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Abstract: An M/M/1 queueing model with disasters and repairs under Bernoulli working vacation schedule is
considered. In this model, after every completion of service the server may take vacation with probability g or the
server may render service to the next customer with probability p. By considering the disaster to occur, only when
the server is in busy state, the explicit analytical expressions for time dependent probabilities are derived using
Laplace transform and generating function technique.
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1. INTRODUCTION

Queues with disasters are extensively discussed by various researchers. As disaster
occurs all customers in the system are removed. This type of situations is seen to prevail in the
computer networks (where arrival of virus can be considered as disaster), ATM in a bank,

manufacturing systems and so on.
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Gelenbe [4] was the first to introduce the concept of arrival of negative customers in the
queue. For better understanding the reader may refer to Gelenbe [5], Harrison and Pitel [6],
Chao[2], Atencia and Bocharov [1], Kumar and Arivudainambi [10], Kumar and Madheswari
[11], Yang et al [15].

Yechiali [16] analysed queue with disaster and impatience. Sudesh [13], Dimou and
Economou [3] were some of the remarkable papers in queue with disasters and impatience.

Queue with vacations were studied by many researchers since the late 70’s. Reader may
look in to the survey paper of Ke et al [9] for recent developments in vacation queueing models.
But there are only few articles related to queue with disasters and vacations. Queue with
disasters and vacations were first introduced by Mytalas and Zazanis [12]. Also reader may refer
Ye et al [7], Kalidass et al [8], Suranga Sampath [14], for better understanding of queues with
disasters and vacations.

Due to wide spread applications as well as due to flexibility, Bernoulli vacation was
analyzed by many researchers. Practically, the server may opt working vacation after every
completion of service depending upon his physical condition. More elaborately, a driver can opt
long trip or short trip depending upon his physical condition. Motivated by the above example, in
this paper we derived transient probabilities of an M/M /1 queue with disasters and repairs
under Bernoulli working vacation schedule.

The contents of the paper are arranged as follows.

e Section 2 —Description of the model
e Section 3 — Transient Probabilities

e Section 4 - Conclusion and Future scope of the model

2. MODEL DESCRIPTION

A single server queue with disasters and repairs under Bernoulli vacation schedule is
considered. Customers are allowed to join the system according to a Poisson process with the
rate A and service takes place exponentially with the rate 4. Whenever the server completes
the service to a customer, the server may choose a working vacation with probability g or the

server may continue the service to the next waiting customer with probability p. Also the
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duration of vacation times follow exponential distribution with parameter »n. The disaster occurs
during the busy period. After the occurrence of disaster all customers in the system are flushed
out and system becomes empty. Meanwhile the repair period starts. Both disaster and repair
times are exponentially distributed with parameter @ and r respectively.

Number of customers in the system and system states are represented by X(t) and

J(t) respectively. Mathematically,

1; server is in busy state

0; server is in working vacation state
2; server is in repair state

3; server being idle

J(®) =

Hence (J(¢), x()) isa Markov process with state space

Q={(0,0)U3,0)U(2,0)U(},n);j=0123 n=12,..}.
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Figure 2.1: State transition diagram of a Single Server Queue with Disasters and Repair under

Bernoulli Working Vacation Schedule
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Let P, (t) denote the time dependent probability for the system to be in state j with =

customers at time ¢t. Assume that initially the system is empty and the server is being idle ie.,

P,,(0) =1. By standard methods, the system of Kolmogorov differential difference equations
governing the process are given by
Po,o () = —(A + )Py o(t) + uqPy 1 (t) + 11, P 1 (1), 1)
Pon(®) = =(A+ 1 + 1) Po s (t) + 1qPy 1 (1) + APy 1 () + uyPopsr()n = 1,2,.., (2)
PLi()) = —(A+p+ a@)Py1 (1) + APso() + upPy 5 (8) + nPos (8) + 7Py (D), €)

Pin() = —(A+ u+ a)Py () + APy 1 () + UpPy 41 (t) + 7Pon (1) + NPy, (1),
n=23., (4

