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Abstract. Given a distribution of pebbles on the vertices of a connected graph, a pebbling move is defined as the

removal of two pebbles from some vertex and the placement of one of those pebbles at an adjacent vertex. The

pebbling number, f (G) of a connected graph G, is the smallest positive integer such that from every placement of

f (G) pebbles, we can move a pebble to any specified vertex by a sequence of pebbling moves. In this paper, we

find the pebbling number for some braid graphs.
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1. INTRODUCTION

Pebbling, one of the latest evolutions in graph theory proposed by Lakarias and Saks, has

been the topic of vast investigation with significant observations. Having Chung [1] as the

forerunner to familiarize pebbling into writings, many other authors too have developed this

topic. Hulbert published a survey of graph pebbling [7].
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Consider a connected graph with fixed number of pebbles distributed on its vertices. A peb-

bling move consists of the removal of two pebbles from a vertex and placement of one of those

pebbles at an adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest

number f (G,v) such that for every placement of f (G,v) pebbles, it is possible to move a pebble

to v by a sequence of pebbling moves. Then the pebbling number of G is the smallest number,

f (G) such that from any distribution of f (G) pebbles, it is possible to move a pebble to any

specified target vertex by a sequence of pebbling moves. Thus f (G) is the maximum value of

f (G,v) over all vertices v.

The pebbling number is known for many simple graphs including paths, cycles, and trees,

[2], [3], [4], [6], [8], [9] but it is not known for most graphs and is hard to compute for any

given graph that does not fall into one of these classes. Therefore, it is an interesting question if

there is information we can gain about the pebbling number of more complex graphs from the

knowledge of the pebbling number of some graphs for which we know.

In this paper, we find the pebbling number for some braid grpahs.

2. PRELIMINARIES

We now introduce some definitions and notations which will be useful for the subsequent

sections. For graph theoretic terminologies we refer to [5].

Definition 2.1. The Braid graph B(n) is obtained from a pair of paths P
′
n and P

′′
n by joining

ith vertex of path P
′
n with (i+ 1)th vertex of the path P

′′
n and the ith vertex of the path P

′′
n with

(i+2)th vertex of the path P
′
n for all 1≤ i≤ n−2.

Let the vertices of the path P
′
n be u1,u2, ...,un and the vertices of the path P

′′
n be v1,v2, ...,vn.

Figure 2.1. B(7)

Theorem 2.2. [2] Let Pn be a path on n vertices. Then f (Pn) = 2n−1.

Theorem 2.3. [3] Let K1,n be a star graph, where n > 1. Then f (K1,n) = n+2.
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3. MAIN RESULTS

Remark 3.1. A distribution of pebbles on the vertices of the graph G is a function p : V (G)→

N∪{0}. Let p(v) denote the number of pebbles on the vertex v and p(A) denote the number of

pebbles on the vertices of the set A⊆V (G). Let v be a target vertex in the graph G. If p(v) = 1

or p(u) ≥ 2, where uv ∈ E(G), then we can move a pebble to v easily. So we always assume

that p(v) = 0 and p(u)≤ 1 for all uv ∈ E(G), when v is the target vertex.

Theorem 3.2. For the Braid graph B(3), f (B(3)) = 6.

Proof. Placing 3 pebbles on the vertex v3 and placing each pebble on both vertices v1 and u3,

we cannot reach the vertex u1. Thus f (B(3))≥ 6.

Let D be any distribution of 6 pebbles on the vertices of the graph B(3).

Case 1: Let u1 be the target vertex. Then clearly, p(u1) = 0 and p(u2)≤ 1, p(v2)≤ 1.

Subcase 1.1: Assume p(u2) = 1 and p(v2) = 1.

Then there will 4 pebbles distributed on the vertices u3,v3 and v1. Thus we are done as there

will be at least two pebbles in any one of the vertices v1, u3 or v3. If u3 or v3 contains two

pebbles then move a pebble to u2 and hence we are done. Otherwise v1 contains two pebbles.

Moving a pebble from v1 to v2 we can reach the target.

Subcase 1.2: Assume p(u2) = 1 and p(v2) = 0.

Then there will be 5 pebbles distributed on the vertices v1,v3 and u3. Thus any one of these

vertices will have at least two pebbles. If u3 or v3 have two pebbles then moving a pebble to

u2, we are done. Otherwise assume p(u3) ≤ 1 or p(v3) ≤ 1 . Then atleast three pebbles will

be placed on v1. If u3 is occupied then we reach the target by using the path P : v1,u3,u2,u1.

