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Abstract. For a finite set T of non negative integers containing zero, a function c : V (G)→ Z+⋃
{0} is said

to be a ST -coloring of the graph G = (V,E), if | c(x)− c(y) | is not in T for any any edge (x,y) and for any two

distinct edges (x,y) and (u,v), | c(x)−c(y) |6=| c(u)−c(v) |. spST (G) is the minimum of the difference between the

largest and smallest colors assigned over all the vertices and espST (G) is the minimum of the maximum difference

between the colors assigned to the vertices of an edge over all the edges of the graph, where the minimum is taken

over all ST -coloring c. Here we establish some results related to ST -chromatic number, span and edge span of

some graph products namely, Tensor product, Cartesian product and Corona product of graphs.
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1. INTRODUCTION

Graph coloring is one of the most important and extensively well known researched area in

the field of graph theory. It is an important subfield of graph theory having various applications.

Assignment of frequencies to various channels is one of such famous and well known problems

in the field of telecommunication. Channel assignment problem [7] can be modelled with the
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help of graph, where transmitter channels will be considered as some vertices and if there is any

interference between any two transmitters, then that interference can be considered as an edge.

T -coloring is one kind of vertex coloring, which was introduced by W. K. Hale [3] by setting

up an interrelation between graph coloring and the channel assignment problem. For a fixed

set T of non negative integers containing zero, T -coloring of a graph G = (V,E), is a function

f : V (G)→ Z+∪{0}, such that the absolute values of the differences of the colors or non neg-

ative integers assigned to any two distinct vertices must not be in the fixed set T . T -chromatic

number, T -span and T -edge span are some important measures of a T -coloring. T -chromatic

number is the minimum number of colors or non negative integers required for an efficient T -

coloring or the order of the T -coloring f and T -span is the maximum absolute differences of

the non negative integers or colors assigned to any two distinct vertices. Whereas, T−edge span

is the maximum absolute differences of the non-negative integers or colors assigned to two ver-

tices of all the edges. For more about T -colorings, we refer to [1, 2, 5, 7, 9, 11–13]. A particular

type of T -coloring is ST -coloring of graphs. A Strong T -coloring of G = (V,E) is a function

c : V (G)→ Z+⋃
{0} such that for all u 6= w in V (G), (i) (u,w) ∈ E(G) then | c(u)− c(w) |/∈ T

and (ii) | c(u)− c(w) |6=| c(x)− c(y) | for any two distinct edges (u,w) and (x,y) in E(G).

There are various types of graph products, such as, Cartesian product, Tensor product also

called as direct product, Lexicographic product also called as graph composition, Strong prod-

uct, etc. For more details on products of graph, see [4]. All graphs considered in this paper are

finite, simple and undirected.

In this paper, we consider strong T -colorings on some graph products, viz. Tensor product,

Cartesian product and Corona product of graphs. We start with some preliminary results in the

next section, followed by the main results of ST -coloring of Tensor product, Cartesian product

and Corona product in section 3. In section 4, the conclusion of the paper is drawn.

2. PRELIMINARIES

Theorem 2.1. [10] Let H be a subgraph of a graph G. For each finite set T of positive integers

containing zero,

(i) spST (H)≤ spST (G) (ii) espST (H)≤ espST (G).
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Theorem 2.2. [10] For all graphs G, (i) spT (G)≤ spST (G) (ii) espT (G)≤ espST (G).

Observation 1: [10] χST (G)≥ χ(G) = χT (G) .

For more results of ST -colorings, we refer to [6, 10].

3. MAIN RESULTS

3.1. ST-coloring of Tensor Product of Graphs.

Theorem 3.1. For all finite set T of positive integers containing zero and for any two graphs

G1 and G2

(i) χST (G1×G2)≥ min{χ(G1),χ(G2)}

(ii) spST (G1×G2)≤ min{spST (G1),spST (G2)}

(iii) espST (G1×G2)≤ min{espST (G1),espST (G2)}.

Proof. (i) Since, χST (G)≥ χT (G) = χ(G), by using observation 1⇒ χST (G1×G2)≥ χT (G1×

G2) = χ(G1×G2) = min{χ(G1),χ(G2)}. Hence,

(1) χST (G1×G2)≥ min{χ(G1),χ(G2)}.

