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Abstract: Melting and chemical reaction impacts on heat and mass transfer of MHD Casson fluid flow over a 

porous stretching surface is examined numerically in this article. The governing partial differential equations are 

converted by using adequate transformations and the resulting ordinary differential equations are solved numerically 

using finite difference scheme along with Thomas algorithm. The graphical illustrations are presented for velocity, 

temperature and concentration distributions. Also Skin friction, Nusselt number and Sherwood number are 

elucidated for chosen values of various parameters. To validate the numerical method employed, the present results 

are compared with the existing literature and found to be in good agreement. 
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1. INTRODUCTION 

The model developed by Newtonian fluids cannot explain all the various flow characteristics in 

this modern technology. For this reason, theory of non-Newtonian fluid flow has become 

significant. As there are numerous applications of these studies such as casting, production of 

paper, extrusion of polymers. Casson fluid is one among such non-Newtonian liquids which has 

attracted many scholars due to its applications in drillings techniques, bio-engineering operations 

and many more. Some important Casson fluids are jelly, tomato sauce, human blood and soon.  

Research work on various properties of heat transfer in Newtonian and non- Newtonian liquids 

can be found in the literature [1, 2, 3]. In consideration of Viscous dissipation, effect of heat flux 

on non-Newtonian fluid over a porous moving surface was investigated by Kishan and Shashidar 

[4]. Hayat and Qasim [5] analyzed the impact of thermophoresis on Maxwell fluid flow. Mixed 

convection with the effects of various parameters on MHD flow is examined by Narayan [6].  

The model of the Casson fluid flow was initially represented by Casson [7] to predict the 

performance of pigment-oil suspensions. The flow of Casson fluid with radiation effects over 

stretching surface in porous medium was discussed by Pramanik [8]. The reactions of 

heterogenous/homogeneous in the flow of Casson fluid was explained by Khan et al. [9]. The 

impact of Soret and Dufour on the flow of Casson fluid was examined by Hayat et al. [10]. The 

unsteady MHD flow of Casson liquid past a stretching plate considering various parameters was 

discussed by Aziz and Afify [11]. Eldabe and Salwa [12] investigated the flow of Casson fluid 

between rotating cylinders. Khalid et al [13] has presented his studies on convective motion of 

Casson fluid past a oscillating vertical plate. Heat transfer of Casson liquid past a porous rotating 

plate was analysed by Raju and Sandeep [14]. Mukhopadhyay [15] constructed Unsteady flow of 

Casson liquid past a stretching surface with suction/injection. Whereas the Unsteady heat 

transfer flow of Casson liquid past a moving plate was discussed by Mustafa et al. [16].  

In MHD, mass transfer plays significant role because of its significance in many scientific 

approaches such as convective transfer of molecules and atoms. Mass transfer of MHD Casson 

liquid past a stretching surface was investigated by Bhattacharyya [17]. Influence of suction on 
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MHD heat mass transfer past a shrinking surface is investigated by Muhamin and Khamis [18].  

Melting heat transfer process in non-Newtonain fluids has played significant role because of its 

applications in thermal engineering such as solidification, recovery of geothermal energy, 

magma and many more. Melting effects on MHD Williamson nanofluid flow was investigated 

by Krishnamurthy et al [19]. Prasannakumara et al [20] analysed the phenomenon of melting on 

MHD Dusty fluid flow past a stretching surface considering the effects of heat 

absorption/generation and radiation. Impact of melting on MHD flow past a moving plate with 

radiation was observed by Kalidas [21]. Sarkar [22] shown the influence of melting MHD 

Casson nanofluid wedge flow. MHD Carreau fluid flow over melting surface is examined by 

Ramdev et al. [23].  

Heat transfer in the presence of radiation has large number of applications in various industrial 

processes such as Satellites, missiles, space vehicles and soon. Heat and mass transfer with 

radiation over a moving plate in porous medium was addressed by Makinde [24]. Heat transfer 

characteristics on the flow of Casson nanofluid over a stretching surface was examined by 

Ibrahim et al [25]. 