Otherwise v1 itself contains four pebbles and thus we can reach the target.

Subcase 1.3: Assume p(u2) = 0 and p(v2) = 1

Then there will be five pebbles distribtued on the vertices of v1, u3 and v3. Thus any one

of these vertices may have at least two pebbles. If v1 or v3 contains at least two pebbles then

we reach the target by moving a pebble to v2 and then to u1. Otherwise assume p(v1) ≤ 1 and

p(v3)≤ 1. Then there are at least three remaining pebbles will be in u3. If v1 is occupied then
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we reach the target by moving a pebble to u3 and we hence we are done. Otherwise u3 contains

four pebbles they by using the path P : u3,u2,u1 can be reached.

Subcase 1.4: Assume p(u2) = 0 and p(v2) = 0

Then the six pebbles will be placed on the vertices v1,u3,v3. If p(u3) ≥ 4 or p(v3) ≥ 4 or

p(v1)≥ 4 then we are done. Therefore assume that p(u3)≤ 3, p(v3)≤ 3, p(v1)≤ 3. If p(u3)≥ 2

and p(v3) ≥ 2 then we can reach the target by moving a pebble from u3 and v3 to u2 and then

to u1. Hence assume that p(u3) ≤ 1 and p(v3) ≤ 1. Then there will be remaining atleast four

pebbles on v1. Thus we are done by using the path P : v1,v2,u1. If v3 is the target vertex, by

symmetry, we are done.

Case 2: Let v1 be the target vertex. Clearly, p(v1) = 0, p(v2)≤ 1 and p(u3)≤ 1.

Subcase 2.1: Assume that p(u3) = 1 and p(v2) = 1.

Then there will be at least four pebbles placed on the vertices of u1,u2 and v3. Thus one

of those vertex contains at least two pebbles. On moving a pebble from eihter u1 or v3 which

contains two pebbles to v2, we are done. Otherwise moving a pebble from u2 to u3 and hence

to v1, we reach our target.

Subcase 2.2: Assume p(u3) = 1 and p(v2) = 0.

Then among the remaining five pebbles placed on the vertices u1,u2 and v3, any one vertex

contains at least two pebbles. If u2 contains at least two pebbles then moving a pebble to u3

and hence to v1, we are done. Thus assume that p(u2)≤ 1. If u2 is occupied then the remaining

four pebbles are placed on u1 and v3. If p(u1) ≤ 1 then we can reach the target by moving a

pebble from the path P : v3,u2,u3,v1. If 2 ≤ p(u1) ≤ 3, then we are done by using the path

P : u1,u2,u3,v1. Otherwise we can reach the target by moving pebbles from u1 to v2 and then

to v1. If u2 is unoccupied then we can easily move two pebbles from either u1 or v3 and hence

we are done.

Subcase 2.3: Assume p(u3) = 0 and p(v2) = 1.

Then among the five pebbles placed on u1,u2 and v3 at least one vertex contains at least two

pebbles. If u1 or v3 contains at least two pebbles then moving a pebble to v2 and then to v1, we

are done. Thus assume p(u1)≤ 1 and p(v3)≤ 1. Then u2 contains at least three pebbles. If u1
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is occupied we can reach the target using the path P : u2,u1,v2,v1. Suppose u1 is unoccupied

then u2 contains exactly four pebbles and thus we are done using the path P : u2,u3,v1.

Subcase 2.4: Assume p(v2) = 0 and p(u3) = 0.

Then all the six pebbles will be placed on the vertices u1,u2 and v3. If any of these vertices

contains at least four pebbles then we are done as the distance from these vertices to the target

is two. Thus assume p(u1) ≤ 3, p(u2) ≤ 3 and p(v3) ≤ 3. If p(u1) ≥ 2 and p(v3) ≥ 2 then

moving a pebble to v2 from both u1 and v3 we are done. Thus assume p(u1)≤ 1 and p(v3)≤ 1.

Thus u2 contains at least four pebbles. By using the path P : u2,u3,v1 we can reach the target.

If u3 is the target vertex, by symmetry, we are done.

Case 3: Let u2 be the target vertex. Clearly, p(u2) = 0, p(u1)≤ 1, p(u3)≤ 1 and p(v3)≤ 1.

