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Abstract. This paper discusses Hyers-Ulam stability for functional equation on a complete metric space and also

discusses stability result for one variable functional equation i.e., Gamma functional equation on complete metric

group.
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1. INTRODUCTION

Hyers-Ulam stability is a basic sense of stability for functional equation. Usually the func-

tional equation

H1(ψ) = H2(ψ)(1.1)

is said to have the Hyers-Ulam stability if for an approximate solution ψS such that

|H1(ψS)(l) = H2(ψS)(l)| ≤ δ(1.2)

∗Corresponding author

E-mail address: bhar999999@yahoo.com

Received December 03, 2020
3223



3224 RAJEEV KUMAR

for some fixed constant δ > 0 there exist a solution ψ of equation (1.1) such that

|ψ(l)−ψS(l)| ≤ ε(1.3)

for some positive constant ∈. Sometimes we call ψS a δ− approximate solution of equation

(1.1) and ψ is ε− close to ψS.

Such an idea of stability was given in 1940 by Ulam [14] for Cauchy equation

ψ(l +m) = ψ(l)+ψ(m)

and his problem was solved by Hyers [4] in 1941.

Later, the Hyers-Ulam stability was studied extensively ([1-3]). This concept is also generalized

in [6, 11].

In 1965, Zadeh [15] initialized the theory of fuzzy sets. Through the classical learning of

Zadeh, there has been a large work to find fuzzy illustration of academic notions.

Iterative functional equation given in [5, 7, 16], is one of most important form of functional

equations and also referred to as equation of rank one, in which iterates of the unknown function

are linked in a linear combination. In energetic systems, many problems like embedding flows

and dynamics of a quadratic mapping can be minimized to an iterative equation. We mention

here some classical functional equation as

• Gamma Functional Equation

f (l +1) = (l +1) f (l)

In section 2, We deal with the Hyers-Ulam stability of the Fuzzy functional equation

ψ(l) = a(l)F(l,ψ(l))(1.4)

and this equation was firstly discussed by P.V. Subrahmanyam and S.K.Sudarsanam [12] in

2011. In section 3, we deal with the Hyers-Ulam stability of the functional equation

ψ(l +1) = lψ(l)(1.5)

on complete metric group (G,ρ) where ψ : S→ G is the unknown function. And this equation

was discussed by T. Trif [13] in 2002.
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2. STABILITY OF FUZZY FUNCTIONAL EQUATION

Theorem 2.1. Let (L,ρ) be a Complete metric space and F : S×L→ L be a mapping where S

be a non empty set. Suppose that

ρ(aF(l,u),aF(l,v))≤ aλρ(u,v), 0≤ λ < 1,(2.1)

and

ψS : S→ L

for all l ∈ S and for all u,v ∈ L such that

ρ(ψS(l),a(l)F(l,ψS(l)))≤ δ(2.2)

for all l ∈ S and δ > 0.

Then there is a unique function ψ : S→ L such that ψ(l) = a(l)F(l,ψ(l)) for all l ∈ S and

ρ(ψ(l),ψS(l))≤
δ

1−λ
(2.3)

for all l ∈ S.

Proof. Let Y = b : {S→ L;sup{ρ(b(l),ψS(l)), l ∈ S}< ∞}.

For b,c ∈ Y define

d(b,c) = sup{ρ(b(l),c(l)); l ∈ S}

.

Then ψS ∈Y , d is a metric on Y and convergence with respect to d means uniform convergence

on S with respect to ρ implies the completeness of Y with respect to d.

For b ∈ Y define T (b) : S→ L by

T (b)(l) = a(l)F(l,b(l)), l ∈ S.

Then T maps Y into Y . If b,c ∈ Y then for all l ∈ S,

ρ(T (b)(l),T (c)(l)) = ρ(aF(l,b(l)),aF(l,c(l)))

≤ λaρ(b(l),c(l))
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≤ λad(b,c)(2.4)

by (1.5).Thus,

d(T (b),T (c))≤ λad(b,c), ∀ b,c ∈ Y.