(ii) Let f and g are two ST -colorings of the graphs G1 and G2 respectively, such that sp f
ST (G1)=

spST (G1) and spg
ST (G2) = spST (G2). Define a ST -coloring of G1×G2 as c(u,v) = f (u). Let,

(u1,v1),(u2,v2) ∈V (G1×G2), such that u1,u2 ∈V (G1), v1,v2 ∈V (G2). Then,

| c(u1,v1)− c(u2,v2) |=| f (u1)− f (u2) |/∈ T and

| c(u1,v1)− c(u2,v2) | is distinct for any two edges. Hence, c is a ST -coloring of G1×G2,

therefore , we have,

(2) | c(u1,v1)− c(u2,v2) |=| f (u1)− f (u2) |≤ spST (G1)

Define, c(u,v) = g(v). Let, (u1,v1),(u2,v2) ∈ V (G1×G2), such that u1,u2 ∈ V (G1), v1,v2 ∈

V (G2). Then,

| c(u1,v1)− c(u2,v2) |=| g(v1)−g(v2) |/∈ T and

| c(u1,v1)− c(u2,v2) | is distinct for any two edges. Hence, c is a ST-coloring of G1×G2.
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Therefore, we have

(3) | c(u1,v1)− c(u2,v2) |=| g(v1)−g(v2) |≤ spST (G2)

From equations (2) and (3)

spST (G1×G2)≤ spc
ST (G1×G2)≤ min{spST (G1),spST (G2)}

(4) spST (G1×G2)≤ min{spST (G1),spST (G2)}.

(iii) The proof can be obtained by using the definition of ST −edge span and proceeding in the

similar to the proof of (ii). �

Corollary 3.1. For any T -set, If G1 and G2 are two subgraphs of their Tensor products, (G1×

G2), then

(i) spST (G1×G2) = min{spST (G1),spST (G2)}

(ii) espST (G1×G2) = min{espST (G1),espST (G2)}.

Proof. (i) If G1 and G2 are subgraphs of (G1×G2), then by using theorem 2.1 (i)

spST (G1)≤ spST (G1×G2) and spST (G2)≤ spST (G1×G2). Thus,

(5) spST (G1×G2)≥ min{spST (G1),spST (G2)}

Hence, by using theorem 3.1 (ii) and equation (5),

spST (G1×G2) = min{spST (G1),spST (G2)}.

(ii) If G1 and G2 are subgraphs of (G1×G2), then by using theorem 2.1 (ii)

espST (G1)≤ espST (G1×G2) and espST (G2)≤ espST (G1×G2). Thus,

(6) espST (G1×G2)≥ min{espST (G1),espST (G2)}

Hence, by using theorem 3.1 (iii) and equation (6),

espST (G1×G2) = min{espST (G1),espST (G2)}.

�
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3.2. ST-coloring of Cartesian Product of Graphs.

Theorem 3.2. For any T -sets of positive integers containing zero and for any two graphs G1

and G2

(i) χST (G1�G2)≥ max{χST (G1),χST (G2)}

(ii) spST (G1�G2) = max{spST (G1),spST (G2)}

(iii) espST (G1�G2) = max{espST (G1),espST (G2)}.

Proof. (i) Since the Cartesian product of two graphs G1 and G2, G1�G2 contains subgraphs

that are isomorphic to both G1 and G2. Hence, χST (G1�G2) ≥ χST (G1) and χST (G1�G2) ≥

χST (G1) Hence,

(7) χST (G1�G2)≥ max{χST (G1),χST (G2)}.

(ii) Since the Cartesian product of two graphs G1 and G2, G1�G2 contains subgraphs that are

isomorphic to both G1 and G2. Hence, by using theorem 2.1 (i) spST (G1)≤ spST (G1�G2) and

spST (G2)≤ spST (G1�G2). Hence,

(8) spST (G1�G2)≥ max{spST (G1),spST (G2)}

Let f and g are two ST -colorings of G1 and G2 respectively such that sp f
ST (G1) = spST (G1)

and spg
ST (G2) = spST (G2). Let, c be a coloring on (G1�G2) defined as

c(u,v) = f (u)+g(v), (u,v) ∈V (G1�G2)

Let, (u1,v1),(u2,v2) ∈ E(G1�G2). Then we have two cases: either u1 = u2 and v1 is adjacent

to v2 in G2 or v1 = v2 and u1 is adjacent to u2 in G1.

Case I: u1 = u2 and v1 is adjacent to v2 in G2

| c(u1,v1)− c(u2,v2) |=| f (u1)+g(v1)− f (u2)−g(v2) |

=| f (u1)+g(v1)− f (u1)−g(v2) |

=| g(v1)−g(v2) |/∈ T
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and | c(u1,v1)− c(u2,v2) | is distinct for any two edges. Hence, c is a ST -coloring of G1�G2.

Hence,

(9) | c(u1,v1)− c(u2,v2) |=| g(v1)−g(v2) |≤ spST (G2).

Case II: v1 = v2 and u1 is adjacent to u2 in G1

| c(u1,v1)− c(u2,v2) |=| f (u1)+g(v1)− f (u2)−g(v2) |

=| f (u1)+g(v1)− f (u2)−g(v1) |

=| f (u1)− f (u2) |/∈ T,

and | c(u1,v1)− c(u2,v2) | is distinct for any two edges. Hence, c is a ST -coloring of G1�G2.

