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Abstract. In this article, some types of convergence are discussed along with a class of y-continuous functions. It
is known that various classes of generalized continuous functions are closed under the uniform convergence. We
show that y-continuity is closed with respect to a weaker type of convergence. Further properties of such types of

convergence related to y-continuous functions are obtained.
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1. INTRODUCTION

The notion of convergence, to gather with the notion of continuity, plays a crucial role in
developing the theory of analysis, in particular, the theory of metric spaces and consequently

uniform spaces. There are many known types of convergence of nets of functions. The most
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known types are pointwise and uniform convergence. It is known that various types of general-
ized continuous functions are closed under the uniform convergence but not the pointwise one,
see [7] for somewhat continuity, [8] for quasi-continuity and [11] for cliquish functions.

There are several types of convergence in between pointwise and uniform convergence, we
mention only those types that are dealt in this work. In 1979, Predio [9] defined a notion of
quasi-uniform convergence, which is weaker than uniform convergence but stronger than point-
wise one. She showed that quasi-uniform convergence posses similar properties of uniform
convergence with respect to continuous functions. In the same year, Csaszar and Laczkovich
[3] introduced another type of convergence, lies between pointwise and uniform convergence,
called equal. The notion of equal convergence was used while modifying the Baire classifica-
tion of real valued functions. In 1991, Bukovska [2] defined an equivalent concept to the equal
convergence and named it quasinormal convergence. To reduce the level of confusion about the
word “equal”, we stick to the word “quasinormal”. It is worth saying that quasinormal conver-
gence 1s independent with the quasi-uniform one. In 1993, Ewert [6] introduced almost uniform
convergence of functions. This type of convergence is weaker than uniform convergence but
stronger than quasi-uniform one and independent with quasinormal convergence. She found
some nice results on almost uniform convergence of functions. Among them, she proved that
uniform and almost uniform coincide on compact spaces.

In this work, we mainly consider types of convergence (mentioned above) of nets of -
continuous functions defined on a topological space with values in a uniform space. We study

connections between such types of convergence and preserving of y-continuity of functions.

2. PRELIMINARIES

Let (X, 7) be a topological space and (Y, u) a uniform space with a family d, of pseudometrics
on Y inducing u. For a subset A of a space X, the closure and interior of A with respect to X are
respectively denoted by Cl, (A) and Int, (A) (or simply CI(A) and Int(A)). A subset A C X is
called b-open [1] (or y-open [5]) if A C Int(CI(A)) UCI(Int(A)). The family of all b-open sets
in X is denoted by BO(X).

For a space X, the intersection of two b-open sets in X need not be b-open ([5, Example

1.1.4]), so BO(X) is not a topology on X. But one can generate a topology with this class in a
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natural way. We denote by 7, the topology generated by BO(X). Thatis, 7y ={U CX:UNA €
BO(X) whenever A € BO(X)}. The elements of 7, are called y-open. Since intersection of an
open set with a b-open set is b-open ([1, Proposition 2.3]), so all open sets are included in Ty.
Therefore T C 7, C BO(X). More details on 7, can be found in [1, P. 62].

A function f: X — Y is called y-continuous at a point xo € X if for each d € d,, and € > 0, there
exists a y-open set A that contains xo such that d (f(x), f(xp)) < € for all x € A. Evidently, every
continuous function is y-continuous but not conversely. The Dirichlet function is y-continuous
but not continuous.

A space X is y-compact [5] if every y-open cover of X has a finite subcover. By the remark
[5, Remark 3.1.1], every y-compact is compact. However, there are spaces which are compact
but not y-compact. Take X = R with the topology 7 = {0,X,{0}}, so X is compact that is not
Y-compact. A space X is locally y-compact [5] if every point has a neighborhood which is itself

contained in a y-compact set. For a better view, we define the types of convergence as follow:

Definition 2.1. Let (S, <) be a directed set. Then the net {fs} ¢ of functions fs: X — Y is
called

(1) pointwise convergent to f : X — Y if for eachx € X, d € d, and € > 0, there exists sy € S

such that
d(fs(x),f(x)) <€ forseSandsy<s.
(2) uniformly convergent to f : X — Y if for each d € d, and € > 0, there exists so € S such that
d(fs(x),f(x))<e forallxeXands€S, sy <s.