Then there are at least three remaining pebbles are distributed on the verices v1 and v2. Sup-

pose v2 contains at least two pebbles and if u1 or v3 is occupied then we are done by moving a

pebble from v2 to u1 or v3. Otherwise assume that p(u1) = 0 = p(v3). Suppose p(v2) ≥ 4 or

p(v1) ≥ 4 we are done. Thus assume p(v1) ≤ 3 and p(v2) ≤ 3. Now using the pebbles in the

spanning path P : v2,v1,u3,u2 we can reach the target vertex. By symmetry we can reach the

vertex v2. �

Theorem 3.3. For the Braid graph B(4), f (B(4)) = 10.

Proof. Placing 7 pebbles on the vertex v4 and each pebble on the vertices u4 and v1, we cannot

reach the vertex u1. Thus f (B(4))≥ 10.

Now we prove the sufficient part. Let D be any distribution of 10 pebbles on the vertices of

the graph B(4).

Case 1: Let u1 be the target vertex.

Clearly, p(u1) = 0, p(v2) ≤ 1 and p(u2) ≤ 1.If p(u4) ≥ 4 or p(v4) ≥ 8, we can reach the

target as d(u1,u4) = 2 and d(u1,v4) = 3. Thus assume that p(u4) ≤ 3 and p(v4) ≤ 7. Let

G1 = G−< {u4,v4}>. If G1 contains at least six pebbles then we can reach the target since G1

is isomorphic to B(3) and f (B(3)) = 6. Thus we assume that p(G1)≤ 5.

Subcase 1.1: p(G1) = 5.

Then p(v4)≥ 2. Thus we can move a pebble from v4 to G1 and hence p(G1) = 6. Since G1

is isomorphic to B(3) and f (B(3)) = 6, we are done.



630 A. LOURDUSAMY, S. SARATHA NELLAINAYAKI

Subcase 1.2: p(G1) = 4

Then 3≤ p(v4)≤ 6. If p(v4)≥ 4, we can move at least two pebbles from v4 to G1 and thus

we are done as p(G1) = 6. If p(v4) = 3 then one pebble can be moved from v4 and the another

from u4. Thus p(G1) = 6 and hence we can reach the target.

Subcase 1.3: p(G1) = 3

Then 4 ≤ p(v4)≤ 7. If p(v4)≥ 6, then three pebbles can be moved to G1 and hence we are

reached. If 4 ≤ p(v4) ≤ 5, then two pebbles can be moved from v4 and another pebble can be

moved from u4 to G1. Thus p(G1) = 6 and hence we are done.

Subcase 1.4: p(G1) = 2

Then 5≤ p(v4)≤ 8. If 2≤ p(u4)≤ 3 then moving a pebble from u4 and another from v4 to V2

we can reach the target. If p(u4) = 1 and v2 is occupied then we can reach the target by moving

the second pebble from v4. Suppose p(v1)≤ 1 or v2 is unoccupied then any other vertices u2,u3

or v3 will be occupied and hence we can reach the target by using the path through that vertex.

Subcase 1.5: p(G1)≤ 1

If p(u4) ≤ 1 then p(v4) ≥ 8 and hence we are done. Thus assume 2 ≤ p(u4) ≤ 3. Moving

a pebble from u4 and another pebble from v4 to v2, we can reach the target. If v4 is the target

vertex, by symmetry we are done.

Case 2: Let v1 be the target vertex.

Clearly, p(v1) = 0, p(v2)≤ 1 and p(u3)≤ 1. First let us assume that p(v2) = 1. If p(u1)≥ 2

then we can move a pebble and hence we reach the target. Thus asuume that p(u1) ≤ 1. Let

G1 = G − < {u1,v1} >. Thus 9 pebbles will be placed on the vertices of G1 and since G1 is

isomorphic to B(3) and f (B(3)) = 6, using 6 pebbles we can move another pebble to v2 and

hence we are done. Thus assume p(v2)= 0. If p(u1)≥ 4, we are done. If 2≤ p(u1)≤ 3, then we

can move a pebble from u1 to v2 and since G1 contains at least 7 pebbles, we can move another

pebble to v2 and hence we can reach the target. Thus assume p(u1) ≤ 1. If p(v3) ≥ 4, we can

reach the target. Hence assume p(v3) ≤ 3. Thus the remaining six pebbles will be distributed

on the vertices u2,u3,u4 and v4. We can see that < {u2,u3,u4,v1,v4}> is a spanning subgraph

of K1,4 and since f (K1,4) = 6 we can pebble the target. By symmetry if u4 is the target we are

done.
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Case 3: Let u2 be the target vertex.