The past studies reveals that few works exist in the literature presenting the influence of mass 

transfer on MHD Casson fluid flows. Recently, Fazle and Kalidas [26] presented the melting 

effects on the MHD flow of Casson fluid over stretching surface. So our present investigation is 

to fill this gap. The theme of the present study is to extend the effort of Fazle and Kalidas [26]. 

The present work is to concentrate on heat and mass transfer of MHD Casson fluid flows past a 

stretching surface. In this study, fluid is considered in porous medium, also melting effects and 

thermal radiation are included. The equations governing the flow are solved numerically and the 

impact of prominent parameters is analysed graphically. 

 

2.  FORMULATION OF MODEL 

Figure 1 depicts the mathematical model of a 2D steady flow of a MHD Casson fluid past a 

stretching sheet. Here we consider that the sheet is horizontal and linear in the existence of a 
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porous medium also the fluid is melting at a steady rate into a constant property. Cartesian model 

is preferred such that x-axis is along the surface and y-direction is perpendicular to the sheet and 

flow is confined to y > 0. The fluid is assumed to be conducting electrically and subjected to 

applied magnetic field in normal direction. Let uw(x) = cx be the stretching sheet velocity and the 

external flow velocity be ue(x) = ax, where c > 0 and a > 0 be the constants. The melting and free 

stream temperatures of the liquid be taken as Tm and T∞ accordingly. The constituent equations 

determining the Casson liquid is represented by: 
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Where π = eijeij, is the deformation rate, πc is a critical value of the non-Newtonian fluid, Py is 

fluid yield stress, eij is the (i, j)th component of the deformation rate, μB is the plastic dynamic 

viscosity. 

Under the above conditions, the equations governing the flow are [26]: 
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Here K is permeability, u, v are the velocity components, k is thermal conductivity, λ is latent 

heat α is Thermal diffusivity, ν is kinematic viscosity, ρ is the density of the fluid, β is Casson 

fluid parameter, cs is heat capacity, cp is the specific heat at constant pressure, qr is radiative heat 

flux, D is mass diffusion and k1 is rate of reaction. 

Using the approximation of Rosseland [27], we have 
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Where σ* is Stefan-Boltzmann constant, and k* the absorption coefficient respectively 

Using equation (8), equation (4) can be expressed as  
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To transform the equations governing the flow, the following similarity variables are hosted: 
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Where ψ is the stream function, using which the velocity components are defined as  
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Now by means of equation (11), the governing equations are formulated as 
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Expressions of physical quantities such as Skin friction, Nusselt number and Sherwood number 

are expressed as under: 
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3. NUMERICAL PROCEDURE 

The formulated governing equations (12), (13) and (14) are highly non-linear and coupled. Due 

to this non-linearity and added mathematical difficulties in the process of obtaining the solution 

has led us to apply numerical method for this model. The influence of diverse parameters will 

have huge impact on the characteristics of heat and mass transfer. Therefore in this section, 

numerical solutions for the governing equations subjected to boundary conditions (15) by means 

of implicit finite difference scheme. 

The procedure employed to obtain the numerical solution for the mathematical model is 

presented as follows:  

➢ Initially, momentum equation is linearized by employing Quasi Linearization Method 

[28] 

➢ By means of Implicit finite difference scheme, the system of linear Ordinary differential 

equations is converted to form difference equations 

➢ These algebraic equations are then expressed in matrix-vector form 

➢ Thomas Algorithm is applied to solve this linear system. 

As the flow equations are highly non-linear, iteration procedure is employed. In order to carry 

out the computations, initially equation of momentum is solved to obtain f(η), which is necessary 

for solving coupled energy equation and mass equations subjected to the boundary conditions 

employing Thomas algorithm. The numerical values of f(η) are assumed as iterative solutions of 

(n+1)th order and F(η) as the solution of nth order iteration. To check the convergence of the 
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technique, the same program is run for slightly different values of h and no significant changed 

was noticed in the value. The iterations are repeated until the maximum difference between the 

present and next iteration values in all the dependent variables satisfy 10-5.   

The accuracy of the numerical technique is verified by comparing the values of )0()0(   andf  

for different parametric values with the existing results of Mahood [26] and they are found to be 

in good agreement. 

