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Abstract. The purpose of this work is to investigate generalized H(., ., .)-ϕ-η-cocoercive operator and use its appli-

cation via resolvent equation approach to solve the variational-like inclusion involving infinite family of set-valued

mappings in semi-inner product spaces. We aim to establish an equivalence between the set-valued variational-like

inclusion problem and fixed point problem. A relationship also obtain between the set-valued variational-like in-

clusion problem and the resolvent equation problem. This equivalent formulation suggests an idea to construct an

iterative algorithm to find a solution of the resolvent equation problem.
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1. INTRODUCTION

Variational Inequality theory is very important due to its large application in various problem

e.g. partial differential equation and optimization problems, see [3]. Therefore it have been
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developed and generalized in numerous directions. Variational inclusions is a natural general-

ization of variational inequalities. Monotonicity have a very crucial role in the study of varia-

tional inclusions. Therefore researchers introduced and studied many types of monotonicity e.g.

maximal monotone mapping, relaxed monotone mapping, H-monotone mapping, A-monotone

mapping etc., and discussed the solvability of different variational inclusion problems with the

help of underlying different monotone mappings, see [4, 5],[7]-[9],[19, 20],[22]-[24],[25, 26].

The resolvent operator technique which is the generalized form of projection technique, is very

efficient tool to solve variational inclusions and their generalizations. The resolvent equation

is also a very significant approach. The resolvent operator equations technique is utilized to

expand significant and feasible numerical approaches to find a the solution of many variational

inequalities (inclusions) and linked optimization problems, see [1, 2].

Many heuristics generalized the monotonicity such as (H,η)-monotone, (A,η)-monotone,

(A,η)-maximal relaxed monotone etc. They introduced and studied different variational in-

clusions problems involving these monotone mapping in Hilbert spaces (Benach spaces), see

[8, 19, 22, 25].

“Recently, Sahu et al. [23] proved the existence of solutions for a class of nonlinear implicit

variational inclusion problems in semi-inner product spaces, which is more general than the

results studied in [24]. Moreover, they constructed an iterative algorithm for approximating the

solution for the class of implicit variational inclusion problems involving A-monotone and H-

monotone operators by using the generalized resolvent operator technique. It is remarked that

they discussed the existence and convergence analysis by relaxing the condition of monotonicity

on the set-valued map considered”, [4].

Very recently Luo and Huang [20], introduced and studied (H,ϕ)-η-monotone mapping in

Banach spaces which provides a unifying framework for various classes of monotone mapping.

Most recently, Bhat and Zahoor [4, 5], introduced and studied (H,φ)-η-monotone mapping in

semi-inner product space and discussed the convergence analysis of proposed iterative schemes

for some classes of variational inclusion through generalized resolvent operator. For the appli-

cations point of view of discussed operators in variational inequalities and variational inclusion,

see [7]-[9],[14]-[20],[22]-[26],[28, 30].
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The considered work is motivated by the noble research works discussed above. First, we

investigate the notion generalized H(., ., .)-ϕ-η-cocoercive operator which is the generalization

of H(., ., .)-η-cocoercive operator [15, 16]. Then we consider the variational inclusion involving

infinite family of set-valued mappings. First, we obtain a relation between the variational-like

inclusion and fixed point problem and also obtain a equivalance between the variational-like

inclusion amd the resolvent operator equation involving generalized H(., ., .)-ϕ-η-cocoercive

operator. These equivalant fixed point problem and the resolvent equation formulation suggest

us an idea to develop an iterative algorithm. As an application of resolvent equation approach,

we will solve the considered variational-like inclusion problem. The obtained results are quite

similar to above discussed research work but we utilize distinguished notion and approach to

solve variational inclusion problems in 2-uniformly smooth Banach space. Our work is the

extension and refinement of the existing results, see [1, 2, 4, 5, 14, 18, 20, 30].

Definition 1.1. [21, 23] Let us consider the vector space Y over the field F of real or complex

numbers. A functional [., .] : Y ×Y → F is called a semi inner product if

(i) [u1 +u2,v1] = [u1,v1]+ [u2,v1], ∀u1,u2,v1 ∈ Y

(ii) [αu1,v1] = α[u1,v1], ∀α ∈ F, u1,v1 ∈ Y

(iii) [u1,u1]≥ 0, f or u1 6= 0

(iv) |[u1,v1]|2 ≤ [u1,u1][v1,v1], ∀u1,v1 ∈ Y

The pair (Y, [., .]) is called a semi-inner product space.

“We observed that ‖u1‖ = [u1,u1]1/2 is a norm and we can say a semi-inner product space is

a normed linear space with the norm. Every normed linear space can be made into a semi-inner

product space in infinitely many different ways. Giles [10] had shown that if the underlying

space Y is a uniformly convex smooth Banach space then it is possible to define a semi-inner

product uniquely” [4].