Hence,

(10) | c(u1,v1)− c(u2,v2) |=| f (u1)− f (u2) |≤ spST (G1)

Hence, from equations (9) and (10)

| c(u1,v1)− c(u2,v2) |≤ max{spST (G1),spST (G2)}

(11) ⇒ spST (G1�G2)≤ spc
ST (G1�G2) = max{spST (G1),spST (G2)}

Thus, from equations (8) and (11)

(12) spST (G1�G2) = max{spST (G1),spST (G2)}.

(iii) The proof can be obtained by using the definition of ST −edge span and proceeding in the

similar to the proof of (ii). �

Corollary 3.2. If G1 and G2 are two graphs such that G1 is a subgraph of G2, then

(i) spST (G1�G2) = spST (G2)

(ii) espST (G1�G2) = espST (G2).
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Proof. (i) Since, G1 is a subgraph of G2, then,by using theorem 2.1 (i), spST (G1)≤ spST (G2).

Thus,

max{spST (G1),spST (G2)}= spST (G2), Hence,

spST (G1�G2) = spST (G2).

(ii) Since, G1 is a subgraph of G2, then, by using theorem 2.1 (ii), espST (G1) ≤ espST (G2).

Thus,

max{espST (G1),espST (G2)}= espST (G2), Hence,

espST (G1�G2) = espST (G2)

�

Now the following is the generalization of theorem 3.2 (ii) and 3.2 (iii) to Cartesian product

of n graphs G1,G2,G3, ...,Gn as follows:

Theorem 3.3. (i) spST (G1�G2�G3....�Gn) =max{spST (G1),spST (G2),spST (G3), ...spST (Gn)}

(ii) espST (G1�G2�G3�G3....�Gn) = max{espST (G1),espST (G2),espST (G3), ...espST (Gn)}

Proof. (i) For any T-sets of positive integers containing zero, We shall prove this by the method

of induction. Let, G1 and G2 are two graphs, then by using theorem 3.2 (ii), spST (G1�G2) =

max{spST (G1),spST (G2)}. Let, the result is true for any k ≤ n−1 such graphs. Then,

spST (G1�G2�G3�G3....�Gn−1) = max{spST (G1),spST (G2),spST (G3), ...spST (Gn−1)}. Let,

H = G1�G2�G3�G3....�Gn−1. Then,

spST (G1�G2�G3....�Gn−1�Gn) = spST (H�Gn) = max{spST (H),spST (Gn)}

= max{spST (G1),spST (G2), ...spST (Gn)}.

(ii) For any T-sets of positive integers containing zero, We shall prove this by the method of in-

duction. Let, G1 and G2 are two graphs, then by using theorem 3.2 (iii), espST (G1�G2) =

max{espST (G1),espST (G2)}. Let, the result is true for any k ≤ n− 1 such graphs. Then,
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espST (G1�G2�G3�G3....�Gn−1)=max{espST (G1),espST (G2),espST (G3), ...espST (Gn−1)}.

Let, H = G1�G2�G3�G3....�Gn−1. Then,

espST (G1�G2�G3....�Gn−1�Gn) = espST (H�Gn) = max{espST (H),espST (Gn)}

= max{espST (G1),espST (G2), ...espST (Gn)}

�

3.3. ST-chromatic number of Corona Product of Graphs.

Theorem 3.4. For any two vertex disjoint graph G1 and G2 and for any T -set,

n+χST (G1)≤ χST (G1 ◦G2)≤ m+n.

Proof. Let T be a set of positive integers containing zero. Let, V (G1) = {v1,v2,v3, ....,vm} and

V (G2) = {vm+1,vm+2,vm+3, ....,vm+n}. Now, let us rename the vertices of G1 as {vi j : j = 0}

and the vertices of ith copy of G2 after Corona product with G1 as {vi j | j = m+ 1 to m+ n},

where, i= 1 to m.

Let, c be a coloring defined on G1 ◦G2 as,

c(vi j) = (k+2)i+ j.

Now, we need to show that

(13) | c(vi j)− c(vlm) |6=| c(vab)− c(vcd) |

where, (vi j,vlm),(vab,vcd) ∈ E(G1 ◦G2).

If (vi j,vlm),(vab,vcd) are adjacent then equation (13) holds. Hence assume that,

(vi j,vlm),(vab,vcd) are non-adjacent edges. Hence, i+ j, l +m,a+b,c+d are distinct positive

integers. Without loss of generality, let i+ j is the largest and c+d is the smallest integer. Then,

we have either c+d < a+b < l +m < i+ j or c+d < l +m < a+b < i+ j.

