
*Corresponding author

E-mail address: mayaz.alig@gmail.com

Received October 31, 2020

520

 Available online at http://scik.org

 J. Math. Comput. Sci. 11 (2021), No. 1, 520-542

https://doi.org/10.28919/jmcs/5152

ISSN: 1927-5307

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE

LANGUAGE FOR CYBER PHYSICAL PRODUCTION SYSTEMS

IGOR NEVLIUDOV1, VLADYSLAV YEVSIEIEV1, JALAL HASAN BAKER2, M. AYAZ AHMAD2,*,

VYACHESLAV LYASHENKO3

1Department of Computer-Integrated Technologies, Automation and Mechatronics,

Kharkiv National University of Radio Electronics, Ukraine

2Department of Physics, Faculty of Science, University of Tabuk, Saudi Arabia

3Department Informatics, Kharkiv National University of Radio Electronics, Ukraine

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. This paper considers the issues of software development automation for cyber-physical production

systems within the framework of the Smart Manufacturing (SM) and Industry 4.0 concepts. The development of

cyber-physical production systems (CPPS) for each enterprise is an individual task that takes into account the

specifics of the production process, the requirements for data visualization at each level from Supervisory Control

And Data Acquisition (SCADA) to Enterprise Resource Planning System (ERP) in a single information space using

different technologies for processing and storing data. To ensure all the requirements that are specified by the

customer in the technical requirement (TR), the authors propose to automate the process of developing a cyber-

physical production systems Human-Machine Interface (HMI) prototype at an early stage of drafting the terms of

reference together with the customer, which will make it possible to take into account all the requirements for

visualizations information. Based on the experience gained in the development of cyber-physical production

systems, the authors have developed a declarative cyber-design modeling language based on parameters

mathematical description of the and Graphical User Interface (GUI) elements events, which allows to simplify the

521

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

process of HMI cyber-physical production systems development at an early stage by generating fragments of

program code for object-oriented programming languages.

Keywords: Industry 4.0.; smart manufacturing; cyber-physical production systems; human-machine interface;

graphical user interface; modeling language.

2010 AMS Subject Classification: 93A30.

1. INTRODUCTION

Modern high-tech production is not possible without the implementation of Industry 4.0

concepts, the basis of which is the creation of Digital Twins, which are implemented in the form

of cyber-physical production systems (CPPS). CPPS is the synthesis of physical (sensors,

executing mechanisms) and cybernetic (control programs, monitoring, decision-making,

visualizations) components in a single information space [1-5]. Considering the cybernetic

component as a set of software and modules that, using the Human-Machine Interface (HMI), to

interact with users at levels from Supervisory Control And Data Acquisition (SCADA) to

Enterprise Resource Planning System (ERP) [6-11]. A critical analysis of publications showed

that the development of CPPS software is based on the following methodologies: Rapid

Application Development (RAD), Rational Unified Process (RUP), Disciplined Agile Delivery

(DAD), is partially possible, but none of the listed methods does not allow automation of CPSS

cyber part development process [12-15]. Based on their own experience in creating CPPS, the

authors developed a declarative HMI cyber-design modeling language based on the properties of

object-oriented programming languages GUI elements.

2. DEVELOPMENT OF A GUI-BASED HMI MODELING LANGUAGE FOR CYBER-

PHYSICAL PRODUCTION SYSTEMS

2.1 Definition of the CPPS cyber design modeling language keywords

Let us define the concept of a cyber design modeling language for CPPS as a declarative (non-

procedural) language, the purpose of which is to define and describe terminologies based on

522

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

models and relationships between metadata and domain data and ways of transforming them.

Within the framework of the research data, we define the following keywords:

Form (Windows Form) – some dedicated and uniquely identified part of the subject area.

Within the framework of these studies, it has the following properties:

slave

n

master FormFormForm =
1

 (1)

slavr

n
n

master FormForm
2

1
=
=

ormParameterF is a types and methods set of describing the subject area properties,

highlighted and grouped according to some characteristics, as well as identified by name.