Remark 1.2. “This unique semi-inner product has the following nice properties:

(i) [u1,v1] = 0 iff v1 is orthogonal to u1, that is iff ‖v1‖ ≤ ‖v1 +αu1‖, for all scalars α .

(ii) Generalized Riesz representation theorem: If f is a continuous linear functional on Y then

there is a unique vector v1 ∈ Y such that f (u1) = [u1,v1], for all u1 ∈ Y .
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(iii) The semi-inner product is continuous, that is for each u1,v1 ∈Y , we have Re[v1,u1+αv1]→

Re[v1,u1] as α → 0”, [4].

Definition 1.3. [23] The real sequence space lp f or 1 < p < 1 is a semi-inner product space

with the semi-inner product defined by

[v,w] =
1

‖w‖p−2
p

∑
j

v jw j|w|p−2, v,w ∈ lp.

Definition 1.4. [10, 23] The real Banach space Lp(Y,µ) for 1 < p < 1 is a semi-inner product

space with the semi-inner product defined by

[g,h] =
1

‖h‖p−2
p

∫
Y

g(u)|h(u)|p−1sgn(h(u))dµ, v,w ∈ Lp.

Definition 1.5. [23, 27] The Y be a Banach space, then

(i) modulus of smoothness of Y defined as

ρY (s) = sup
{
‖u1 + v1‖+‖u1− v1‖

2
−1 : ‖u1‖ ≤ 1, ‖v1‖ ≤ s

}
.

(ii) be uniformly smooth if lims→0 ρY (s)/s = 0

(iii) Y be p-uniformly smooth for p > 1, if there exists c > 0 such that ρY (s)≤ csp.

(iv) Y be 2-uniformly smooth if there exists c > 0 such that ρY (s)≤ cs2.

Lemma 1.6. [23, 27] Let p > 1 be a real number and Y be a smooth Banach space. Then the

following statements are equivalent:

(i) Y is 2-uniformly smooth.

(ii) There is a constant k > 0 such that for every v1,w1 ∈ Y , the following inequality holds

‖v1 +w1‖2 ≤ ‖v1‖2 +2〈w1, fv1〉+ k‖w1‖2,(1.1)

where fv1 ∈ J(v1) and J(v1) = {v1∗ ∈Y ∗ : 〈v1,v1∗〉= ‖v1‖2 and ‖v1∗‖= ‖v1‖} is the normalized

duality mapping.

Remark 1.7. “Every normed linear space Y is a semi-inner product space (see [21]). Infact, by

Hahn-Banach theorem, for each v1 ∈ Y , there exists at least one functional fv1 ∈ Y ∗ such that
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〈v1, fv1〉 = ‖v1‖2. Given any such mapping f : Y → Y ∗, we can verify that [w1,v1] = 〈w1, fv1〉

defines a semi-inner product. Hence we can write the inequality (2.1) as

‖v1 +w1‖2 ≤ ‖v1‖2 +2[w1, fv1]+ s‖w1‖2.(1.2)

The constant s is known as constant of smoothness of Y , is chosen with best possible minimum

value”, [23].

Example 1.8. “The function space Lp is 2-uniformly smooth for p ≥ 2 and it is p-uniformly

smooth for 1 < p < 2. If 2≤ p < ∞, then we have for all v1,w1 ∈ Lp,

‖v1 +w1‖2 ≤ ‖v1‖2 +2[w1, fv1]+ (p−1)‖w1‖2.

where the constant of smoothness is p−1”, [23].

2. PRELIMINARIES

Let Y be a 2-uniformly smooth Banach space. Its norm and topological dual space is given by

‖.‖ and Y ∗, respectively. The semi-inner product [., .] signify the dual pair among Y and Y ∗.

Definition 2.1. [20, 23] Let Y be real 2-uniformly smooth Banach space. Let single-valued

mapping Q : Y → Y and mapping η : Y ×Y → Y, then

(i) Q is (r,η)-strongly monotone if there ∃ constant r > 0 such that

[Q(u)−Q(u′),η(u,u′)] ≥ r ‖u−u′‖2, ∀u, u′ ∈ Y ;

(ii) Q is (s,η)-cocoercive if there ∃ constant s > 0 such that

[Q(u)−Q(u′),η(u,u′)] ≥ s ‖Q(u)−Q(u′)‖2, ∀u, u′ ∈ Y ;

(iii) Q is (s′,η)-relaxed cocoercive if there ∃ constant s > 0 such that

[Q(u)−Q(u′),η(u,u′)] ≥ −s′ ‖Q(u)−Q(u′)‖2, ∀u, u′ ∈ Y ;

(iv) Q is α-expansive if there ∃ constant α > 0

‖Q(u)−Q(u′)‖ ≥ α ‖u−u′‖, ∀u, u′ ∈ Y ;
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(v) η is be τ-Lipschitz continuous if there ∃ constant τ > 0 such that

‖η(u,u′)‖ ≤ τ ‖u−u′‖, ∀u, u′ ∈ Y.