According to the well-known proof of Banach’s fixed point theorem, there exist a unique ψ

in Y such that ψ = T (ψ) and

d(ψ,ψS)≤ d(ψ,T (ψS))+d(T (ψS),ψS)

≤ d(T (ψ),T (ψS))+δ

≤ λad(ψ,ψS)+δ ,

so that d(ψ,ψS)→
δ

1−λ
. That is , there exists a unique solution ψ of equation (1.4) such that

the inequality (2.2) hold.

�

An example of functional equation

ψ(l5) = ψ( f (l))(2.5)

Applying above theorem, we can give the Hyers-Ulam stability of the equation.

Theorem 2.2. : Suppose that f : R→ R and ψS : R→ [1,+∞) satisfies

|ψS(l)−ψS( f (l))
1
5 | ≤ δ , ∀ l ∈ R,

for a constant δ > 0.

Then there is a unique solution ψ : R→ [1,+∞) of equation (2.5) such that

|ψ(l)−ψS(l)| ≤
5
4

δ

for all l ∈ R.
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Proof. : Consider the equivalent form of equation (2.5)

ψ(l) = ψ( f (l))
1
5(2.6)

Regard [1,+∞) as a complete metric space and let F(l,u) = u
1
5 where l ∈ R, u ≥ 1. Then F

maps R× [1,+∞). By the mean value theorem,

|F(l,u)−F(l,v)|= |u
1
5 − v

1
5 ≤ 1

5
|u− v|

for all l ∈ R and for all u,v≥ 1. Thus, the Hyers-Ulam stability of the equation (2.6) is implied

by above theorem and the result is proved.

�

3. STABILITY OF GAMMA FUNCTIONAL EQUATION

In this part, Let RS
+ be the class of all functions ε : S→ R+ where S be a non empty set and

(G,ρ) be a complete metric group with the metric ρ invariant to left translations, i.e.,

ρ(l.m, l.n) = ρ(m,n), ∀ l,m,n ∈ G.(3.1)

An example of metric invariant to left translations is the metric induced by a norm.

Definition 3.1. Let C⊆ RS
+ be nonempty and> be an operator mapping C into RS

+. We say that

the equation (1.5) is > - stable provided for every ε ∈C and with

ρ(ψ(l +1), lψ(l))≤ ε(l), ∀ l ∈ S

there exists a (unique, respectively) solution ψo : S→ G of the equation (1.5) such that

ρ(ψ(l),ψo(l))≤>ε(l), ∀ l ∈ S.

If ε is a constant function then the equation (1.5) is said to be stable in Hyers-Ulam sense.

Theorem 3.2. Let ε : S→ R+ be a function with the property

Σ
∞
q=0 ε((l +1)q) = Ψ(l), ∀ l ∈ S,(3.2)

where Ψ : S→ R+. Then for every function ψ : S→ G satisfying the inequality

ρ(ψ(l +1), lψ(l))≤ ε(l), ∀ l ∈ S,(3.3)
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there exists a unique solution ψo : S→ G of the functional equation (1.5) such that

ρ(ψ(l),ψo(l))≤Ψ(l), ∀ l ∈ S.(3.4)

Proof. Existence. Let ψ : S→ G be a function satisfying (3.3). Then the following relation

holds :

ρ(ψ(l +1)q,Π
q
k=1(l +1)k−1.ψ(l))≤ Σ

q
k=1ε((l +1)k−1)(3.5)

for all l ∈ S and q ∈ N. We prove (3.5) by induction on q. Since the group (G,ρ) is not

generally commutative, we let

Π
q
k=ptk = tk.tk−1...tp,

where tk ∈ G for p≤ k ≤ q.

For q= 1 the relation (3.5) holds in view of (3.3). We suppose that (3.5) holds for some q∈N

and for all l ∈ S, and we prove that

ρ(ψ((l +1)q+1),Π
q+1
k=1(l +1)k−1.ψ(l))≤ Σ

q+1
k=1ε((l +1)k−1), l ∈ S.