(3) quasi-uniformly convergent [9] to f : X — Y if for each point xo € X, d € d,, and € > O there
exists so € S such that for every s € S and sy < s, there is a neighbourhood H of the point

Xo such that

d(fs(x),f(x)) <e forallxecH.

(4) almost uniformly convergent [6] to f : X — Y if for each point xo € X, d € d,, and € > 0

there exists neighbourhood V of the point xy and so € S such that

d(fs(x),f(x))<e forallxceVands€S, so<s.
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(5) quasinormally convergent to f : X — Y if there exists a net {&} ¢ of non-negative real
numbers that converges to zero such that for each x € X and d € d, there exists an index

so € S with the property
d(fs(x),f(x)) <& foreachs € Sandsy<s.

Note that the definition of quasinormal convergence for a sequence of real valued functions

was defined in [3, 2].

At this place, a connection between these type of convergence is needed. This diagram is a

slight enlargement of the first diagram in [6] and Remark 4.1 in [10].

quasinormal
uniform pointwise
almost uniform quasi-uniform
Diagram |

In general, none of the implications is reversible, as shown in the following examples:

Example 2.2. (i) Consider the functions g,, f defined in [6, Example 1.1], then {gy, }nen con-
verges to f is almost uniformly but not uniformly.
(ii) Consider the functions f,,f defined in [6, Example 1.1], then {f,},en converges to f
quasi-uniformly but not almost uniformly.
(iii) Let f,(x) = x" be defined on X = [0, 1]. Then {f,},en converges to f pointwisely but not
quasi-uniformly (see [10, Example 4.1]), where f(x) = 1 forx =1 and f(x) = 0 otherwise.
(iv) The sequence of functions {gm}men constructed in [2, Example 1.7], converges to the
zero function almost uniformly (by [4, Theorem 2] since g,, and f are continuous) (and
consequently, quasi-uniformly and pointwisely) but not quasi-normally.
(v) Let f,, f be such functions given in (iii). Then {f,},en converges to f quasinormally but

not quasi-uniformly (also, not almost uniformly).
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We remark that almost uniform and quasi-uniform convergence are independent with quasi-

normal one.

3. THE RESULTS

The y-continuity with respect to entourages can be stated as follows:

Remark 3.1. A function f: X — Y is called y-continuous at a point xo € X if and only if for

each U € u, there exists a y-open set A containing xq such that

(f(x),f(x0)) €U  forall x € A.

We now show that the set of y-continuous functions is not closed with respect to the pointwise
limit. Consider the functions f,, f in Example 2.2 (iii). Clearly f, are continuous and so
y-continuous. Then {f,},cn pointwise converges to f but f is not y-continuous. However,

Y-continuity is closed under quasi-uniform convergence.

Theorem 3.2. If a net {f;},.g of v-continuous functions f;: X — Y is quasi-uniformly conver-

gent to a function f : X — Y, then the limit function f is y-continuous.

Proof. Let xy be any element and U € u be an arbitrary entourage. Then there exists a sym-
metric entourage V € u such that VoVoV C U. Since the net { f;} ¢ converges to a function f
quasi-uniformly, then there exists 5o € S such that for every s € S with so < s, there is an open

neighbourhood H of the point x such that
(fs(x),f(x)) eV forallx € H.
Meanwhile, since V is symmetric, then

(f(x), fs(x) € V.

Also, since xy € H, then

(fs(x0), f(x0)) € V.

But since f; is y-continuous at the point xg, then for the entourage V' there exists a y-open set A

containing xq such that

(fs(x), fs(x0)) €V forall x € A.
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Take G = H[)A. Since H is an open set and A is a y-open set, so G is a y-open set. As a result
(f(x),f(x0)) € VoVoV CU forallx € G.