Definition 2.2. [15, 16] Let us consider the single-valued mappings Q,R,S : Y → Y , mapping

η : Y ×Y → Y, H : Y ×Y ×Y → Y , then

(i) H(Q, ., .) is (µ,η)-cocoercive in regards R if there ∃ constant µ > 0 such that

[H(Qu,x,x)−H(Qu′,x,x), η(u,u′)] ≥ µ ‖Qu−Qu′‖2, ∀x, u, u′ ∈ Y ;

(ii) H(.,R, .) is (γ,η)-relaxed cocoercive in regards R if there ∃ constant γ > 0 such that

[H(x,Ru,x)−H(x,Ru′,x),η(u,u′)] ≥ −γ ‖Ru−Ru′‖2, ∀x, u, u′ ∈ Y ;

(iii) H(., .,S) is (δ ,η)-strongly monotone in regards S if there ∃ constant δ > 0 such that

[H(x,x,Su)−H(x,x,Su′),η(u,u′)] ≥ δ ‖u−u′‖2, ∀x, u, u′ ∈ Y ;

(iv) H(Q, ., .) is κ1-Lipschitz continuous in regards Q if there ∃ constant κ1 such that

‖H(Qu,x,x)−H(Qu′,x,x)‖ ≤ κ1 ‖u−u′‖, ∀x, u,u′ ∈ Y.

Similarly we can define the Lipschitz continuity for H(., ., .) in regards second and third com-

ponent.

“Let M :Y (Y be a set-valued mapping, then graph of M is given by graph(M)= {(v,w) : w∈

M(v)}. The domain of M is given by

Dom(M) = {v ∈ Y : ∃w ∈ Y : (v,w) ∈M}.

The Range of (M) is given by

Range(M) = {w ∈ Y : ∃V ∈ Y : (v,w) ∈M}.

The inverse of (M) is given by

M−1 = {(w,v) : (v,w) ∈M}.

For any two set-valued mappings N and M, and any real number β , we define

N +M = {(v,w+w′) : (v,w) ∈ N,(v,w′) ∈M},
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βM = {(v,βw) : (v,w,) ∈M}.

For a mapping A and a set-valued map M : Y ( Y , we define A+M = {(v,w+w′) : Av =

w,(v,w′) ∈M}”, [4].

Definition 2.3. [20, 23] A set-valued mapping M : Y (Y is said to be (m,η)-relaxed monotone

if ∃ a constant m > 0 such that

[v∗−w∗,η(v,w)] ≥ −m ‖v−w‖2, ∀v,w ∈ Y, v∗ ∈M(v), w∗ ∈M(w).

Definition 2.4. Let G : Y ∞ =Y ×Y×Y...→Y be a mapping. Then G is αi-Lipschitz continuous

in regards ith component if ∃ a constant αi > 0 such that

‖G(., .,vi, ...)−G(., ., .,wi, ...)‖ ≤ αi ‖vi−wi‖, ∀vi,wi ∈ Y.

Definition 2.5. The Hausdorff metric D(., .) on CB(Y ), is defined by

D(A,B) = max
{

sup
u∈A

inf
v∈B

d(u,v),sup
v∈B

inf
u∈A

d(u,v)
}
, A,B ∈CB(Y ),

where d(., .) is the induced metric on Y and CB(Y ) denotes the family of all nonempty closed

and bounded subsets of X.

Definition 2.6. [6]A multi-valued mapping S : Y → CB(Y ) is called D-Lipschitz continuous

with constant λS > 0, if

D(Sv,Sw)≤ λS ‖v−w‖, ∀v, w ∈ Y.

3. GENERALIZED H(., ., .)-ϕ -η -COCOERCIVE OPERATOR

First, we give some definitions and important theorems associates with generalized H(., ., .)-ϕ-

η-cocoercive operator.

Let Y be 2-uniformly smooth Banach space. Assume that η ,H : Y×Y×Y →Y be the mappings

and ϕ,Q,R,S : Y →Y be the single-valued mappings and M : Y (Y be a multi-valued mapping.

Definition 3.1. Let H(., ., .) is (µ,η)-cocoercive in regards Q with non-negative constant µ ,

(γ,η)-relaxed cocoercive in regards R with non-negative constant γ and (δ ,η)-strongly mono-

tone in regards S with non-negative constant δ , then M is called generalized H(., ., .)-ϕ-η-

cocoercive in regards Q, R and S if
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(i) ϕoM is (m,η)-relaxed monotone;

(ii) (H(., ., .)+λϕoM)(Y ) = Y, λ > 0.

Let us consider the following

Assumption M1: Let H is (µ,η)-cocoercive in regards Q with non-negative constant µ , (γ,η)-

relaxed cocoercive in regards R with non-negative constant γ and (δ ,η)-strongly monotone in

regards S with non-negative constant δ with µ > γ .