Let us consider, c+d < a+b < l +m < i+ j.
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If possible equation (13) is not true. Then,

| c(vi j)− c(vlm) |=| c(vab)− c(vcd) |

⇒ | (k+2)i+ j− (k+2)l+m |=| (k+2)a+b− (k+2)c+d |

⇒(k+2)i+ j− (k+2)l+m = (k+2)a+b− (k+2)c+d

⇒(k+2)(i+ j)−(c+d)− (k+2)(l+m)−(c+d) = (k+2)(a+b)−(c+d)−1

⇒(k+2)(i+ j)−(c+d)+1 = (k+2)(l+m)−(c+d)+(k+2)(a+b)−(c+d)

⇒(k+2)(l+m)−(c+d)+(k+2)(a+b)−(c+d)− (k+2)(i+ j)−(c+d) = 1

which is not true for any k, as (i+ j)− (c+d)> (l +m)− (c+d)> (a+b)− (c+d), Hence,

(14) | c(vi j)− c(vlm) |6=| c(vab)− c(vcd) |

where, (vi j,vlm),(vab,vcd) ∈ E(G1 ◦G2)

The proof for c+d < l+m < a+b < i+ j is analogous to the proof for c+d < a+b < l+m <

i+ j.

Hence, c is a ST-coloring. In G1 ◦G2, each of ui j’s of G1 are adjacent to all vi j’s of ith copy of

G2. Then for all j = 1 to n,

| c(ui j− c(vi1)) |6=| c(ui j− c(vi2)) |6= ..... 6=| c(ui j− c(vin)) |

⇒c(vi1) 6= c(vi2) 6= c(vi3) 6= .... 6= c(vin)

⇒ all the vertices of ith copies of G2 in G1 ◦G2 will have distinct colors. Hence | v(G2) |= n

no’s of colors will be required to color the vertices of ith copy of G2 in G1 ◦G2 for ST-coloring

and χST (G1) is the minimum number of colors for ST -coloring of G1. Hence, χST (G1 ◦G2)≥

n+ χST (G1). But in G1 ◦G2, there will be m copies of G2. Now to minimize the number of

positive integers (or colors) of the graph after Corona product, we can assign m numbers of

positive integers (or colors) to the each vertices of G1, then every copies of G2 can have same

set of positive integers (or colors) for the vertices, because, in G1 all the vertices are of different

positive integers (or colors). Hence, χST (G1 ◦G2)≤ m+n and

χST (G1)+n≤ χST (G1 ◦G2)≤ m+n.
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�

Corollary 3.3. If Km is a complete graph with m vertices and G be any graph with n vertices,

then ST -chromatic number of their Corona product Km ◦G is m+n, i.e., χST (Km ◦G) = m+n

Proof. Let T be a set of positive integers containing zero with the largest element k. Let the

vertices of Km are {vi j : j = 0} and the vertices of ith copy of G after Corona product with Km

as {vi j | j = m+1 to m+n}, where i= 1 to m

Let, c be a coloring defined on G1 ◦G2 as,

c(vi j) = (k+2)i+ j.

Then, clearly c is a ST -coloring of (Km ◦G).

Now, the vertices of Km, are adjacent to each other. Hence m positive integers (or colors) will

be required for ST -coloring. Moreover, In Km ◦G, each of vi j
′s of Km are adjacent to all vi j

′s of

ith copy of G. Then, for all j = 1 to n,

| c(ui j− c(vi1)) |6=| c(ui j− c(vi2)) |6= ..... 6=| c(ui j− c(vin)) |

⇒c(vi1) 6= c(vi2) 6= c(vi3) 6= .... 6= c(vin)

⇒ all the vertices of ith copies of G in Km ◦G will have distinct positive integers or colors.

Hence | v(G) |= n no’s of positive integers or colors will be required to color the vertices of ith

copy of G in Km ◦G2 for ST -coloring and every copies of G can have the same set of positive

integers (or colors) for the vertices, because, in Km all the vertices are of different positive

integers (or colors). Hence, χST (Km ◦G) = m+n, which verifies the lower bound of the above

theorem 3.4. �

Example 3.3.1. For any T -set, χST (K4 ◦P3) = 7.

Proof. Since, χST (K4) = 4 and | V (P3) |= 3. Hence by using corollary 3.3, χST (K4 ◦P3) =

χST (K4)+ |V (P3) |= 4+3 = 7. �

4. CONCLUSION

In the paper, we establish some results related to ST -chromatic number of some graph prod-

ucts, viz. Tensor products, Cartesian products and Corona products. We also find few results
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related to ST -span and ST -edge span of Tensor products and Cartesian products of graphs. In

continuation, one can consider other products of graphs for future research. Moreover, in this

communication, we find closed expressions related to ST -span and ST -edge span of Tensor

product and Cartesian product only. So, finding ST -span and ST -edge span of Corona product

and other graph products can be considered for future study.
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