Indeed, it follows from (3.3) and (3.5) that

ρ(ψ((l +1)q+1),Π
q+1
k=1(l +1)k−1.ψ(l))≤ ρ(ψ((l +1)q+1),(l +1)q.ψ((l +1)q))

+ρ((l +1)q.ψ((l +1)q),Π
q+1
k=1(l +1)k−1.ψ(l))

≤ ε((l +1)q)+ρ(ψ((l +1)q),Π
q
k=1((l +1)k−1).ψ(l))

≤ Σ
q+1
k=1ε((l +1)k−1), l ∈ S.

Hence (3.5) holds for all l ∈ S and q ∈ N.

Now let (εq)q≥1 be the sequence of functions defined by

εq(l) = (Π
q
k=1(l +1)k−1)−1.ψ((l +1)q), l ∈ S,q ∈ N(3.6)

We prove that (εq)q≥1 is a Cauchy sequence in (G,ρ) for all l ∈ S, where t−1 means the inverse

of the element t in the group G. Using (3.1) and (3.5), we have

ρ(εq+p(l),εq(l)) = ρ((Π
q+p
k=1 (l +1)k−1)−1.ψ((l +1)q+p),(Π

q
k=1(l +1)k−1)−1.ψ((l +1)q))
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= ρ((Π
q+p
k=q+1(l +1)k−1)−1.ψ((l +1)q+p),ψ((l +1)q))

≤ Σ
p
k=1ε((l +1)k−1.(l +1)q)≤ Σ

∞
k=0ε((l +1)q+k)(3.7)

for l ∈ S and q, p ∈ N.

Now rq(l) = Σ∞
k=0ε((l + 1)q+k), q ∈ N, is the remainder of order q of the convergent series

(3.2), so limq→∞rq(l) = 0 for all l ∈ S. We conclude that (εq)q≥1is a Cauchy sequence, it is

convergent since G is a complete metric group. Define the function ψo by

ψo(l) = limq→∞εq(l), l ∈ S.

The relation (3.7), for p = 1, leads to

ρ(εq+1(l),εq(l))≤ Σ
∞
k=0ε((l +1)q+k), l ∈ S,q ∈ N.(3.8)

Taking account of εq+1(l) = l−1.εq(l +1) and letting q→ ∞ in (3.8) it follows that

ρ(l−1.ψo(l +1),ψo(l)) = 0

which is equivalent to ψo(l +1) = lψo(l), l ∈ S, i.e., ψo is a solution of the equation (1.5).

On the other hand, the relations (3.1) and (3.5) lead to

ρ(εq(l),ψ(l))≤ Σ
q
k=1ε((l +1)k−1)(3.9)

for all l ∈ S and q ∈ N, therefore letting q→ ∞ in (3.9), we get

ρ(ψo(l),ψ(l))≤Ψ(l),

which completes the proof of the existence.

Uniqueness. Assume that for a function ψ satisfying (3.3) there exists two solutions ψ1.ψ2

of the equation (1.5) satisfying

ρ(ψ(l),ψi(l))≤Ψ(l), l ∈ S, i ∈ 1,2

and ψ1 6= ψ2. Taking into account that ψ1,ψ2 satisfy (1.5), it follows easily that

ψi((l +1)q) = Π
q
k=1((l +1)k−1).ψi(l), l ∈ S,q ∈ N, i ∈ 1,2
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and hence

ρ(ψ1(l),ψ2(l)) = ρ((Π
q
k=1(l +1)k−1)−1.ψ1((l +1)q),(Π

q
k=1(l +1)k−1)−1.ψ2((l +1)q))

= ρ(ψ1((l +1)q),ψ2((l +1)q))

≤ ρ(ψ1((l +1)q),ψ((l +1)q))+ρ(ψ((l +1)q),ψ2((l +1)q))

≤ 2Ψ((l +1)q), l ∈ S,q ∈ N.

Since limq→∞Ψ((l + 1)q) = limq→∞rq(l) = 0, l ∈ S it follows that ψ1(l) = ψ2(l), which

completes the proof.

�
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