Assumption M2: Let Q is α-expansive and R is β -Lipschitz continuous with α > β .

Assumption M3: Let η is τ-Lipschitz continuous.

Assumption M4: Let M is generalized H(., ., .)-ϕ-η-cocoercive operator in regards Q, R and

S.

Theorem 3.2. Let assumptions M1, M2 and M4 hold good with ` = µα2 − γβ 2 + δ > m,

then (H(Q,R,S)+λϕoM)−1 is single-valued.

Proof. Let y,z ∈ (H(Q,R,S)+λϕoM)−1(x) for any given x ∈ Y . It is obvious that −H(Qy,Ry,Sy)+ x ∈ λϕoM(y),

−H(Qz,Rz,Sz)+ x ∈ λϕoM(z).

Since ϕoM is (m,η)-relaxed monotone in the first argument, we have

−mλ‖y− z‖2 ≤ [−H(Qy,Ry,Sy)+ x− (−H(Qz,Rz,Sz)+ x), η(y,z)]

= [H(Qy,Ry,Sy)−H(Qz,Rz,Sz), η(y,z)]

=−[H(Qy,Ry,Sy)−H(Qz,Ry,Sy), η(y,z)]

−[H(Qz,Ry,Sy)−H(Qz,Rz,Sy), η(y,z)]

−[H(Qz,Rz,Sy)−H(Qz,Rz,Sz), η(y,z)].

Since assumption M1 holds, we have

−mλ‖y− z‖2 ≤−µ‖Qy−Qz‖2 + γ‖Ry−Rz‖2−δ‖y− z‖2.



882 SANJEEV GUPTA, MANOJ SINGH

Since assumption M2 holds, we have

−mλ‖y− z‖2 ≤−µα
2‖y− z‖2 + γβ

2‖y− z‖2−δ‖y− z‖2

=−(µα
2− γ +δ ) ‖y− z‖2

0≤−(`−mλ ) ‖y− z‖2 ≤ 0,where ` = µα
2− γβ

2 +δ .

Since µ > γ, α > β ,δ > 0, it follows that ‖y− z‖ ≤ 0. We get y = z, therefore (H(Q,R,S)+

λϕoM)−1 is single-valued.

Definition 3.3. Let assumptions M1, M2 and M4 hold good with `= µα2− γβ 2+δ > mλ then

the resolvent operator RH(.,.,.)−η

M,λ ,ϕ : Y → Y is given as

RH(.,.,.)−η

M,λ ,ϕ (u) = (H(Q,R,S)+λϕoM)−1(u), ∀ u ∈ Y.(3.1)

Theorem 3.4. Let assumptions M1-M4 hold good with ` = µα2− γβ 2 + δ > mλ and η is

τ-Lipschitz then RH(.,.,.)−η

M,λ ,ϕ : Y → Y is τ

`−mλ
-Lipschitz continuous, that is,

‖RH(.,.,.)−η

M,λ ,ϕ (y)−RH(.,.,.)−η

M,λ ,ϕ (z)‖ ≤ τ

`−mλ
‖y− z‖, ∀ y,z ∈ Y.

Proof. Let any given points y,z ∈ Y . From (3.3), we have

RH(.,.,.)−η

M,λ ,ϕ (y) = (H(Q,R,S)+λϕoM)−1(y),

RH(.,.,.)−η

M,λ ,ϕ (z) = (H(Q,R,S)+λϕoM)−1(z).

Let u0 = RH(.,.,.)−η

M,λ ,ϕ (y) and u1 = RH(.,.,.)−η

M,λ ,ϕ (z).

 λ−1
(

y−H
(

Q(u0),R(u0),S(u0)
))
∈ ϕoM(u0)

λ−1
(

z−H
(

Q(u1),R(u1),S(u1)
))
∈ ϕoM(u1).

Since ϕoM is (m,η)-relaxed monotone in the first arguments, we have

[(y−H(Q(u0),R(u0),S(u0)))− (z−H(Q(u1),R(u1),S(u1))),η(u0,u1)] ≥ −mλ ‖u0−u1‖2,

which implies

[y− z,η(u0,u1)]≥ [H(Q(u0),R(u0),S(u0))−H(Q(u1),R(u1),S(u1)),η(u0,u1)]−mλ‖u0−u1‖2.
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Now, we have

‖y− z‖ ‖η(u0,u1)‖ ≥ [y− z, η(u0,u1)]

≥ [H(Q(u0),R(u0),S(u0))−H(Q(u1),R(u1),S(u1)),η(u0,u1)]−mλ ‖u0−u1‖2

Since assumptions M1,M2,M3 hold and η is τ-Lipschitz continuous, we have Hence,

‖y− z‖ τ‖u0−u1‖ ≥ (`−mλ ) ‖u0−u1‖2

or ‖RH(.,.,.)−η

M,λ ,ϕ (y)−RH(.,.,.)−η

M,λ ,ϕ (z)‖ ≤ τ

`−mλ
‖y− z‖, ∀ y,z ∈ Y.