Purpose is a description of the parameters necessary and sufficient for displaying and modeling a

visual presentation Form .

slave

zp

master

zp

FormormParameterFparameterparameter

FormormParameterFparametrparameter

2

1

1

1

1

1

)),,((

)),,((








 (2)

EventForm is an event or group of events (action) that can occur (have already occurred or

will occur) with the subject area at some moment or time interval. It can be identified by time

(necessity) and the object to which the event belongs. Only one user-initiated event can occur

with one object at a time.

slave

ce

master

ce

FormEventFormeventevent

FormEventFormeventevent

2

2

1

1

1

1

)),((

)),((








 (3)

lementParameterE are the types and ways of describing GUI elements properties, single or

grouped according to some characteristics and identified by name. Purpose is a description of the

parameters necessary and sufficient for the presentation and modeling of the element visual

representation within a single information object.

11

1
)),,((

thp
mElementForlementParameterEparametrparameter  (4)

ntValueEleme is the value assigned to the type and way of describing the GUI element

properties. Purpose is the assignment of a specific value (integer, linguistic, boolean) to a type or

523

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

method of describing parameters, depending on the functional features and the implementation

of a visual intuitive interface for each part of the subject area.

py
parameterntsValueElementsValueElementsValueEleme ),,(

21
 (5)

ntEventEleme is an event, a group of events or a condition that can occur (have already

occurred or will occur) with a GUI element that performs a specific function at some point or

time interval.

rntEventElemeeeventariableLingusticVwariableLingusticV ! (6)

ariableLingusticV is one variable named (in the natural language of the system) logical

description of actions when events occur. Such descriptions can be grouped according to a

number of characteristics. Purpose is the assignment to a class of an event or a single event of a

linguistic intuitively understandable user of the variable developed model to describe reactions

when an event occurs.

ariableLingusticVariableLingusticV

loutionContainerSolutionsContainerS

w

d



=!
 (7)

olutionsContainerS is a named description of reactions when an event or a group of events

occurs at a certain point in time to an element (group of elements) or subject area. Has a rigidly

structured structure (depending on the high-level programming language and development

environment), which is necessary to achieve the development goal or is indicated in the TR.

ariableLingusticVariableLingusticV

loutionContainerScod

w

dlw



=
 (8)

2.2 Development of specifications for the CPPS cyber-design modeling language

The following data model language specification is proposed:

- allowed alphanumeric characters that are supported by development environments for high-

level programming languages and correspond to the ASCII code table: + - \ . , ! “ < > = () $ % &

~ * _ & @ space ; { };

524

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

- key words: basic concepts in the form of words reserved in the developed NM and are used

to describe key features are described above.

- identifiers, used to indicate the following features:

- attribute of parameters, events belonging to a domain or non-domain type: domen ,

not_domen . Domains of the corresponding characteristics (values) belonging to the

enumerated (list) type, which can be selected from a pre-formed list. An example is how some

parameters ormParameterF , display Form , which can take values true or false ,

parameter Align which is inherent)(
с_

z

писокp
parameterdom and)(

с_

h

писокp
parameterdom

from expression:

};,...,,{

};,...,,{

};,...,,{

};,...,,{

21

1

21

1

21

1

21

1

r

e

rr

r

c

e

cc

c

h

p

hh

h

z

p

zz

z

eventeveneventntEventEleme

eventeventeventEventForm

parameterparameterparameterementParmeterEl

parameterparameterparameterrmParmeterFo

=

=

=

=

);(
спис_

z

pz
parameterdomormParameterF = (9)

);(
спис_

h

ph
parameterdomlementParameterE = ;

);(
спис_

1 c

ec
eventdomEventForm =

);dom(eventntEventEleme r

списer _

1 =

where)(
спис_

z

p
parameterdom ,)(

спис_

h

p
parameterdom ,)(

спис_

c

e
eventdom ,

)dom(event r

списe _
 are the domains of the corresponding characteristics (values) belonging to the

enumerated (list) type, which are selected from a pre-formed list, which can take on the values

fixed by the CPPS development environment specified in the TR.

- data type of values (value), which defines the characteristics of the parameters

ormParameterF and ementParametrEl (text, boolean, integer, integer negative, text word

combination).