P (t) = —APs(t) + upPy 1 (t) + NPy o(t) + TPy (1), (5)
Poo(t) = (A4 1)Py(t) + a Xioy Pia(b), (6)

and
Pn(® = —(A+71)Pyy(t) + AP 1 ()0 = 1,2,... (7)

3. TRANSIENT PROBABILITIES
Define

G(zt) = Z Py ()2,
n=1
Then,
6'(50) = ) Pya(02",
n=1
By substituting equation (2) gives,

6@ )— (=47 +m) + Az + ’“‘7) Gz )

Hq
= ARy (6) = ioPos (0 + 51 ) Py (D7 (8

n=1
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Integrating equation (8) with respect to time ‘t’ we get,

‘ Ky
G(z,t) = )lf zPy0(¥) e(_()""""'”")"')‘z"'?)(t‘”dy
0
‘ (—(l+ + )+Az+ﬂ)(t_ )
_.“vf Py1(¥)e rH 2 )Y dy
0

h f E ip )z | e(FHsmr A ) )
q .z 1,n+1 :
n=1
If a; =2/Au, andp; = /”i then

e(lz-'_%)t = Z (ﬁlz)"ln(alt).

n=-—oo

Therefore equation (9) can be written as,

t co
60 = A [ 2Pog(y) e BN N (523 (et - y)) dy
0

n=-—oo

t co
~ ity [ Poa@e RN N (g5 (0 (e - ) dy
0

n=—oo

€)

t 1 [oe) [oe)
+ puq ] ~ (Z P1,n+1(y)zn+1> e~ (i) (E=y) z (Br2)" Ly (s (t — y)) dy
0 n=1

n=-—oo

Equating the coefficient of z™ in equation (10) gives,

t
Pyn(®) = A f Poo(y) e~ BR=1] (g (¢t — y))dy
0

t
— Uy f P0,1(Y)e_('1+n+”")(t_y)ﬁ{lln(“1(t - y))dy
0

t [ee]
+ uq f Z Py (e~ AtmtmlE=npn=mit o (ai(t —y))dy.
0 m=2

(10)

(11)
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Similarly equating the coefficient of =z~ in equation (10) yields,

t
0=2 f Poo(y) et t=3)gn-1y . (ay (t — y))dy
0
t
— 1y f Py, (y)e~ Wt E=vIpny (g, (t —y))dy
0

t (o]
+ uq .f Z Pl,m(}/)8_()‘+n+””)(t_y)ﬁ{l_m+l In+m_1(a1(t — y))dy. (12)
0 ~=

Subtracting equation (12) from (11) gives,

t
Pon(t) = Af Poo(y) e~ M) (t=y) pr—1 (In—1(a1(t - }’)) - n+1(a1(t - 3’))) dy
0

t [0/0)
+ uq j z Pl,m(J’)e_(/1+n+“")(t_y)ﬁ1n_m+l (In—m+1(a1 (t— J’))
0 m=2

— Lyrm-1(ea(t = ))) dy. (13)

Taking Laplace transform for the equation (13) gives,

n—-1

- R P; — P? — a? 1

Po,n(S) = ABT 1Po,o(S) ! ! > >
ay Pf—a

1

- P
— ABT Py (s) ( :

P —
+ uq Z P ()BT m+1< - il

P, — Pt —a?
~uq Z Prn(S)BT™ m“( - :

(14)
where P, =s+A1+n+pu,.

Substitute n = 1 in equation (14) gives,
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oo 2—-m
. P, —JP? — a?
+uq Z Py (s)B2™ ( -1 1)
m=2

- - 1 - Py
P0,1(5) = /1P0,0(5) T Apo,o(s)
P

1~

a,
m
P, —\/P? — a2 1
(1 1 1 - (15)
a, Pt —az
Taking Laplace transform for the equation (1) we get,
(s + 2+ mPyo(s) = ugPy1(s) + pyPo1(s) (16)

By substituting equation (15) in equation (16) yields,

- Auy 1 ~
Poo(s)(s +24+mn) {1 Y ED)) (m - QZ(S)>,,}

= uqP1() + g ) Prn(DBF (B (5) — On(5)), (7
where )

i
P JPE = o2 1
S a JPE—a?