Hence, we get the required result.

4. APPLICATION

Now we make an attempt to show that generalized H(., ., .)-ϕ-η-cocorecive operator under

acceptable assumptions can be used as a powerful tool to solve variational inclusion problems.

Let Y be 2-uniformly smooth Banach space. Let V,Wi :Y →CB(Y ), i= 1,2, ...∞ be the infinite

family of multi-valued mappings and Q,R,S,h,k,ϕ : Y → Y be the single-valued mappings Let

η : Y×Y →Y , H : Y×Y×Y →Y and G : Y ∞ =Y×Y×Y...→Y be the mappings. Suppose that

multi-valued mapping M : Y (Y be a generalized H(., ., .)-ϕ-η-cocoercive operator in regards

Q, R and S. We consider the following variational like inclusion problem involving infinite

family of set-valued mappings to find v ∈ Y , a ∈V (v) and vi ∈Wi(v), i = 1,2, ...∞ such that

0 ∈ G(v1,v2,v3, ...)+ k(a)+M(h(v)− k(a)).(4.1)

Varaitionl inclusion problem type of (4.1), studied by Ahmad and Dilshad [1] and Wang [29] in

the setting of real Banach space, .

Lemma 4.1. Let us consider the mapping ϕ : Y → Y such that ϕ(v1 + v2) = ϕ(v1) +ϕ(v2)

and Ker(ϕ) = {0}, where Ker(ϕ) = {v1 ∈ Y : ϕ(v1) = 0}. If (v,a,(v1,v2, ...)), where v ∈ Y ,

a∈V (v) and vi ∈Wi(v), i= 1,2, ...∞ is a solution of problem (4.1) if and only if (v,a,(v1,v2, ...))

satisfies the following relation:

h(v) = k(a)+RH(.,.,.)−η

M,λ ,ϕ [H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))
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−λ{ϕoG(v1,v2,v3, ...)+ k(a)}].(4.2)

The resolvent equation corresponding to generalized set-valued variational-like inclusion prob-

lem (4.1).

ϕo G(v1,v2,v3, ....)+ k(a)+λ
−1JH(.,.,.)−η

M,λ ,ϕ (q) = 0.(4.3)

where λ > 0,

JH(.,.,.)−η

M,λ ,ϕ (q) =
[
I−H(Q(RH(.,.,.)−η

M,λ ,ϕ (q)),R(RH(.,.,.)−η

M,λ ,ϕ (q)),S(RH(.,.,.)−η

M,λ ,ϕ (q)))
]
,

I is the identity mapping and

H(Q,R,S)
[
RH(.,.,.)−η

M,λ ,ϕ (q)
]
= H

(
Q(RH(.,.,.)−η

M,λ ,ϕ (q)),R(RH(.,.,.)−η

M,λ ,ϕ (q)),S(RH(.,.,.)−η

M,λ ,ϕ (q))
)
.

Now, we show that the problem (4.1) is equivalent to the resolvent equation problem (4.3).

Lemma 4.2. If (v,a,(v1,v2, ...)) with v∈Y , a∈V (v) and vi ∈Wi(v), i= 1,2, ...∞ is a solution of

problem (4.1) if and only if the resolvent equation problem (4.3) has a solution (q,v,a,(v1,v2, ...))

with v,q ∈ Y , a ∈V (v) and vi ∈Wi(v), i = 1,2,3, ...., where

h(v) = RH(.,.,.)−η

M,λ ,ϕ (q),(4.4)

and q = H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))−λ{ϕoG(v1,v2,v3, ...)+ k(a)}.

Proof: Let (v,a,(v1,v2, ...)) be a solution of problem (4.1), and from Lemma 4.1 Using the fact

that

JH(.,.,.)−η

M,λ ,ϕ =
[
I−H

(
Q(RH(.,.,.)−η

M,λ ,ϕ ),R(RH(.,.,.)−η

M,λ ,ϕ ),S(RH(.,.,.)−η

M,λ ,ϕ )
)]

,

JH(.,.,.)−η

M,λ ,ϕ (q) = JH(.,.,.)−η

M,λ ,ϕ

[
H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))

−λ{ϕoG(v1,v2, ...)+ k(a)}
]

=
[
I−H

(
Q(RH(.,.,.)−η

M,λ ,ϕ ),R(RH(.,.,.)−η

M,λ ,ϕ ),S(RH(.,.,.)−η

M,λ ,ϕ )
)]

[
H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))−λ{ϕoG(v1,v2, ...)+ k(a)}

]
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=
[
H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))−λ{ϕoG(v1,v2, ...)+ k(a)}

]
−H
(

Q(RH(.,.,.)−η

M,λ ,ϕ ),R(RH(.,.,.)−η

M,λ ,ϕ ),S(RH(.,.,.)−η

M,λ ,ϕ )
)