Assume p(u2) = 0, p(u1) ≤ 1, p(u3) ≤ 1 and p(v3) ≤ 1. If p(v1) ≥ 4, or p(u1) ≥ 2then we

are done. Therefore assume that p(v1)≤ 3 and p(u1)≤ 1. Then there are at least 6 pebbles are

distributed on the vertices of the graph G1 = G−{u1,v1}. Since f (G1) is isomorphic to B(3)

and f (B(3) = 6 we are done. By symmetry if v3 is the target, we are done.

Case 4: Let v2 be the target vertex.

Assume p(v2) = 0, p(u1)≤ 1, p(u4)≤ 1, p(v1)≤ 1 and p(v3)≤ 1. Since p(G1) = p(G−<

{u1,v1} >) have at least eight pebbles and p(G1) ≥ f (B(3)) we can reach our target. By

symmetry if u3 is the target, we are done. �

We now consider the braid graphs obtained by the paths of length 3m+1.

Theorem 3.4. For the Braid graph B(3m+1), f (B(3m+1)) = 2
⌈

2(3m+1)
3

⌉
+2.

Proof. Placing 2
⌈

2(3m+1)
3

⌉
−1 pebbles on the vertex v3m+1 and each pebble on the vertices v1 and

u3m+1, we cannot reach the vertex u1. Thus f (B(3m+1))≥ 2
⌈

2(3m+1)
3

⌉
+2.

Let D be any distribution of 2
⌈

2(3m+1)
3

⌉
+2 pebbles on the vertices of the graph G= B(3m+1).

We now prove the sufficient part by induction on m.

Let G1 = G− < {u3m−1,u3m,u3m+1,v3m−1,v3m,v3m+1} > and p1 = p(G1) and let G2 =<

{u3m−1,u3m,u3m+1,v3m−1,v3m,v3m+1}> and p2 = p(G2).

Case 1: Let u1 be the target vertex.

Suppose p1 = 0 then 2
⌈

2(3m+1)
3

⌉
+2 pebbles will be distributed on the vertices of the graph G2.

Since G2 is isomorphic to B(3) and f (B(3)) = 6, using 6 pebbles in G2 we can move a pebble

to u3m−1. Also the distance between the u3m−1 to any vertex in G2 is at most two, using at a

cost of at most 4 pebbles we can move a pebble to u3m−1. Further since,

2

⌈
2(3m+1)

3

⌉
+2−6

4 ≥ 2
⌈

2(3m−2)
3

⌉
−1

we can move 2
⌈

2(3m−2)
3

⌉
−1 additional pebbles to u3m−1. Also the distance from u3m−1 to the

target is
⌈

2(3m−2)
3

⌉
we are done.

Also, G1 is isomorphic to B(3(m− 1)+ 1) if p1 ≥ 2
⌈

2(3m−2)
3

⌉
+ 2 then by induction we can

reach the target. Hence assume that 1≤ p1 ≤ 2
⌈

2(3m−2)
3

⌉
+1.



632 A. LOURDUSAMY, S. SARATHA NELLAINAYAKI

Since G2 is isomorphic to B(3), f (B(3)) = 6 and the distance from either u3m−2 or v3m−3 to

any vertex in G2 is at most three, we can move a pebble at a cost of at most 8 pebbles. Thus we

can move at least

2

⌈
2(3m+1)

3

⌉
+2−2

⌈
2(3m−2)

3

⌉
+1−6

8 +1

pebbles from G2 to either u3m−2 or v3m−3. Since,

2

⌈
2(3m+1)

3

⌉
+2−2

⌈
2(3m−2)

3

⌉
+1−6

8 +1≥ 2
⌈

2(3m−2)
3

⌉
−1

using these pebbles, we can reach either u2 or v2. If p(v1)≥ 2, then a pebble from v1 to v2 and

hence we are done. Thus assume p(v1)≤ 1. After moving as many pebbles as possible from G2

to either v3m−3 or u3m−2. Now we can consider the following paths PA : u1,u2,v3,u5,v6, ...,v3m−3

and PB : u1,v2,u4,v5,u7, ...u3m−2 of lengths
⌈

2(3m−2)
3

⌉
−1. Without loss of generality let us as-

sume that p(PA) ≥ p(PB). Suppose that p(PA) ≥ 2
⌈

2(3m−2)
3

⌉
−1 then we are done. Otherwise

p(PA)≤ 2
⌈

2(3m−2)
3

⌉
−1−1 and p(PB)≤ 2

⌈
2(3m−2)

3

⌉
−1−1. Now the remaining pebbles will be dis-

tributed on the u3,v4,u6,v7, ...,u3m−3,v3m−2. The pebbles remain in these vertices creates a

spanning path to the target, otherwise by moving as many pebbles as possible from these ver-

tices and from the PB to the neighbouring vertices that is on the path PA, p(PA) ≥ 2
⌈

2(3m−2)
3

⌉
−1.

