring thus proving

that γt(G)≤ χtd(G)≤ 2γt(G). �

The bounds of the above theorem are sharp. For example, consider the star graph G, having

γt(G) = χtd(G) = 2 and the bi-star graph, for which γt(G) = 2 and χtd(G) = 4. If we consider

a complete 4-partite graph Kr1,r2,r3,r4 , we have γt(G) = 2 and χtd(G) = 4. Thus, for complete

4-partite graphs also, the above upper bound is sharp.

Proposition 3.3. If G is a graph of order n≥ 2 and γ(G) = 1, then χtd(G) = χ(G).

Proof. Since total domination coloring of a graph is a proper vertex coloring, we have χtd(G)≥

χ(G). Let G be a graph of order n≥ 2 and γ(G) = 1 and c be a χ-coloring of G. Since γ(G) is

1, the graph G has a universal vertex, say v. Then, v is a solitary vertex that dominates all color
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classes other than {v} and is dominated by all vertices in V (G) other than v. Furthermore, all

color classes other than {v} are dominated by v. Thus, c is a total domination coloring of G and

hence χtd(G) = χ(G). �

The next theorem gives the total domination chromatic number of the join of two graphs G1

and G2 in terms of their chromatic numbers.

Theorem 3.4. Let G1 and G2 be any two graphs with chromatic numbers χ(G1) and χ(G2)

respectively. Then χtd(G1 +G2) = χ(G1)+χ(G2).

Proof. Let G1 and G2 be any two graphs and also let χ(G1) = k1 and χ(G2) = k2. Consider

the graph G1 +G2. If we color the vertices of G1 in G1 +G2 with k1 colors and the vertices of

G2 in G1 +G2 with k2 colors,which are different from the already used k1 colors, then we can

prove that χtd(G1 +G2) = k1 + k2. In this coloring of G1 +G2, each vertex in G1 dominates

all color classes in G2 and vice versa. Here all color classes are dominated by a vertex. That

is all the requirements of total domination coloring are satisfied and hence χtd(G1 +G2) =

χ(G1)+χ(G2). �

We can generalize the above theorem as follows.

Corollary 3.5. Let G1,G2,G3, . . . ,Gk be k graphs with chromatic numbers χ(G1),χ(G2), χ(G3),

. . . ,χ(Gk) respectively. Then χtd(G1 +G2 +G3 + . . .+Gk) = χ(G1)+ χ(G2)+ χ(G3)+ . . .+

χ(Gk).

The following theorem is a graph realisation problem.

Theorem 3.6. For integers k and n with 2≤ k ≤ n, there exists a connected graph G of order n

such that χtd(G) = k.

Proof. Consider a complete graph Kk with k≥ 2 vertices and construct a new graph G by adding

n− k pendant vertices at the kth vertex of the complete graph. Now, we have to show that

χtd(G) = k.
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Since χ(Kk) = k, at least k colors are required for χtd-coloring of G. Let us now examine the

following coloring pattern: Color all vertices of Kk with distinct colors and the remaining pen-

dant vertices with the color of first vertex. Then, the above defined coloring is a total dominating

coloring of G. Therefore, we have χtd(G) = k. �

4. TOTAL DOMINATION CHROMATIC NUMBER OF SOME GRAPH CLASSES

The total domination chromatic number of some fundamental graphs and graph classes are

discussed in this section. We begin by examining the total domination chromatic number of

paths .

Theorem 4.1. For n≥ 3, χtd(Pn) = 2dn
3e

Proof. Consider a path Pn with n ≥ 3 and vertex set V (Pn) = {v1,v2, . . . ,vn} labeled consecu-

tively from left to right. Since each color class is dominated by at least one vertex with respect

to (any) total domination coloring c, note that any two vertices in the same color class will be at

a distance 2 and hence every color class can have at most two vertices of Pn. Now, the following

cases are to be considered.

Case-1: n≡ 0 (mod 3).