[
H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))−λ{ϕoG(v1,v2, ...)+ k(a)}

]
=
[
H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))−λ{ϕoG(v1,v2, ...)+ k(a)}

]
−H
(

Q(RH(.,.,.)−η

M,λ ,ϕ )
(

H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))

−λ{ϕoG(v1,v2, ...)+ k(a)}
)
,

R(RH(.,.,.)−η

M,λ ,ϕ )
(

H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))

−λ{ϕoG(v1,v2, ...)+ k(a)}
)
,

S(RH(.,.,.)−η

M,λ ,ϕ )
(

H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))

−λ{ϕoG(v1,v2, ...)+ k(a)}
))

=
[
H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))−λ{ϕoG(v1,v2, ...)+ k(a)}

]
−H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))

=−λ [ϕo G(v1,v2,v3, ....)+ k(a)]

This implies that

ϕo G(v1,v2,v3, ....)+ k(a)+λ
−1JH(.,.,.)−η

M,λ ,ϕ (q) = 0.(4.5)

Conversely, let (q,v,a,(v1,v2, ...)) is a solution of resolvent equation problem (4.3), then

JH(.,.,.)−η

M,λ ,ϕ (q) =−λ [ϕo G(v1,v2,v3, ....)+ k(a)][
I−H

(
Q(RH(.,.,.)−η

M,λ ,ϕ ),R(RH(.,.,.)−η

M,λ ,ϕ ),S(RH(.,.,.)−η

M,λϕ
)
)]

(q) =−λ [ϕo G(v1,v2,v3, ....)+ k(a)]

q−H(Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a))) =−λ [ϕoG(v1,v2,v3, ....)+ k(a)].

This implies that

q = H((Q(h(v)− k(a)),R(h(v)− k(a)),S(h(v)− k(a)))−λ [ϕo G(v1,v2,v3, ....)+ k(a)].

Hence (v,a,(v1,v2, ...)) is a solution of variational inclusion problem (4.1).
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Lemma 4.1 and Lemma 4.2 are very crucial from the numerical point of view. They permit us

to suggest the following iterative scheme for finding the approximate solution of (4.3).

Algorithm 4.3. For any given (q0,v0,a0,(v0
1,v

0
2,v

0
3, ...)), we can choose q0, v0 ∈ Y , a0 ∈V (v0)

and v0
i ∈Wi(v0), i = 1,2,3..... and 0 < ε < 1 such that sequences {qk}, {vk}, {ak} and {vk

i }

satisfy



h(vk) = k(ak)+RH(.,.,.)−η

M,λ ,ϕ (qk),

ak ∈V (ak), ‖ak−ak+1 ‖ ≤ D(V (vk),V (vk+1))+ εk+1‖vk− vk+1‖,

f or each i, vk
i ∈Wi(vk),‖vk

i − vk+1
i ‖ ≤ D(Wi(vk),Wi(vk+1))+ εk+1‖vk− vk+1‖,

qk+1 = H(Q(h(vk)− k(ak)),R(h(vk)− k(ak)),S(h(vk)− k(ak)))−λ{ϕoG(vk,wk)+ k(ak)},

where λ > 0, k ≥ 0, and D(., .) is the Hausdorff metric on CB(Y ).

Next, we find the convergence of the iterative algorithm for the resolvent equation problem

(4.3) corresponding generalized set-valued variational inclusion problem (4.1). the unique so-

lution (t,u,v,w) of the resolvent equation problem (4.3).

Theorem 4.4. Let us consider the problem (4.1) with assumptions M1-M4 hold good and ϕ :

Y → Y be a single-valued mapping with ϕ(v1 + v2) = ϕ(v1)+ϕ(v2) and Ker(ϕ) = {0}. Let

multi-valued mappings V, Wi : Y → CB(Y ), i = 1,2, ..., be λV ,βi-D-Lipschitz continuous, re-

spectively. Let single-valued mapping h : Y → Y be r-strongly monotone and λh-Lipschitz con-

tinuous, and k : Y → Y be λk-Lipschitz continuous. Let mapping H : Y ×Y ×Y → Y be κ1,

κ2 and κ3-Lipschitz continuous in regards Q, R and S, respectively. Let ϕoG be αi-Lipschitz

continuous in regards ith component, i = 1,2, .... Assume that the following condition is satisfy

0 < (κ1+κ2+κ3){λh+λkλV}+λ

∞

∑
i=1

αiβi+λλkλV <
(`−mλ )

{
1−
√

1−2r+λ 2
h −λkλV

}
τ

;

Then there exist q,v ∈ Y , a ∈ V (v) and vi ∈Wi(v) that satisfy the resolvent equation problem

(4.3). The iterative sequences {qk},{vk},{ak}, and {wk
i }, i = 1,2, ... and k = 1,2, ..., generated

by Algorithm 4.3 converges strongly to the unique solution q,v,a,vi, respectively.
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Proof. Using Algorithms 4.3 and λV ,βi-D Lipschitz continuity of V,Wi, we have

‖ak−ak−1‖ ≤ D(V (vk),V (vk−1))+ ε
k‖vk− vk−1‖ ≤ {λV + ε

k}‖vk− vk−1‖(4.6)

‖vk
i − vk−1

i ‖ ≤ D(W1(vk),Wi(vk−1))+ ε
k‖vk− vk−1‖ ≤ {βi + ε

k}‖vk− vk−1‖,(4.7)

where k = 1, 2, .....