Thus we can easily reach the target. By symmetry, if v3m+1 is the target, we are done.

Case 2: Let v1 be the target vertex.

Suppose p1 = 0 then 2
⌈

2(3m+1)
3

⌉
+2 pebbles will be distributed on the vertices of the graph G2.

Since G2 is isomorphic to B(3) and f (B(3) = 6, using 6 pebbles in G2 we can move a pebble to

u3m−1. Also the distance between the u3m−1 to any vertex in G2 is at most two, using at a cost

of at most 4 pebbles we can move a pebble to u3m−1.

And we can move 2
⌈

2(3m−2)
3

⌉
− 1 additional pebbles to u3m−1. Also the distance from u3m−1

to the target is
⌈

2(3m−2)
3

⌉
we are done. Also since G1 is isomorphic to B(3(m− 1) + 1) if

p1 ≥ 2
⌈

2(3m−2)
3

⌉
+ 2 then by induction we can reach the target. Hence assume that 1 ≤ p1 ≤

2
⌈

2(3m−2)
3

⌉
+1.

Since G2 is isomorphic to B(3), f (B(3)) = 6 and the distance from either u3m−2 or v3m−2 to

any vertex in G2 is at most three, we can move a pebble at a cost of at most 8 pebbles. Thus we

can move at least
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2

⌈
2(3m+1)

3

⌉
+2−2

⌈
2(3m−2)

3

⌉
+1−6

8 +1

pebbles from G2 to either u3m−2 or v3m−3. Since,

2

⌈
2(3m+1)

3

⌉
+2−2

⌈
2(3m−2)

3

⌉
+1−6

8 +1≥ 2
⌈

2(3m−2)
3

⌉
−1

using these pebbles, we can reach either u2 or v2. Suppose p(u1) ≥ 2. After moving pebbles

from G2 we can reach v2 and an another pebble can be moved from u1 and hence we can reach

the target. Suppose p(u2)≥ 2. After moving pebbles from G2 we can reach u3 and the second

pebble can be moved from u2 and hence we can reach the target. Therefore assume that p(u1)≤

1 and p(u2) ≤ 1. Consider the paths PA : v1,v2,u4,v5, ...,u3m−2 and PB : v1,u3,v4, ...u3m−2 of

lengths
⌈

2(3m−2)
3

⌉
−1. Without loss of generality, let us assume that p(PA) ≥ p(PB). After

moving as many pebbles as possible from G2 to u3m−2 suppose p(PA) ≥ 2
⌈

2(3m−2)
3

⌉
−1. Then

we can reach the target. Suppose p(PA) ≤ 2
⌈

2(3m−2)
3

⌉
−1−1 and p(PB) ≤ 2

⌈
2(3m−2)

3

⌉
−1−1. Then

there exists a spanning path with the vertices v3(m−1),u3(m−1)−1, ...,v3,v2,v1 consisting of the

remaining pebbles and thus we can reach the target. Otherwise by moving as many pebbles as

possible from these vertices and from the PB to the neighbouring vertices that is on the path PA,

p(PA) ≥ 2
⌈

2(3m−2)
3

⌉
−1. Thus we can easily reach the target. By symmetry, if u3m+1 is the target

then we are done.

Case 3: Let x be any target vertex otherthan G1−{u1,v1}.

Suppose p1 ≥ 2
⌈

2(3m−2)
3

⌉
+ 2 then we can reach the target by induction. Thus assume p1 ≤

2
⌈

2(3m−2)
3

⌉
+ 1. Therefore as discussed in the earlier cases, we can move 2

⌈
2(3m−2)

3

⌉
− 1 pebbles

from G2 to u3m−2 or v3(m−1) and hence we can reach any vertex in G1−{u1,v1}. By symmetric-

ity, we can reach any vertex in the graph B(3m+1). �
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