 

4. RESULTS AND DISCUSSION: 

For the purpose of having rich understanding of the physical model of the problem, a numerical 

study is performed with the impact of various parameters such as stretching parameter ε, 

Magnetic parameter M, non-Newtonian Casson fluid parameter β, radiation parameter R, 

permeability parameter Ω, Prandtl number Pr, melting parameter Me, Schmidth number Sc and 

chemical reaction parameter k1 on velocity, temperature and concentration fields which 

determine the behavior of the fluid flow.  

Table 1:  Comparison of )0(f  for different values of ε and Me when Pr = 1, M = Ω = R = 0, 

Sc = 0.1, k1 = 0, β→∞ 

 Results of Mahood [26] Present Results 

ε Me = 0 Me = 1 Me = 2 Me = 3 Me = 0 Me = 1 Me = 2 Me = 3 

0 1.232588 1.037003 0.946851 0.891381 1.248743 1.038628 0.943157 0.885693 

0.1 1.146561 0.964252 0.880442 0.828948 1.164316 0.967658 0.878432 0.82483 

0.2 1.05113 0.883675 0.806876 0.759752 1.069705 0.888408 0.806249 0.756987 

0.5 0.713295 0.599089 0.547021 0.515172 0.729753 0.605187 0.548776 0.515069 

1 0 0 0 0        0 0 0 0 

2 -1.887307 -1.580484 -1.442747 -1.359211 -1.980601 -1.626101 -1.468287 -1.375376 

3 -4.276541 -3.577332 -3.265006 -3.076102 -4.532818 -3.711932 -3.345325 -3.130303 

Numerical values of Skin friction, Nusselt number and Sherwood number are computed and 

presented in the tabular form. Table 1 exhibit that, the impact of melting parameter and stretching 
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parameter is to reduce the skin friction for selected of values of stretching parameter. Whereas 

melting effect causes enhancement in Nusselt number but it decline with stretching parameter 

which is evident from table 2. To validate the numerical method a comparative study is done by 

tabulating the present results along with the existing results [26]. It is observed that the values 

are in excellent agreement. Also the influence of chemical reaction on the concentration of liquid 

is studied by computation of Sherwood number for different values of k1 shown in table 3. It is 

obvious from the table that the sherwood number raises with the k1.  

 

Table 2: Comparison of )0(  for different values of ε and Me when Pr = 1, M = Ω = R = 0, Sc 

= 0.1, k1 = 0, β→∞ 

 Results of Mahood [26] Present Results 

ε Me=0 Me=1 Me=0 Me=1 

0 -0.570465 -0.361961 -0.559217 -0.364089 

0.5 -0.692064 -0.438971 -0.671162 -0.4414 

2 -0.979271 -0.621187 -0.92051 -0.620226 

5 -1.396355 -0.886425 -1.247393 -0.870098 

6 -1.511165 -0.959514 -1.330061 -0.936556 

 

Table 3: Comparison of )0( for different values of ε and k1 when Pr = 1, M = Ω = R = 0, Sc = 

0.1, Me = 0, β→∞ 

ε  k1 =0 k1 =1 

0 -0.271286 -0.202069 

0.5 -0.285227 -0.212885 

2 -0.316475 -0.2372 

5 -0.358346 -0.269971 

6 -0.369019 -0.278353 
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(a)            (b) 

Figure 1: Impact of (a) M and ε (b) Ω and ε on the velocity profiles (……ε = 0.5,     ε = 1.5) 

 

The impact of magnetic parameter and permeability parameter on velocity distribution is 

revealed in figure 1. It is clear that the amplitude of the velocity reduces with the escalation in 

the magnetic parameter. And hence lessening the thickness of velocity boundary layer. It is due 

to the fact that, when magnetic force is applied normal to the flow, a resistive type of force is 

generated and by accelerating the magnetic effect, the drag force rises and which decelerates the 

velocity of the flow. And the outcome of permeability is to reduce the velocity which is shown is 

figure 1(b). These outcomes are seen when the stretching parameter ε = 1.5, whereas a reverse 

trend is observed when ε=0.5. Figure 2 elucidates the impact of Casson fluid parameter β and the 