Now, we compute

‖qk+1−qk‖= ‖H(Q(h(vk)− k(ak)),R(Q(h(vk)− k(ak)),S(Q(h(vk)− k(ak)))

−H(Q(h(vk−1)− k(ak−1)),R(h(vk−1)− k(ak−1)),S(h(vk−1)− k(ak−1)))

−λ{ϕoG(vk
1,v

k
2, ...)+ k(ak)−ϕoG(vk−1

1 ,vk−1
2 , ...)− k(ak−1)}‖

≤ ‖H(Q(h(vk)− k(ak)),R(Q(h(vk)− k(ak)),S(Q(h(vk)− k(ak)))

−H(Q(h(vk−1)− k(ak−1)),R(h(vk−1)− k(ak−1)),S(h(vk−1)− k(ak−1)))‖

+λ‖ϕoG(vk
1,v

k
2, ...)−ϕoG(vk−1

1 ,vk−1
2 , ...)‖+λ‖k(ak)− k(ak−1)‖.(4.8)

Now, we compute

‖(h(vk)− k(ak))− (h(vk−1)− k(ak−1))‖ ≤ ‖h(vk)−h(vk−1)‖+‖k(ak)− k(ak−1)‖

≤ λh‖vk− vk−1‖+λk‖ak−ak−1‖

≤ λh‖vk− vk−1‖+λk(λV + ε
k)‖vk− vk−1‖

≤ {λh +λk(λV + ε
k)}‖vk− vk−1‖(4.9)

Since H(Q,R,S) is κ1,κ2,κ3-Lipschitz continuous in regards Q,R,S, respectively, We have

‖H(Q(h(vk)− k(ak)),R(Q(h(vk)− k(ak)),S(Q(h(vk)− k(ak)))

−H(Q(h(vk−1)− k(ak−1)),R(h(vk−1)− k(ak−1)),S(h(vk−1)− k(ak−1)))‖

≤ (κ1 +κ2 +κ3)‖(h(vk)− k(ak))− (h(vk−1)− k(ak−1))‖

≤ (κ1 +κ2 +κ3){λh +λk(λV + ε
k)}‖vk− vk−1‖.(4.10)
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Using the αi-Lipschitz continuity of ϕoGi, i = 1,2, .., and βi-D-Lipschitz continuity of Wi’s, we

have

‖ϕoG(vk
1,v

k
2, ...)−ϕoG(vk−1

1 ,vk−1
2 , ....)‖

= ‖ϕoG(vk
1,v

k
2, ...)−ϕoG(vk−1

1 ,vk
2, ....)+ϕoG(vk−1

1 ,vk
2, ....)+ ....‖

≤ ‖ϕoG(vk
1,v

k
2, ...)−ϕoG(vk−1

1 ,vk
2, ....)‖

+‖ϕoG(vk−1
1 ,vk

2, ...)−ϕoG(vk−1
1 ,vk−1

2 , ....)‖+ ....

≤ α1‖vk
1− vk−1

1 ‖+α2‖vk
2− vk−1

2 ‖+ .....

≤ α1(β1 + ε
k)‖vk− vk−1‖+α2(β2 + ε

k)‖vk− vk−1‖+ .....

≤
∞

∑
i=1

αi(βi + ε
k)‖vk− vk−1‖.(4.11)

Using (4.6), (4.10) and (4.11) in (4.8), we have

‖qk+1−qk‖ ≤ (κ1 +κ2 +κ3){λh +λk(λV + ε
k)}‖vk− vk−1‖

+λ

∞

∑
i=1

αi(βi + ε
k)‖vk− vk−1‖

+{λh +λλk(λV + ε
k)}‖vk− vk−1‖

≤
{
(κ1 +κ2 +κ3){λh +λk(λV + ε

k)}+λ

∞

∑
i=1

αi(βi + ε
k)+λλk(λV + ε

k)
}

×
∥∥∥vk− vk−1

∥∥∥.(4.12)

By Lipschitz continuity of resolvent operator and condition (4.6), we have

‖vk− vk−1‖=
∥∥∥{vk− vk−1− (h(vk)−h(vk−1))}+{k(ak)− k(ak−1)}

+RH(.,.,.)−η

M,λ ,ϕ (qk)−RH(.,.,.)−η

M,λ ,ϕ (qk−1)
∥∥∥

≤
∥∥∥vk− vk−1− (h(vk)−h(vk−1))