525

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

- basic concepts that make it possible to link events mElementFor and ntEventEleme

containing a set of defined event , belonging to a specific visual graphic with

olutionContainerS (cod) through ariableLingusticV (name).

As you can see, unlike keywords, the proposed identifiers can theoretically be redefined, but

this gives the errors possibility, as a result of which the identifiers listed above are included in the

fixed key layers dictionary.

- literals, a specific set of values that are not represented by an identifier.

String literals are represented as a sequence of allowed characters with different types of

writing (uppercase and lowercase) letters. E.g., name_form, the name of the form that is used in

the parameters Caption , Name etc., And also assigning a unique name. (name) for each

ariableLingusticV , which contains a certain piece of program code. An example of "save in

the database", "calculate the result", etc., which are set by the end user for the convenience of

using the developed language.

Algebraic literals are a description of simple logical operations like eTrue, Fals , which

allow you to set values (value) this or that parameter (parameter), owned by

ementParametrEl , ormParameterF , necessary and sufficient to describe the properties of

developed CPPS visual elements or software modules in accordance with the requirements of the

TR.

Reserved literals represent a word, phrase or abbreviation, which makes it possible to select

one or another property of the parameter necessary to achieve the requirements specified in the

technical specification by the customer. An example would be a shape property teWindowsSta

in the RadStudioXE6 development environment, which can select the following reserved word

abbreviations as zed, wsMaximisMinimizedwsNormal,w , that is, at the initial launch, the

developer can set the display of the form. wsNormal – the display by default, in the form in

which it was created at the design stage, dwsMinimize – the form is displayed minimized on

the taskbar, dwsMaximize – when launched, the form expands to fit the entire desktop.

526

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

Reserved literals can be shared between ormParameterF and ementParametrEl , and also

specialized, that is, belong to a certain visual form that describes the specifics of a particular

element. But, it should be noted that reserved characters for determining the values of one or

another visual components parameter that have the same purpose, but can perform different

specified functions and process events in the same development environment.

Types of presented values, which contain some parameters ormParameterF и

ementParametrEl , are permissible in the field of application:

Integer data type (integer) allows you to assign a parameter ormParameterF or/and

ementParametrEl a defined and required digital value of the dimension or coordinates of the

visual element placement relative to Form . Used primarily to describe visual graphical

elements. The smallest logical element of a two-dimensional digital image in a bitmap (pixel).

The length of the line depends on the screen resolution and the technical specification

requirements are presented by the customer to the developer.

Negative integer allows you to assign a parameter to a specific value within the (,...,n,,,- 3211)

range, which belongs exclusively to ementParametrEl and describes numbering in this

context:

1− – no numbering, parameter is not used;

– ,...,n,, 321 – numbering of a graphic image (icon) that belongs to a certain parameter (

parameter) for mElementFor .

Text / linguistic (char) allows you to assign to a parameter logically ordered values of symbols

that contain explanations necessary for the user or the graphic elements name necessary for the

convenience of working with CPPS. Also, this type of value representation is used to set a

specific name ariableLingusticV , which is assigned to the event EvenForm ,

ntEventEleme .

Logical (boolean) – can take only two values – true (true) or false (false) and play the role of a

switch for using one or another parameter in ormParameterF and ementParametrEl .

527

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

Text phrase (enumerated type) is the the data type specified by the list in the domain form

presented above allows you to specify a list of reserved words in the development environment

or abbreviations that can be accepted by one or another parameter for ormParameterF and

ementParametrEl .

Separators are the symbols highlighted the basic elements of the developed modeling

language syntactic structure.

< Form > (angle brackets Form) – is used to indicate a keyword that indicates the beginning

of Form meta description in modeling language design.

</ Form > (slash angle brackets Form) – is used to indicate a keyword that indicates the

completion of the Form meta description in modeling language design.

For the proposed keyword construction, at the beginning and end of Form meta description

the following restrictions are imposed: Form name can be numbered as 1Form or literal

definition for example rForm_maste or peratForm_add_o . In this case, the key word for

the beginning of Form meta description must coincide with the key word for the end of the

meta description in modeling language design. If this design requirement is not met, the

interpreter of the modeling language will not be able to perceive the content as a meta-

description of all the necessary parameters and events inherent in this Form .