On further simplification of equation (17) gives,

Boo(s) = SHHZ(P@)J {qu11(5)+uqu1m(S)ﬁf (@ (s) ~ B ()

(18)
Substituting equation (18) in equation (14) gives
/ljo,n(s) = Aﬂ?_l (ﬁn—l(s) - ﬁn+1(5)) T A+ Z(F(S))] {,qul 1(s)
+ uq z ﬁl,m(s).glz_m(ﬁz—m(s) - ﬁm(s))}
+uq Z B (B i1 (5) = pm1(9)) Pum(5): (19)

Equation (19) can also be written as,
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Pon() = B2 Dania () s Z(F(s» HgPr1 (5)

s+A+7

2B B ann () Z(F(s)) e 2 Pum (BB (5)

s+A+7

10 D Pn BT B s nemr (5), (20)
m=2

where
llji—1,i+1(5) = ﬁi—1(5) - ﬁi+1(5)-

Taking inverse Laplace transform for the equation (20) gives,

Porn(t) = AB?_l * l/)n—l,n+1(t) x =AMt

* Z(F(t))*j * (ﬂqpm(t) + uq z 312_mp1,m(t) * ¢2—m,m(t)>
j=0 m=2

+ uq Z ﬁ{l_m+1lpn—m+1,n+m—1(t) * Pl,m(t)-
=2

(21)
Hence Py, (t) isexpressed explicitly in terms of P, ;(t) and Py ,,(t).
Evaluation of P, (t)
Taking Laplace transform for the equation (6) we get,
B, o(s) = —— i B, (s) 22
Z’OS_S+A+T 1,n\S (22)
n=1
Evaluation of P, ,(t)
Taking Laplace transform for the equation (7) we get,
n
Pon) = (o) Pao®) (23)
By substituting the equation (22) in equation (23) yields,
- Aa =N
PZ,D(S) = (S + /1 + r)n+1 lel,n(s) (24)
n=

By inverting equation (24) we get,

—(/1+r)t
PZ,n(t) = A"a

z P a()in=12.. (25)
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Evaluation of P3¢ (t)

Taking Laplace transform for the equation (5) we get,

(0]

- n - ra -
Pa(8) + 557 Poo ) + 55 D Pia®) (26)

- 1 Up
Prol) =577+ (s+1+1) ]
n=

s+4A s+1

Inverting the equation (26) we get

Pao(8) = €7+ ppe ™ x Py (6) +11e A+ Poo(8) + a(e™X = em3HI) Py (1)
n=1

(27)
Evaluation of P4 ,(t)
H(z t) = Z P, ()2".
n=2
Then,
H'(z,t) = z P, . (0) 2™
n=2
By substituting equation (4) gives,
HT&@—({A+u+@+%z+%sH@J)
= 127Py 3 (8) = HpPy (D7 + 7 ) Pyn(D)2" 17 ) Pon(D)2"
n=2 n=2
(28)
Integrating equation (28) with respect to time ‘t’ we get,
‘ (—(/1+ +a)+/12+ﬂ)(t— )
HGO) = | (27P2 () = Py (1)) e T 2)engy
0
t up =
n rf e(—(/1+u+a)+/12+7)(t—y) Z Pz,n(Y)Zn dy
0 n=2
t (& »
+n (Z Po,n(y>z"> o(ZOtmr i) gy, (29)
0 n=2
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o(AzHt) _ z (B2)"L(at).

n=-—oo

Therefore equation (29) can be written as,

t oo
H0) = | (22Pa() = ipPoa()a) e 0 S (g2 (a(e - y)) dy
0

n=—oo

t oo oo
b [ e N (g (e - y) Y Pon ()7 dy
0 n=2

n=—oo

n=-—oo

(30)
Equating the coefficient of z™ in equation (30) gives,
t
Pun(®) = 2 [ Pua) e s g2, (a(e — )dy
0
t
—p [ PLa@Ie O AL (ae - 3))dy
0
t (o]
b [ et b 3 oty (ate - ) dy
0 k=2
t (o]
wn [ (Z Pox (VB Iy (a(t - y))> e~ gy (31)
0 \k=2
The equation (31) can also be written as
Pl,n(t) = Aﬁn_z[Pl,l(t) * 9_(/1+H+a)t1n—2 (“t)] - .Upﬁn_l[Pl,z(t) * 9_(A+”+a)t1n—1(at)]
1) Pys(t) x e A (ar)
L k=2 _
+17 Z Por(t) x e=Atrtadtgnkp . (at)|;n = 2,3.. (32)
L k=2 _
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Evaluation of Py, (t)