Here, the vertices v1 and v3 can have the same color, say c1 and the vertex v2 can have the

color c2. Note that no other vertex in Pn can take the color c2 because otherwise, the vertex

v1 will not dominate any color class in Pn. In a similar manner, both v4 and v6 (if exist) can

assume the same but new color, say c3, and the vertex v5 can assume the color c4. This coloring

pattern can be followed until all vertices are colored as per requirement. It is to be noted that

this coloring partitions the vertex set V (Pn) in to n
3 subsets of consecutive vertices, where each

of these partitions requires two new colors. Hence, χtd(Pn) =
2n
3 .

Case-2: n≡ 1 (mod 3).

Here, we partition the vertex set V (Pn) into bn
3c−1 partitions of three consecutive vertices and

one partition with four vertices. Each partition of cardinality 3 can be colored as explained

in Case-1 which yield 2
(
bn

3c−1
)

distinct colors. Now it remains to color the four vertices

vn−3,vn−2,vn−1 and vn which belong to the last partition. If vn−3 and vn−1 have the same color,

then the vertex vn will not have a dominating color class, as it is adjacent only to vn−1. If
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vn−2 and vn have the same color, then the vertex vn−3 will not have a dominating color class.

Therefore, all these four vertices should assume four distinct colors. Thus, the total number of

colors required is 2
(
bn

3c−1
)
+4 = 2

(
bn

3c+1
)
= 2dn

3e.

Case-3: n≡ 2 (mod 3).

In this case, we partition the vertex set V (Pn) into bn
3c partitions of three consecutive vertices

and one partition with 2 vertices. Each partition of cardinality 3 can be colored as explained in

Case-1 which yield 2bn
3c distinct colors. The two vertices in the last partition should assume

two distinct colors. Thus, the total number of colors required is 2bn
3c+2 = 2

(
bn

3c+1
)
= 2dn

3e,

completing the proof. �

For the cycles C3 and C4, we can observe that any minimal proper coloring will be a total

domination coloring as well. For n = 7, we can easily verify that the coloring vi with ci for i = 1

to 4; v5,v6 and v7 with colors c3,c4 and c5 respectively is a minimum total domination coloring.

That is χtd(C7) = 5. Therefore, the following theorem describes the total domination chromatic

number of cycles Cn; n≥ 5,n 6= 7.

Theorem 4.2. For n≥ 5,n 6= 7, χtd(Cn) = 2dn
3e.

Proof. The proof of the theorem is similar to that of Theorem 4.1. �

The total domination chromatic number of the complements of paths is determined in the

following theorem. When n≤ 3, the complement of the path Pn will have isolated vertices, and

hence we consider complements of paths with more than 3 vertices.

Theorem 4.3. For n≥ 4, χtd(Pn) =


4, if n = 4

dn
2e, otherwise.

Proof. Since P4 is self-complementary and χtd(P4) = 4, the first part of the result follows im-

mediately. Now, consider a path of order n with n ≥ 5 with vertex set V (Pn) = {v1,v2, . . . ,vn}

labelled consecutively from left to right and let c be a total domination coloring of G. Consider

Pn and let c be a proper coloring of Pn. Since any independant set of Pn will have at most two

elements, at most two vertices in Pn can have the same color with respect to c. Then, color the

vertices of Pn in such a manner that the vertices v2i−1 and v2i have the same color, say ci, where
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1 ≤ i ≤ bn
2c. This coloring c satisfies all the conditions of total domination coloring. Thus,

if n is even, we have n
2 colors in the color set and if n is odd, we have bn

2c+ 1 = dn
2e colors,

completing the proof. �

The result for total domination chromatic number of the complements of cycles is presented

in the next theorem.

Theorem 4.4. For n≥ 4, χtd(Cn) =


4, n = 4,5

dn
2e, otherwise.

Proof. Consider C4 and if we color all the 4 vertices in it with 4 different colors we can see that

χtd(C4) = 4. We know that C5 is C5 and we have χtd(C5) = 4. For n≥ 6, the proof is similar to

that of Pn. Hence the result. �

In view of Proposition 3.3, it is clear that the total domination chromatic numbers of the graph

classes such as complete graphs, wheel graphs, and star graphs are the same as their chromatic

numbers.

Let Kr1,r2,r3...,rk represent a complete k-partite graph. The following theorem determines total

domination chromatic number of a k-partite graph.