This implies that the function f is y-continuous at xy. But since x¢ is an arbitrary point, hence

f 1s y-continuous.

The converse of the above theorem need not be true in general.

Example 3.3. Let X = [0, 1] with the indiscrete topology T and let Y = R with the usual metric
dIffu:X—Y n=0,1,2, 3, ---, are functions defined by f,(x) = ﬁ, then the sequences

{fn}n_, converges pointwise to the function f(x) =1 for x =0 and f(x) = 0 for x # 0. Evidently

f and f, are y-continuous functions for each n. But f, does not converge quasi-uniformly to f.
Theorem 3.2 implies that

Corollary 3.4. If a net {f;},cg of v-continuous functions f;: X — Y is almost uniformly (uni-

formly) convergent to a function f : X — Y, then the limit function f is y-continuous.

Theorem 3.5. Let X be a y-compact space and let { f;} g be a monotonic net of 'y-continuous
functions f; : X — Y that converges to a function f : X — Y pointwise. If the limit function f is

y-continuous, then { fs}ses converges to f uniformly.

Proof. Let € > 0 be given and d € d,, be any pseudometric. Put

As={xeX: d(f(x),f(x)) = &}
Since f and fi are y-continuous functions, therefore Ay is y-closed set for each s € S. By
assumption, the net {f;},.¢ is monotonic, so {As}, ¢ is monotonically decreasing. Now let
x € X be an element. Since the net {f;}, ¢ converges to f pointwise, then there exists sg € S

such that
d(fs(x),f(x)) <e foreachs € Sandsy<s.

It follows that x ¢ A, for each s € S and s9 < 5. Sox ¢ ) Ay, and () A; = &. By y-compactness
seS seS
of X and monotonicity of {As}se g there is so such that Ay = & for each s € S and 5o <s5. It

means
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d(fs(x),f(x))<e forallxe X ands€S, sy <s.

Hence the net { f; },.¢ converges to f uniformly. O

Theorem 3.6. Let X be a locally y-compact space and let { f;} g be a monotonic net of y-
continuous functions fs : X — Y that converges to a function f : X — Y pointwise. If the limit

function f is y-continuous, then {f;},.g converges to f almost uniformly.

Proof. Let x € X be any element. Then there is a neighbourhood V of the point x and a Y-

compact set K such thatx € V C K. Let € > 0 be given and d € d,, be any pseudometric. Put

By={xcK: d(fi(x),f(x)) < €}.

Since f and f; are y-continuous functions, therefore By is Y-open set for each s € S. Also since
the net { f; } .5 converges to f pointwise, so the collection {B; : s € S} forms a y-open cover of
K. Due to y-compacness of K and monotonicity of {f;} ¢ there is so such that K C B; for all

s € § and sg < s. Therefore

d(fs(x),f(x)) <e forallx e Vands €S, so <s.
Hence the net { f;} . converges to f almost uniformly. O
Theorem 3.7. Let X be a discrete space and let { f;} ;. be a monotonic net of (any) functions

fs: X — Y that converges to a function f : X — Y pointwise. Then { f;}scs converges to f almost

uniformly.

Proof. Since X is discrete, then open sets and y-open are equivalent. So all functions defined
on X are y-continuous and X is locally y-compact. By Theorem 3.6, f; converges to f almost

uniformly. 0

Lemma 3.8. Let { f;} g be a net of functions f;: X —Y that converges to a function f : X —Y

pointwise. If X is a locally finite space, then { f;},cq converges to f almost uniformly.

Proof. Let xo € X, d € d, and € > 0 be given. By assumption, there is a finite open set G

containing xo and so for each x € G there exists s, € S such that

d(fs(x),f(x)) <e foreachsc Sands, <s.
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But since G is finite, we can set s) = max{sy : x € G}. Therefore, we have sy € S such that
d(fs(x),f(x))<e forallxe GandseS,sy<s.

Thus { f;} ¢ converges to f almost uniformly. O

Theorem 3.9. Let {f;} . be a net of y-continuous functions f;: X — Y that converges to a
function f : X — Y pointwise. If X is a locally finite space, then the limit function f is Y-

continuous.