{ (opening curly brace) is the required beginning character of the Form and mElementFor

meta description line.

} (closing curly brace) is required meta description line terminator of Form and

mElementFor .

(number sign) – after this symbol, the structure of the modeling language design interpreter

perceives the beginning of the user interface graphical visual elements description (

mElementFor).

/# (slash number sign) – after this combination of symbols, the YM interpreter considers that

the description of the user interface graphical visual elements (mElementFor) is finished.

/ (slash) – used to define hierarchies of visual graphical elements meta description (

mElementFor) according to the CPPS construction tree, and is applied internally # /# meta

528

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

descriptions of Form . 2/1 mElementFormElementFor must be understood as

2mElementFor be inside 1mElementFor and is an integral part of it.

[] square brackets are used for the task of meta description of required parameters and events

ormParameterF , EvenForm , ementParametrEl , ntEventEleme .

; (semicolon) - a mandatory symbol of modeling language structures, which shows that for a

given parameter or event assignment of value and name respectively, completed, applied

internally [].

, , (comma-separated list) – used to list names parameter for ormParameterF ,

ementParametrEl , as well as event for EvenForm , ntEventEleme provided that for a

set of several parameter or event values value and name respectively, the same and

applied internally [].

= (equal sign) – assigns to parameter a specific data type value and is used to indicate an

event (event) of certain name from ariableLingusticV which contains a link to cod or a

fragment of it in olutionContainerS . It should be noted that, depending on the context (logic

and meaning of the actions performed), this sign can also be interpreted as an assignment

instruction, according to which the value belonging to it is determined for the specified basic

parameter.

Comments – all characters and lines written inside this construction are ignored by the

modeling language (ML) interpreter and are perceived as comments. Alphanumeric characters of

national alphabets supported by the operating system and development environment are allowed.

The limitation for comments is that the sequence should not exceed 255 (FF) characters.

?** (question mark with two asterisks) shows that the given characters are followed by a

comment, which is ignored by the ML interpreter.

**? (two asterisks and a question mark) – shows that after the given characters, the comment

ends and then the text that is not ignored by the ML interpreter.

To adapt the developed syntax for ML describing, we proposed to use the Beckus-Naur form.

The rationale for this choice was that the extended Backus-Naur form is used to describe

context-free grammars and makes it possible to simplify and shorten the description [16-18]. The

529

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

extended Backus-Naur form is described in the international standard ISO / IEC -14977 [19].

Analysis of ISO / IEC-14977 showed that the extended Backus-Naur form makes it possible to

develop an intuitively simple and adaptive formal language for representing and describing the

necessary data for CPPS development based to object-oriented programming approaches.

2.3 CPPS cyber-design modeling language syntax diagram development

Based on the proposed above specification of the language matamodel, the authors propose the

following syntax diagram, which is shown in Figure 1.

a)

b)

Figure 1. Syntactic diagram of the developed ML (a, b)

530

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

The syntax diagram of the values representation types that can belong to identifiers proposed

in this study is shown in Figure 2.

Figure 2. Syntax diagram of identifier values representation types

As you can see from Figure 2, the identifiers Parameter , Event refer to domen (list) type

and is represented as a text word or abbreviation that refers to orm_nameParameterF and

nameEvenForm_ , as well as lementParameterE and tEvenElemen according to

Figure 1. Parameter (parameter) and events (vente) list which belong

orm_nameParameterF , nameEvenForm_ in the framework of one development

environment are permanent and not changeable. For parameter (parameter) and events (

vente) list which belong to ementParametrEl , ntEventEleme accordingly, it is an equal

limitation that these visual graphical elements have the same purpose within the development

531

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

environment. It is worth noting that this type includes value for ementParametrEl and

orm_nameParameterF , which contains a text word or abbreviation reserved by the IDE.