Substituting n = 2 in the equation (32) yields,

P (t) = AP 1(t) * e_(M“m)tlo(at) — upPBPy 5 (t) * e_(/1+“+a)t11(at)

7| Pyyt) x e GHITOE2HY, L (at)

1| ) Pos(@) x e OH g2k (o) (33)

Taking Laplace transform for the equation (33) yields

Pra(s) (1= 1) = APus(9) st Z (B, 1(8) 8 i(5) + Enp(,k(s)uz ()

(34)
where

ﬁ1 (s) = —upl, (s),

L (P—VPT—a?\ 1
u(s) =B p P77

By substituting the equation (20) and (24) in equation (34) yields,
E,z(s) (1 - ﬁ1(5))

and

— 1
= AP 1(s) N
K

+#}Z(ﬁ) lz-k(s) (Z () )

n=1

oo

~ 1 P
+ D 2B e () mZ(m))J HgP1 (5)

k=2

F 2B i) Z(F(s)) ka Z Pom (VB2 (5)

+A+n

10 ) Pun (B i i jermo1(5) | 1821(5)

m=2

Rewriting the above terms gives,
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Py 5(s)
, A I ) e |
jZ(:) (F1(S)) {P1,1(S) VP2 — a2 + BG+Atn) ;Bflpk—l,kﬂ(s)uz_k(s) ;(F(S))]
a = Y k A d _
T rkZ (s + 1+ r) rliz-k(s) (Z Py n(s) >

+,6’1(+3n+n)z Bii-141 ()T k(S)Z(F(S)) 2 P ()BT ™Dgmm(S)

+uqnz Z Prm (DB s e ()0 k(s>} (35)

=2m=2
The equation (35) can be written as

E,z (s)

> ()

oo

+ () Z o (IBE D ()

I
Ms

R()P1() +Q(s) Z Pun(s)

0

~.
Il

o 00

+ uqn Z Z m(s)ﬁf_m+1$k—m+1,k+m—1(S)ﬁz—k(s)] (36)
k=2 m=2
where
~ A Augn = ~ ~ C J
RS = e b e s kzzzﬁfwk_l,m(s)uz_k(s) ;(F(s)) ,
~ a - A o
Q(s) = s+1+ rkZ: (s + 1+ r) rlz-i(),
and
.\ _ A A
W(S) = R(S) - \/ﬁ

Inverting the equation (36) we get,



324
M. LAKSHMI PRIYA, B. JANANI

[oe]

PLo(®) = ) (R()”

J=0

*

R(t) =Py (t) + Q)

) Pia® +w(®)

O BETR(0) % Yy ()

m=2

FHa0 )Y Prn(©) * B e (8) 4 uz_k(o]
k

37)

where

[ee)

2 N .
R(E) = Ao~ G+t 0ty (at) 4 e B 0 Y By (0) ¢ Yrcagn D)+ ) (F@),
1 k=2

J=0
tk—l

_ —(AHTE o yk,—(A+r)t
Q(t) = are A+t 3o jke=(A+1) D

* Uy (1),
and
w(t) = R(t) — e~ A+ttt (qt),
Hence P;,(t) isexpressed intermsof Py ,(t) and Py, (t).
Evaluation of Py 4(t)

Taking Laplace transform for the equation (3) we get,

ﬁ1,1(3)
5 1p - n -
=————— P () +—————P,(s) +—————P,
stAit+tut+a 30(5) StAituta 1.2(5) stAitu+a 01(5)
+—— P 38
stl+tu+a 21(5) (38)

Using the equations (18),(20),(24),(26) and (36) in equation (38) gives,
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A 1 Up
+ P,
s+Al+pu+als+1 s+1