Theorem 4.5. For k ≥ 2, χtd(Kr1,r2,r3...,rk) = k.

Proof. Note that every partition in Kr1,r2,r3...,rk is a color class under any minimal proper coloring

(k-coloring) of it and every vertex in one partition dominates all vertices in all other partitions

(color classes). That is, every k-coloring of Kr1,r2,r3...,rk is also a total domination coloring of it.

Thus, χtd(Kr1,r2,r3...,rk) = k. �

From the above theorem we find a counter example for the converse of Proposition 3.3.

Consider a complete muti-partite graph G with none of its partitions a singleton set. In this

case, χtd(G) = χ(G), while γ(G) 6= 1.

A wheel graph is a graph obtained by joining all vertices of a cycle to an external vertex.

Then, this external vertex becomes the central vertex of the wheel graph with degree n− 1.

Since the central vertex of wheel graph W1,n is a universal vertex, we have χtd(W1,n) = χ(W1,n).
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A helm graph, denoted by H1,n,n, is a graph obtained by attaching one pendant vertex to every

rim vertex of a wheel graph W1,n. The next theorem discusses the total domination chromatic

number of a helm graph.

Theorem 4.6. For n≥ 3, χtd(H1,n,n) = 2n.

Proof. Note that every vertex of H1,n,n is a support vertex of distinct pendant vertices. Therefore,

all rim vertices should have distinct colors. Otherwise, the pendant vertices will not dominate

any color class. Also, no two pendant vertices should have the same color, as otherwise, there

will not be a vertex in the graph which dominate the color class of these pendant vertices. The

central vertex of the graph can assume any one of the colors of the pendant vertices. Thus, the

coloring mentioned above will satisfy all requirements of a total domination coloring. There-

fore, χtd(H1,n,n) = 2n. �

A bi-star G is a graph obtained by adding to each vertex of K2 at least one pendant vertex.

The following theorem determines χtd of bi-stars.

Theorem 4.7. For any bi-star G, χtd(G) = 4.

Proof. Let u and v be the two support vertices of the bi-star graph G. As the color of a support

vertex with respect to a total domination coloring is distinct, two different colors are required to

color the two support vertices of G and these colors cannot be repeated anywhere with respect

to the coloring of G. As the distance between pendant vertices, which are adjacent to distinct

support vertices is three, these vertices cannot be in the same color class. Therefore, at least

two colors are required to color pendant vertices of G. Thus, at least four colors are required for

a total domination coloring of G. Now, we can observe the coloring mentioned above satisfies

all the conditions of total domination coloring of G. Therefore, the total domination chromatic

number of a bi-star is 4. �

A multistar graph is a graph formed by joining at least one pendant vertex to each vertex of a

complete graph Kl, l ≥ 2 and is denoted by Kl(a1,a2,a3, . . . ,al), where ai denote the number of

pendant vertices at the vertex vi. In the following theorem, we determine the total domination

chromatic number of a multistar graph.
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Theorem 4.8. If G = Kl(a1,a2,a3, . . . ,al),ai ≥ 1, then χtd(Kl(a1,a2,a3, . . . ,al)) = 2l.

Proof. Let G = Kl(a1,a2,a3, . . . ,al),ai ≥ 1 be a multistar graph. We need l colors to color the

clique in G and these colors cannot be repeated as each of these vertices being support vertices.

Next, we have to color the pendant vertices. It is to be noted that color of pendant vertices at

two different support vertices cannot be same as the distance between them is not 2. Therefore,

at least l more colors are required to color pendant vertices. If we color all pendant vertices such

that same color for all pendant vertices which are adjacent. Then, the above defined coloring is

a total domination coloring. Hence the theorem. �

Proposition 4.9. Total domination chromatic number of a Petersen graph is 6.

Proof. Let P denote the Petersen graph. From FIGURE 2 we can easily verify that the coloring

given in the figure is a total domination coloring. Therefore, χtd(P)≤ 6. We have for any graph

G, χtd(G) ≥ χ t
d(G), as all total domination coloring is also a total dominator coloring. It has

been proved in [1] that χ t
d(P) = 6 . Therefore, we have χtd(P)≥ 6. Hence the result. �

v8c3 v7 c3

v6

c2
v10c4v9c5

v3

c5

v2

c2

v1 c1

v5

c2

v4

c6

FIGURE 2. Total domination coloring of the Petersen graph

Observation 4.10. If G is an (n−2)-regular graph of order n, then χtd(G) = n
2 .