Identifiers value and name belongs to not_domen (non-list) type. This is justified by the

fact that the values value can be set by the developer depending on the requirements put

forward by the developed CPPS. For identifier name , which is included in

ariableLingusticV the name that refers to olutionContainerS containing the necessary

fragment or part of the program code (cod), set by the user of the system being developed,

taking into account his logical preferences and ease of use.

For ease of reading and presentation of the developed declarative language (Figures 1 and 2), it

is necessary that it has the qualities of understanding and reading. This can be achieved using at

least three principles of language representation [20], namely was:

- maximally linear;

- short;

- self-documented.

Based on the proposed assumptions and recommendations for the declarative language being

developed, the CPPS developer proposes the following type of model language notation style,

which makes it possible to simplify and standardize the code.

Example 1

 masterForm_

{ ?** opening a block for describing parameters and values, as well as events and

names ariableLingusticV for masterForm_ **?

[valueparameterparametervalueparameter == 3,2;1]

[nameeventnameevent == 2;1]

} ?** closing the block for describing parameters and values, as well as events and names

ariableLingusticV for masterForm_ **?

“ element name in development environment”

532

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

?** opening a block for describing visual graphic elements rForm_maste **?

{ ?** description block er_Form_mastElement1 **?

[valueparameterparametervalueparameter == 3,2;1]

[nameeventnameevent == 2;1]

} ?** description block closing er_Form_mastElement1 **?

{ ?** description block er_Form_mastElement2 **?

[valueparameterparametervalueparameter == 3,2;1]

[nameeventnameevent == 2;1]

} ?** description block closing er_Form_mastElement2 **?

/# ?** the block of visual graphic elements description closing rForm_maste **?

 masterForm_/

If it is necessary to implement a hierarchy (construction tree), the membership of visual

graphic elements of 2/1 mElementFormElementFor . The following snippet of the meta

description structure is suggested:

Example 2.

“element name in development environment” ?** opening a block for describing visual

graphic elements rForm_maste **?

{ ?** description block masterFormElement _1 **?

[valueparameterparametervalueparameter == 3,2;1]

[nameeventnameevent == 2;1]

} ?** description block closing masterFormElement _1 **?

/ “element name in development environment”

{ ?** description block masterFormElement _2 **?

[valueparameterparametervalueparameter == 3,2;1]

[nameeventnameevent == 2;1]

533

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

} ?** description block closing masterFormElement _2 **?

/# ?** the block of description of visual graphic elements closing rForm_maste **?

Use of “/” (slash) will allow the ML interpreter to determine the degree of a visual element

nesting (belonging) to another, that is, to implement a CPPS structure tree in the development

environment. Figure 3 shows a graphical structure construction of the construction tree

masterForm_ of CPPS for example 1 (a) and example 2 (b).

To indicate the corresponding values (value) and names (name), in the examples above,

within ariableLingusticV for parameter and event respectively after the equal sign (=)

the type of value is set, if there are no values or default values reserved by the development

environment are used, this parameter is not declared in the meta description (not indicated).

a) masterFormElement _1 and masterFormElement _2 is equivalent to

rForm_maste ;

b) masterFormElement _2 belongs to masterFormElement _1 ;

Figure 3 –Graphical representation of the construction tree

CPPS structures.

2.4 Experimental research

Example 3 shows a line of meta description of creating an empty form in the RadStudio XE6

environment for VLC Form Application.

Example 3

 1Form

534

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

{

]703503

6874641[

===

===

r,WidthForm_maste,NameHeight

,th,ClientWidght,ClientHeiexample Caption
 (10)

}

 1/ Form

Based on the meta description given in 10, a graphical representation of the simplest custom

form was generated.

A fragment of the meta description of additional visual graphic elements of the Standard-

Button type (a custom button that executes a specific event) is presented at 11.

“Buttion_close”

]91_

,560,40833[

==

====

hclose,WidtButtionName

Left,TophtClose,HeigCaption
 (11)

/#

Figure 4 shows an example of implementing a form with a Button element, the meta

description of which is given in 10 and 11, respectively.

Figure 4 - Fragment of the development environment with the form and the Button graphic

element implementation, obtained on the basis of meta descriptions 10 and 11.

535

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

In addition to the implementation of the graphical visual interface shown in Figure 4, based on

meta descriptions 10-11, the program code in Pascal was generated, shown in Figure 5.