§1,1(5) = (s)

n N NI - o
+ G+DGT+AT U);(F(S))] {,qum(s) + uq mZZ P1,m(5),812 Y2-mm(S)

ra =
" (s+D(G+1+ r)Z P n(s)

o)

+s+/'l+u+a Z 1(5)

j=0

RE)P1() +Q(s) Z Pin(s)

(0]

+ () ) Prn(IBE Dy mm(S)

m=2

8

e}

DIDN: m<s>ﬁf—m+1¢k_m+1,k+m_1(s)ﬁz_k(s>]

=2m=2

oo

K0a(s) 7 0 (FO)) aPas)

]_

- 1 < : B .
+ /11/)0,2(5) mZ(F(S))] uq Z Pl,m(s)ﬁlz_mlpz—m,m(s)
j=0 m=2

1|,
s+l+u+a

- " ~ r Aa = -
+ ‘u.q Z Pl,m(s)ﬁlz_mlpz—m,z(s) + (S + A + M + a) (S + l + r)z Z Pl,n(s)
m=2 n=1

Bringing all P, ;(s) to one side, the above equation can be written as
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’[31,1 (s)

i Fz(S)

j=0

A
s+ADGE+A1+u+a)

.

A ra Up
(s+/1+,u+a)(s+/1)(s+/1+r) s+A+u+a

Z F.() )

o

Z n(S)

A
(s+/1+u+a)(s+/1+r)

An

> Py ()

m=2

Nuq . i ~ ;
+(S+/1+u+a)<s+,1+,7‘/’0,2(5);(1’(5)) +1>

] = I A
+v) (B9) ) D Pun BT P eom1(5) 8 i(s) |,
j=0 k=2m=2

where
- upA rai
F,(s) =

(s+/'l)(s+/1+,u+a) (s+/1)(s+/1+,u+a)(s+/1+r)

- SN A
TG +u + a);(Fl(s)) (R(s) +Q())

Anuq
(s+/1+y+a)(s+/1+ n)

Bo2() Y (F(s))
=0

ria nuq NN
+(S+l+u+a)(s+)l+r)2+(s+l)(s+l+n);(F(s)) '

Inverting the equation (39) we get

(s+/1+,u+a)(s+/1)(s+/1+n)z(F(S)) +(s+/1+u+a)z Fl(s) W(S)

(39)



327
TRANSIENT ANALYSIS OF A SINGLE SERVER QUEUE

Pl,l(t) = Z(FZ (t))*] Ae_)'t * e—(l+u+a)t
j=0

+ (Ao~ AHuradt o pgo=At 4 @=(HTIE 4 o -(Rturalt Z(ﬂ(t))*j £ Q)
j=0
+ Ao~ AHHHDL 4 pge=(A4ity Z Py (t)
n=2
4+ lne_(’u’”“)t " ,uqe_)‘t
+ e Z(F ()" + ppe~ it z(Fl(t))*] w(t) + nuge~A+urar
=0 =0
x| Ae= M aho o (t) * z(F(t))*j +8(t)
Jj=0
* z Pl,m(t)ﬁlz_m * 111’2—m,m(t)
m=2
*j _

+ UZ(F1(t)) * z z Py )BT 5 Yp st erm—1 (8) up—ic (8) |,

j=0 k=2 m=2

where

Fz(t) — ,upAe"“ % e—()L+u+a)t + ra/le"lt % e—(l+/,t+a)t % e—(/1+r)t + llpe—()l+u+a)t

Y (F1(0) 5 (RW) + Q) + Anpge™FHtt « =t sy, 1)
j=0

(o] [ee]

. Z(F(t))*j + riqe-Arutalt o o—A+r)ty + que—/‘lt % e~ A+mt o Z(F(t))*j
Jj=0 j=0

Hence all probabilities are explicitly expressed in terms of P, (t). Therefore by using

normalization condition P; ,(t) can be found explicitly.
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4. CONCLUSION AND FUTURE SCOPE
Single server queue with system disaster and repair under Bernoulli working vacation
schedule is considered. The transient probabilities of the system are derived explicitly. This

model can also be extended by allowing disaster to occur in working vacation state.
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