Proof. The proof is an immediate consequence of Lemma 3.8 and Theorem 3.2. 0

The following result is due Csdszar and Laczkovich [3, Theorem 5.1] and Bukovska [2,

Theorem 1.2] for sequences of real valued functions.

Theorem 3.10. A net {f;},.g of functions f;: X — Y converges quasinormally to a function

f:X =Y if and only if there exists a monotonically increasing net {A;},cr of sets with a

directed set (T,<') such that X = \J A; and the net {f;}, g is uniformly convergent to the
teT

function f on each A;.

Proof. Assume that {f;} g is a net of functions that converges to a function f quasinormally.

Then there exists {&}, ¢ of non-negative real numbers that converges to zero such that for each

x € X and d € d, there exists an index sg € S with the property
d(fs(x), f(x)) < & for each s € S and 59 <'s.
First, we choose (T, <) such that T = S and <’ is the same as <. Put
A ={xeX: d(fs(x),f(x)) <gforeachs e Sandr < s}.

We have A;, C Atﬁ where t4<’ g, thus the net {At}teT of sets is monotonically increasing also

X = U A;. To show that the net { f;} ¢ is uniformly convergent to f on each set A;. We put
teT

sup{d (fs(x),f(x)):x€A;} forse Sands<t

& otherwise.

It is obvious that {€]}, ¢ is a net of non-negative real numbers and converges to zero for each

t € T. As a consequence,
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d(fs(x),f(x)) <€ for each s € S and x € A,.

Hence {f;},c¢ converges to f uniformly on a set A; foreacht € T.
Conversely, suppose that {A; };er be a monotonic increasing net of set such that X = J A,
teT
and {f;}cg is uniformly convergent to a function f on a set A, for each # € T. Then for each

set A, there exists a net {98! } ¢ of non-negative real that converges to zero such that
(1) d (f(x), f(x)) < 6! foreachx € X and s € S.

So there exists a net {& },., of non-negative real that converges to zero such that for each &

there exists s; with the property

() 8! <G foreach s € S and s; < s.
Define
3) g =0 foreach s € Sand s, <s < sp.

Then {&},¢ is a net of non-negative real numbers and converges to zero. Now let x € X, then

there exists 7y € T such that x € A, for each t9<'t, therefore by (1), (2) and (3) we have
d(fs(x), f(x)) < & foreachs € Sand s, <s

Thus { f;},cg is quasinormally convergent to f on X. O

Theorem 3.11. Let {f;},.g be a net of y-continuous functions fs: X — Y. If the net {fs}cg

converges quasinormally to a function f : X — Y, then there exists a monotonically increasing

net {B;},cr of v-closed sets with a directed set (T,<') such that X = \J B; and the net {f;} ¢
teT

is uniformly convergent to the function f on each set B;.

Proof. Suppose that {f;}, ¢ is a net of y-continuous functions that converges to a function f
quasinormally. Then there exists a net {&}, - of non-negative real numbers that converges to

zero such that for each x € X and d € d,, there exists an index sg € S with the property
d(fs(x), f(x)) <& foreachs e Sandsy<s.
Take 7 = S and let <’ be similar to <, so (T, <') is a directed set. Put

By ={x e X :d(fs(x),fs,(x)) < &+, for each s,s0 € Sand t <s,s0}.
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Since f; and fy, are y-continuous functions for each s,so € S, therefore B; is a y-closed set for

eachr € T. Clearly the net {B; },. of sets is monotonically increasing and X = (J B;. To show
teT

that the net { f;} ¢ is uniformly convergent to f on each set B;. Put

sup{d (fs(x),f(x)):x€B;} forseSands <t

& otherwise.

Evidently, {&!} ¢ is a net of non-negative real numbers and converges to zero for eacht € T

As a consequence,

d(fs(x), f(x)) <el foreachse Sandxe B,

s

Hence the net {f;},.¢ converges to f uniformly on a set B, foreachr € T 0
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