Figure 5 - Program code in Pascal, generated on the basis of meta description 10-11.

Each element of the ML description given in the syntax model (10-11) is written in accordance

with the syntax diagram shown in Figure 1 and the diagram of the indicators values

representation types, is shown in Figure 2. The ML semantic model is a system of values

ascribed to constructions and the developed syntactic model of the language (interpretation of

constructions). This model is presented in the process of interpreting (parsing) the proposed rules

for describing and presenting ML specifications, symbols and their combinations..

Consider the meta description of example 4, (if necessary, implement the attachment

(belonging) of one visual element to another as shown in Figure 3-b). In accordance with the

proposed syntactic model (Figure 1), the meta description will take the following form:

Example 4

“GrupBox1”

]6781,4

,2721861[

===

===

,WidthGroupBoxNameLeft

,Top,HeightGroupBoxCaption

/ “Buttion1” (12)

536

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

]861

,585,14632[

==

====

,WidthButtionName

Left,TophtClose,HeigCaption

/#

In the development environment, this meta-description allows you to implement the degree of

nesting of visual graphic elements in each other and build a "tree" of 1Form , on the basis of

which the user interface is developed in accordance with the technical specification for the CPPS

and the algorithm of functioning. Figure 6 shows a fragment of the RadStudio XE6 development

environment with a generated user interface in accordance with meta description 12.

Figure 6 - Implementation of the 1Form interface based on a fragment of the meta description

of graphic visual elements 12.

Based on 10-12 meta descriptions and Figure 3, you can set any nesting depth for graphical

user interface elements. This makes it possible to implement, using the proposed ML syntax

diagram (Figure 1), a CPPS structure of complexity degree, and to simplify the process of

developing a visual component based on an object-oriented approach to programming.

Based on the proposed syntax diagram presented in Figure 1, the following event method

description is proposed (event) for Form and mElementFor . Based on example 1, we will

537

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

give an example of a simple method triggering description on an element Button of event

Onclick to execute ariableLingusticV with name Close_All .

Example 5

 1Form

{

]703503

6874641[

===

===

r,WidthForm_maste,NameHeight

,th,ClientWidght,ClientHeiexample Caption
 (13)

]_,91_

,560,40833[

AllCloseOnClickhclose,WidtButtionName

Left,TophtClose,HeigCaption

===

====

}

 1/ Form

As you can see from the method description in example 5, the developer describes the

existence of an event on an element Buttion under the name closeButtionName _= ,

ariableLingusticV under the name AllClose_ at the event Onclick . This view allows the

developer to implement the following sequence:

codolutionContainerSariableLingusticVevent →→→ (14)

where cod is a a piece of program code in the selected object-oriented language.

As a result of the method description 13 implementation, the developer receives the generated

program code shown in Figure 7.

Figure 7 - The result of example program code generation.

538

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

Let us consider a fragment of method description example using an example 6

implementations of more complex code constructions that was generated in the design process of

the “Automated standardization system “NORMA” (copyright certificate of Ukraine No. 57667

dated 17.12.2014). On the form 1Form there is an element operacDBGrid _ to display

information from the database. operace_DBGridРroperties _ the specified binding to the

visual dropdown interface operacРopupMenu_ element. It is necessary to generate a

program code for deleting the selected record from the database in operacDBGrid _ .

Example 6

 1Form



“DBGrid_operace”

{

]_

,_

,320,24,344,120

,__.1[

operacPopupMenuPopupMenu

operaceDBGridName

WidthTopLeftHeight

OperacNakIBDataSetFormDataSurce

=

=

====

=

}

 (15)

“DBGrid_operace”

{

],28,_[== ItemsoperacPopupMenuName

]28[ClickNOnClick =

}



“N28”

539

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

{

]__[

]28,[

operaceselectDeleteOnClick

NameDeleteCaption

=

==

}



 1/ Form

An example of the generated program code for implementing an event per element

operacPopupMenu_ , on single click in the dropdown options menu Delete with internal

indexing 28, code selection with ariableLingusticV = operaceselectDelete __ . An

example of the generated program code after editing by the developer is shown in Figure 8.