Prandtl number Pr on velocity profiles for both ε = 1.5 and ε = 0.5. It is evident from the graphs, 

that fluid motion decreases with β and Pr when ε = 1.5. It is because, as β value is enhanced, the 

yield stress reduces and the fluid becomes more viscous. Hence the motion of the fluid 

decelerates. Whereas results are reversed when ε = 0.5. For very large values of β, the fluid 

totally behaves like a Newtonian fluid. Due to this fact, the thickness of velocity boundary layer 

is higher for Casson fluid when compared with Newtonian fluids. Similarly, influence of Prandtl 

number is to reduce the motion of the fluid for ε = 1.5 and velocity rises when ε = 0.5. 
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(a) (b) 

Figure 2: (a) Impact of β and ε (b) Pr and ε on the velocity profiles (……ε = 0.5,     ε = 1.5) 

 

  

(a) (b) 

Figure 3: (a) Impact of M and ε (b) Ω and ε on the temperature profiles (…ε = 0.5,    ε= 1.5) 

 

In Figure 3, the temperature profiles are plotted, for a variety of values of M and Ω keeping other 

parameters as fixed. It is evident from the figures that, the temperature of the fluid amplifies with 

the rise in magnetic parameter as well as permeability parameter for both the cases of ε = 0.5 and 

ε =1.5. This is justified due to the fact the Lorentz force helps to enhance the fluid temperature. 

The impact of β on temperature distribution is illustrated in figure 4(a). It is evident from the 

graph that the fluid temperature acts as a growing function of β for both cases ε = 1.5 and ε = 0.5. 

Correspondingly, the impact of Prandtl number is to enhance the temperature of the Casson fluid 

for both the cases which is illustrated in figure 4(b). 
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(a) (b) 

Figure 4: (a) Impact of β and ε (b) Pr and ε on the temperature profiles (…ε = 0.5,     ε= 1.5) 

  

(a) (b) 

Figure 5: (a) Impact of R and ε (b) Me and ε on the temperature profiles (…ε = 0.5,    ε= 1.5) 

  

(a) (b) 

Figure 6: (a) Impact of Sc and ε (b) k1 and ε on the concentration profiles (…ε = 0.5,   ε= 1.5) 
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Figure 5(a) explains the impact of radiation on the fluid temperature on the melting surface. It is 

illustrated graphically, that the temperature reduces with the increase in radiation parameter. It is 

due to the reason that radiation enhances the rate of heat transfer on melting surface. And the 

influence of Melting parameter Me on temperature is sketched in figure 5(b). The temperature of 

the Casson fluid decreases monotonically from Tm at the surface to T∞ at infinity. For both the 

cases of stretching parameter, temperature falls down at the boundary layer. The impact of 

Schmidt number on concentration profiles is displayed in figure 6(a). Graphical representation 

shows that concentration profile is increasing function of Sc. Figure 6(b) demonstrates the 

concentration profiles with the variation of chemical reaction parameter. It is evident from the 

graph that an increase in the chemical reaction causes reduction in concentration field. 

 

5.  CONCLUSIONS: 

The development of Casson fluid flow with heat and mass transfer over porous melting 

stretching surface in the presence of chemical reaction is investigated numerically. The converted 

flow equations are solved numerically using Finite difference scheme with Thomas algorithm. 

The influence of various pertinent parameters on velocity, temperature and concentration fields is 

elucidated graphically. The significant results are listed as follows: 

➢ The impact of magnetic parameter, permeability, Prandtl number and Casson fluid 

parameter is to decline velocity, accordingly velocity boundary layer thickness reduces. 

➢ Thermal radiation and melting effects tends to depreciate the temperature distribution. 

➢ Temperature of the fluid rises with Magnetic field, permeability, Prandtl number and 

Casson fluid parameter. 

➢ Schmidt number helps to boost the concentration of the liquid. 

➢ Enhancement in chemical reaction parameter reduces the concentration. 

➢ Impact of melting and stretching parameter is to reduce Skin friction. 

➢ Nusselt number enhances with melting and falls with stretching parameter. 

➢ Sherwood number increases with chemical reaction and decreases with stretching 

parameter.  
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