Theorem 4.11. Let Kn be a complete graph and let graph G be obtained by adding pendant

vertices at vertices of Kn. Then, χtd(G) = χ(Kn) = n if and only if the number of support

vertices in G is less than or equal to bn
2c.
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Proof. We have,χtd(Kn) = n. Let G be a graph obtained by adding pendant vertices at some

vertices of Kn. Let s be the number of support vertices of G. Now we have to find the maximum

value of s such that χtd(G) = n. We know that the color of each support vertices are distinct

and cannot assign to any other vertex and color of pendant vertices at any two distinct support

vertices are different. We can color the pendant vertices at a particular support vertex with

same color. Therefore, 2s different colors are required to color the support vertices and pendant

vertices. Therefore to have n as the total domination G, 2s≥ n. That is, s≤ bn
2c. �

Next we present a characterization theorem for unicyclic graphs whose total domination num-

ber is the same as that of its chromatic number.

Theorem 4.12. Let G be a unicyclic graph. χtd(G) = χ(G) if and only if G is C3 or C4 or graph

obtained by adding pendant vertices at one of the vertices of C3.

Proof. We know that if G is a unicyclic graph, then χ(G) is either 2 or 3. We know that the

cycles having total domination chromatic number 2 or 3 are C4 and C3. If we add pendant

vertices at any one of its vertices of C4, then a third color is required to color that support vertex

as the color of support vertices are distinct and cannot assign to any other vertex with respect to

a total domination coloring of a graph. �

5. TREES

In this section, we discuss the total domination coloring and the corresponding total domina-

tion chromatic number of certain types of trees.

Theorem 5.1. Let T be any tree with s support vertices. Then, χtd(T ) ≥ s+ 1. Moreover, the

bound is sharp if and only if T is a star.

Proof. Let T be a tree with s support vertices. We know that with respect to total domination

coloring of graphs, all support vertices should necessarily be solitary vertices and hence s colors

are required to color the support vertices of T . Therefore, at least one more color is required to

color the pendant vertices of T . That is, χtd(T )≥ s+1.

Next, we have to prove that χtd(T ) = s+1 if and only if T is a star. Assume that T is a star

graph. Then, s = 1. We know that χtd(T ) = 2 = s+1. To prove the sufficient condition let us
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assume that T is not a star, now it remains to prove that χtd(T ) 6= s+1. In this case, T will have

at least two support vertices and hence two distinct colors are required to color these support

vertices. The distances between the pendant vertices adjacent to these support vertices are at

least 3 and hence all the pendant vertices at these vertices will not belong to the same color

class. That is, χtd(T )≥ s+2. Hence the result. �

The following theorem determines a lower bound for the total domination chromatic number

of a tree in terms of number of support vertices of the tree.

Theorem 5.2. Let T be a tree with s support vertices. χtd(T )≥ 2s.

Proof. We know that color of support vertices are distinct and cannot be repeated with respect

to a total domination coloring. Consider a support vertex and its adjacent pendant vertices.

Therefore, at least two colors are required to color these vertices. There are s set of such

vertices and hence χtd(T )≥ 2s. �

The complete caterpillar graph is a tree obtained by attaching at least one pendant vertex to

each vertex of a path. The following observation shows that the bound of the above theorem is

sharp.

Observation 5.3. If T is a complete caterpillar graph, then it can be seen that χtd(T ) = 2s.

The following theorem characterises all trees which satisfies χtd(T ) = 2s.

Theorem 5.4. For a tree T with s support vertices, χtd(T ) = 2s if and only if every non-support

vertex of T is adjacent to at least one support vertex of T .

Proof. Let T be a tree with s support vertices. By Theorem 5.2, we have χtd(T )≥ 2s. Assume

that every non-support vertex of T is adjacent to at least one support vertex of T . Color all

the s support vertices with s different colors and corresponding pendant vertices with another s

colors. Remaining vertices can be colored using the color of one of its adjacent support vertex.