Figure 8 – A fragment of the code after editing by the developer based on the method

description 15.

Based on the examples given above, the developer is able to create and implement the CPPS

cybernetic component with the help of the method description, and the possibility of program

code "partial" generation. The completeness of program code generations directly depends on the

DB content “Container Solutions”, that contains examples of event implementations (cod),

which can be supplemented during the CPPS development work. This solution allows adapting

the proposed method description to any object-oriented language, and also allows the developer

to expand the DB with new “Container Solutions”, which will reduce the time at the

programming stage in the future. The proposed solutions were implemented in the "Computer-

aided design software for cyber-physical manufacturing systems" copyright certificate of

Ukraine No. 74576 dated 09.11.2017.

540

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

3. CONCLUSION

As a result of the consistency of the modeling language syntactic constructions developed

terminological basis and the terms in which the main structural components are described. In

practice, it allowed us to develop an interpreter that is able to automatically translate the

developed graphical interface (HMI), compiled in terminology close to a certain subset of natural

language, its properties and properties of GUI elements, as well as events on the basis of which

interaction with the user is implemented into the format of development environment commands

and high-level language programming on which the CPPS cybernetic component is being

developed. At the same time, the syntactic constructions of the developed language themselves

are a script sequence and are quite simple for understanding by specialists and ordinary CPPS

developers (examples 1-6). This allows us to assert that the use of the proposed modeling

language by the developers makes it possible to reduce the development time of the CPPS

cybernetic component at the early stages of drafting the technical requirement.

ACKNOWLEDGEMENTS

The author (Mohammad Ayaz Ahmad) would like to acknowledge the keen support in financial

assistance for this work of the Vice Presidency / Studies and Scientific Research/Deanship of

Scientific Research on behalf of University of Tabuk, Kingdom of Saudi Arabia and Ministry of

Higher Education, K.S.A under the research grant no. S-0263-1436/dated 15-03-1436 [21]-[25],

and also highly acknowledge the Department of Informatics, Kharkiv National University of

Radio Electronics, Ukraine in numerous help and support to complete this article.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

541

DEVELOPMENT OF A CYBER DESIGN MODELING DECLARATIVE LANGUAGE

REFERENCES

[1] A.C. Pereira, F. Romero, A review of the meanings and the implications of the Industry 4.0 concept, Procedia

Manuf. 13 (2017), 1206–1214.

[2] Y. Lu, Industry 4.0: A survey on technologies, applications and open research issues, J. Ind. Inform. Integr. 6

(2017), 1–10.

[3] P. Zheng, H. wang, Z. Sang, R.Y. Zhong, Y. Liu, C. Liu, K. Mubarok, S. Yu, X. Xu, Smart manufacturing

systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives, Front. Mech. Eng. 13

(2018), 137–150.

[4] G. Matana, A. Simon, M.G. Filho, A. Helleno, Method to assess the adherence of internal logistics equipment to

the concept of CPS for industry 4.0, Int. J. Product. Econ. 228 (2020), 107845.

[5] M. Sony, Industry 4.0 and lean management: a proposed integration model and research propositions, Product.

Manuf. Res. 6 (2018), 416–432.

[6] C. Wittenberg, Human-CPS Interaction - requirements and human-machine interaction methods for the Industry

4.0, IFAC-PapersOnLine. 49 (2016), 420–425.

[7] P. Leal, R.N. Madeira, T. Romão, Model-Driven Framework for Human Machine Interaction Design in

Industry 4.0, in: D. Lamas, F. Loizides, L. Nacke, H. Petrie, M. Winckler, P. Zaphiris (Eds.), Human-Computer

Interaction – INTERACT 2019, Springer International Publishing, Cham, 2019: pp. 644–648.

[8] E. Lodgaard, S. Dransfeld, Organizational aspects for successful integration of human-machine interaction in

the industry 4.0 era, Procedia CIRP. 88 (2020), 218–222.

[9] P. Fantini, M. Pinzone, M. Taisch, Placing the operator at the centre of Industry 4.0 design: Modelling and

assessing human activities within cyber-physical systems, Computers Ind. Eng. 139 (2020), 105058.