∥∥∥+∥∥∥RH(.,.,.)−η

M,λ ,ϕ (qk)−RH(.,.,.)−η

M,λ ,ϕ (qk−1)
∥∥∥

+
∥∥∥k(ak)− k(ak−1)

∥∥∥
≤ ‖vk− vk−1− (h(vk)−h(vk−1))‖+

τ

`−mλ
‖qk−qk−1‖

+λk(λV + ε
k)‖vk− vk−1‖(4.13)
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∥∥∥2

=
∥∥∥vk− vk−1

∥∥∥2
−2[h(vk)−h(vk−1),vk− vk−1]+

∥∥∥h(vk)−h(vk−1)
∥∥∥2

≤
∥∥∥vk− vk−1

∥∥∥2
−2r

∥∥∥vk− vk−1

∥∥∥2
+λ

2
h

∥∥∥vk− vk−1

∥∥∥2

≤ (1−2r+λ
2
h )
∥∥∥vk− vk−1

∥∥∥2
.(4.14)

Using (4.14) in (4.13), we have∥∥∥vk− vk−1

∥∥∥≤√1−2r+λ 2
h

∥∥∥vk− vk−1

∥∥∥+ τ

(`−mλ )

∥∥∥qk−qk−1

∥∥∥+λk(λV + ε
k)
∥∥∥vk− vk−1

∥∥∥.
‖vk− vk−1‖ ≤

τ{
1−
{√

1−2r+λ 2
h +λk(λV + εk)

}}
(`−mλ )

‖qk−qk−1‖.(4.15)

Using (4.13) in (4.12), we have

‖qk+1−qk‖ ≤Θ(εk)‖qk−qk−1‖, where(4.16)

Θ(εk) =
τ

{
(κ1 +κ2 +κ3){λh +λk(λV + εk)}+λ ∑

∞
i=1 αi(βi + εk)+λλk(λV + εk)

}
{

1−
{√

1−2r+λ 2
h +λk(λV + εk)

}}
(`−mλ )

.

Since 0 < ε < 1, this implies that Θ(εk)→Θ as k→ ∞, where

Θ =
τ

{
(κ1 +κ2 +κ3){λh +λkλV}+λ ∑

∞
i=1 αiβi +λλkλV

}
{

1−
{√

1−2r+λ 2
h +λkλV

}}
(`−mλ )

.

It is given that Θ < 1, then {qk} is a Cauchy sequence in Banach space Y , then qk → q as

k→ ∞. From (4.15), {vk} is also Cauchy sequence in Banach space Y , then there exist v such

that vk→ v.

From equation (4.5)-(4.6) and Algorithm 4.3, the sequences {vk
i } and {ak} are also Cauchy

sequences in Y . Thus, there exist vi and a such that vk
i → vi and ak→ a as k→ ∞. Next we will

prove that vi ∈Wi(v). Since vk
i ∈Wi(v), then

d(vi, Wi(v)) ≤ ‖vi− vk
i ‖ + d(vk

i , Wi(v))

≤ ‖vi− vk
i ‖ + D(Wi(vk), Wi(v))

≤ ‖vi− vk
i ‖ + βi ‖vk− v‖→ 0, as k→ ∞,
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which gives d(vi, Wi(v)) = 0. Due to Wi(v) ∈ CB(Y ), we have vi ∈Wi(v), i = 1,2, .... In the

same manner, we easily show that a ∈V (v).

By the continuity of RH(.,.,.)−η

M,λ ,ϕ , Q, R, S, V, Wi, ϕoG, k, h, η and M and Algorithms 4.3, we

know that (q,v,a,(v1,v2, ...)) satisfy

qk+1 = [H(Q(h(vk)− k(ak)),R(h(vk)− k(ak),S(h(vk)− k(ak)))−λ{ϕoG(vk
1,v

k
2, ...)+ k(ak)}],

→ q = [H(Q(h(v)− k(a)),R(h(v)− k(a),S(h(v)− k(a)))−λ{ϕoG(v1,v2, ...)+ k(a)}] as k→ ∞

RH(.,.,.)−η

M,λ ,ϕ (qk) = h(vk)− k(ak)→ h(v)− k(a) = RH(.,.,.)−η

M,λ ,ϕ (q) as k→ ∞.

By using Lemma 4.2, we have

ϕoG(v1,v2, ...)+λ
−1(q−H(Q(RH(.,.,.)−η

M,λ ,ϕ (q)),R(RH(.,.,.)−η

M,λ ,ϕ (q)),S(RH(.,.,.)−η

M,λ ,ϕ (q))) = 0,

Thus we have

ϕoG(v1,v2, ...)+λ
−1JH(.,.,.)−η

M,λ ,ϕ (q) = 0.(4.17)

Hence (q,v,a,(v1,v2, ....)) is a solution of the problem (4.3).
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