This coloring is a total domination coloring of T . Therefore, χtd(T ) = 2s.

If possible, assume that there exist a vertex v in V (T ), that is not adjacent to any of the support

vertices of T . As the graph has s support vertices, we know that s colors are required to color the
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support vertices and another s distinct colors to color the pendant vertices and no two pendant

vertices adjacent to different support vertices can have the same color. Let u be an arbitrary

support vertex in V (T ). Since the distance between v and u is more than 2, we cannot color the

vertex v with the color of s. That is, χtd(T ) = 2s+1, which is a contradiction. Therefore, any

non-support vertex of T is adjacent to a support vertex. �

Observation 5.5. Let T be a tree with n vertices. Then, χtd(T ) = n if and only if the number of

support vertices is equal to the number of leafs equal to n
2 .

Now we proceed to determine the exact value of the total domination chromatic number of

trees of diameter 4. Note that trees of diameter 2 and 3 are stars and bistars for which we the

value of χtd are 2 and 4 respectively.

The trees with diameter 4 can be classified into two types (see FIGURE 3).

Type 1: The centers of two or more stars with at least two vertices are joined to a new vertex.

Type 2: The centers of two or more stars with at least two vertices are joined to the center of

another star with at least two vertices.

(A) Type 1 (B) Type 2

FIGURE 3. Two types of trees with diameter 4.

These structural properties of trees with diameter 4, are used to determine the total domina-

tion chromatic number of such trees,as discussed in the following theorem.

Theorem 5.6. If T is a tree with diameter 4 and s support vertices, then χtd(T ) = 2s.

Proof. Let T be a tree with diameter 4 and s support vertices. We know that the color of each

support vertex is distinct and thus, s colors are required to color the support vertices of T .

We also have, pendant vertices at different support vertices should be of different colors. Two

pendant vertices will have same color if they are adjacent to the same support vertex. Since the



TOTAL DOMINATION COLORING OF GRAPHS 457

number of support vertices is s, we have to use another s colors to color the pendant vertices.

Therefore, we have to use at least 2s colors in the χtd-coloring of T . Next, we have to prove

that there exist a χtd-coloring of T with 2s colors.

Case 1: Let T be a tree of Type 1 mentioned above (see FIGURE 3(A)). Color the s support

vertices with s different colors and color the pendant vertices with another s colors in such a

way that pendant vertices at a support vertex receive same color and pendant vertices attached

to different support vertices receive different colors. Color the common vertex used to join the

center of the stars with color of any one of the pendant vertices. Then we can see that the above

defined coloring is a total domination coloring. Hence, χtd(T ) = 2s.

Case 2: Let T be a tree of Type 2 (see FIGURE 3(B)). Then, color the s support vertices

with s different colors and color the pendant vertices with another s colors in such a way that

pendant vertices at a support vertex receive same color and pendant vertices attached to different

support vertices receive different colors. Then, we can see that the above defined coloring is a

total domination coloring. Hence χtd(T ) = 2s. �

An upper bound for the total domination chromatic number of a tree in terms of the domina-

tion number is determined in the following result.

Theorem 5.7. For any tree T , χtd(T )≤ 2γ(T ).

Proof. We know that for a tree T , χ(T ) = 2 and therefore, by Proposition 3.1, we have χtd(T )≤

2γ(T ). �

In the above theorem, we can verify the equality by considering the trees such as stars, bi-

stars, trees with diameter 4 or complete caterpillar graphs.

6. CONCLUSION

In this paper, we have initiated a study on total domination coloring of graphs. There is a

large scope for further studies on this new coloring. Some of the areas that demand further

investigation are given below.

(i) Find the graphs with χ(G) = χ t
d(G).

(ii) Characterize graphs having χtd(G) = χ t
d(G).
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(iii) Characterize graphs having χtd(G) = γt(G).

(iv) Find graphs for which χtd(G) = χ(G).γ(G).

(v) Study the complexity of total domination coloring of graphs.

(vi) Study the criticality concepts in total domination coloring of graphs.
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