[10] A.T. Jones, D. Romero, T. Wuest, Modeling agents as joint cognitive systems in smart manufacturing systems,

Manuf. Lett. 17 (2018), 6-8.

[11] M.-P. Pacaux-Lemoine, Q. Berdal, S. Enjalbert, D. Trentesaux, Towards human-based industrial cyber-physical

systems, in: 2018 IEEE Industrial Cyber-Physical Systems (ICPS), IEEE, St. Petersburg, 2018: pp. 615–620.

[12] E.A. Lee, Cyber Physical Systems: Design Challenges, in: 2008 11th IEEE International Symposium on Object

and Component-Oriented Real-Time Distributed Computing (ISORC), IEEE, Orlando, FL, USA, 2008: pp.

363–369.

[13] A.J.C. Trappey, C.V. Trappey, U.H. Govindarajan, J.J. Sun, A.C. Chuang, A Review of Technology Standards

and Patent Portfolios for Enabling Cyber-Physical Systems in Advanced Manufacturing, IEEE Access. 4 (2016)

7356–7382.

[14] E. Moshev, V. Meshalkin, M. Romashkin, Development of Models and Algorithms for Intellectual Support of

Life Cycle of Chemical Production Equipment, in: A.G. Kravets, A.A. Bolshakov, M.V. Shcherbakov (Eds.),

542

NEVLIUDOV, YEVSIEIEV, BAKER, AHMAD, LYASHENKO

Cyber-Physical Systems: Advances in Design & Modelling, Springer International Publishing, Cham, 2020: pp.

153–165.

[15] U.J. Tanik, Cyberphysical Design Automation Framework for Knowledge-based Engineering, J. Innov.

Manage. 1 (2013), 158–178.

[16] E.O. Aliyu, O.S. Adewale, A.O. Adetunmbi, B.A. Ojokoh, Requirement Formalization for Model Checking

using Extended Backus Naur Form, i-manager's J. Softw. Eng. 13(3) (2019), 1-6.

[17] A.F. Kurgaev, S.N. Grigoriev, Metalanguage of Normal Forms of Knowledge, Cybern Syst Anal. 52 (2016)

839–848. https://doi.org/10.1007/s10559-016-9885-3.

[18] M. Wang, L. Shen, Y. Deng, The Behavior of Mechanical Energy Storage Mechanisms and Representation,

Adv. Sci. Lett. 4 (2011), 3077–3081.

[19] ISO/IEC 14977, Information technology – Syntactic metalanguage -- Extended BNF, 1996.

[20] M. Crepinsek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, G. Roussel, On automata and language based

grammar metrics, Computer Sci. Inform. Syst. 7 (2010), 309–329.

[21] S. K. Mustafa, M. A. Ahmad, V. Lyashenko, O. Zeleniy, Some Features of Route Planning as the Basis in a

Mobile Robot, Int. J. Emerg. Trends Eng. Res. 8 (2020), 2074–2079.

[22] V. Lyashenko, S.K. Mustafa, N. Belova, M.A. Ahmad, Some Features in Calculation of Mold Details for Plastic

Products, Int. J. Emerg. Trends Eng. Res. 7 (2019), 720–724.

[23] M. Ayaz, T. Sinelnikova, S. K. Mustafa, V. Lyashenko. Features of the Construction and Control of the

Navigation System of a Mobile Robot, Int. J. Emerg. Trends Eng. Res. 8 (2020), 1445-1449.

[24] M. Ayaz, I. Tvoroshenko, J. H. Baker, V. Lyashenko. Computational Complexity of the Accessory Function

Setting Mechanism in Fuzzy Intellectual Systems, Int. J. Adv. Trends Computer Sci. Eng. 8 (2019), 2370-2377.

[25] S.K. Mustafa, M.A. Ahmad, V. Baranova et al. Using Wavelet Analysis to Assess the Impact of COVID-19 on

Changes in the Price of Basic Energy Resources, Int. J. Emerg. Trends Eng. Res. 8 (2020), 2907-2912.

