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Abstract: In this paper, we study the effect of the flow of a viscous incompressible fluid within a circular channel 

filled with a hyper porous medium saturated with a rarefied gas amid a transverse magnetic field, thermal radiation 

and uniform heat flux on the walls. The velocity and heat equations of the fluid flow are solved analytically using the 

Homotopy Analysis Method (HAM). Approximate analytical expressions are determined for the velocity and 

temperature profiles and these profiles together with the entropy generation rate are discussed graphically. The results 

are compared with the previous study and found to be in consensus. 
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1. INTRODUCTION 

Entropy is a measure of randomness or molecular disorder of a system. As this randomness 

increases, the entropy becomes larger. A process for which the rate of entropy generation is always 

zero is a reversible process. The second law of thermodynamics states that the entropy generation 

rate within a system is greater than or equal to zero, and it can never decrease over time. All real 

processes are therefore irreversible. Entropy generation play important roles in many diverse areas 

like the global energy, the fluid flow systems, the mechanical and chemical engineering and they 

form the basis of equilibrium and non-equilibrium thermodynamics. Bejan ([2] - [4]) studied the 

impact of irreversibility due to heat transfer and that of viscous effects. Ways are formulated to 

minimize the irreversibility related to a specific convective heat transfer process . Minimization of 

entropy generation rate and second law analysis on heat transfer have been discussed. Ahmed and 

Das [5] analyzed the effects of heat and mass transfer of an oscillatory convective 

magnetohydrodynamic(MHD) channel flow of an electrically conducting viscous incompressible 

fluid. It is observed that the primary fluid flow has a retarding effect due to angular velocity of the 

system. Pakdemirli and Yilbas [6] investigated the entropy generation of a non-Newtonian third-

grade fluid flow in a pipe system and concluded that the non-Newtonian parameter reduces the 

fluid friction. Bouchoucha and Bessiah [7] studied the natural convection and entropy generation 

of nanofluids in a square cavity and concluded that the maximum total entropy generation rate is 

attained at a low Rayleigh number. Loganathan and Sivapoornapriya [8] investigated the heat and 

mass transfer effects on a natural convective  flow over an impulsively started vertical plate in 

the presence of a porous medium and concluded that the concentration boundary layer decreases 

as the Schmidt number increases. In[9],[13]we find analysis of the effects of MHD force and 

buoyancy on convective heat and mass transfer flow past a moving vertical porous plate in the 

presence of thermal radiation and chemical reaction and it is asserted that the velocity and 

temperature profiles increase with the thermal radiation.[10], [11]concluded that the entropy 

generation is inversely proportional to the magnetic field by investigating its variation due to mixed 
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convection between two isothermal cylinders with a transverse magnetic field applied on it and 

with the increase in radius ratio, the entropy generation induced by MHD flow also increases. 

Ananthaswamy et.al [12] obtained analytical solutions for velocity, temperature and concentration 

profiles for the boundary layer flow of a nanofluid. 

       The objective of this paper is to study the effect of an MHD forced convective flow of 

a fluid through a circular duct filled with a permeable medium concentrated with a low densitygas 

in the presence of transverse magnetic field, thermal radiation and uniform heat flux at the walls 

of the duct. The velocity and temperature profiles are obtained by using the Homotopy Analysis 

Method (HAM) ([14]-[19]) and using them the entropy generation rate, the Bejan number and 

Nusselt number are determined.  

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

We consider the steady flow of a viscous incompressible electrically conducting fluid through the

x  direction, which is taken as the axis of the circular channel. A uniform magnetic field is applied 

in the transverse direction of the channel. The schematic diagram of the problem is shown in Fig.1. 

[1] 

 

 

 

 

 

 

 

 

 

 

Fig.1:  Schematic diagram of the problem 
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The internal part of the circular channel is filled with a hyper porous medium concentrated with 

rarefied gas. If is assumed that the wall of the circular channel is impermeable and the radiation 

heat flux in the x  direction is negligible. The governing equations of the fluid flow are given 

below. 
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Using the eqn.(7), the eqn. (1) is reduced in dimensionless form 
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The corresponding boundary conditions for velocity field are given by 
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From the first law of thermodynamics, for uniform heat flux on the wall, we have  
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Now using the eqns.(11) and (12), the eqn.(6) can be reduced as follows: 

0)(
1 22

2

22

2

2

=+







++++ LBruM

dr

du
LBrLBruuLNu

dr

dT

rdr

Td
R .              (13) 

Where 
( )wmean

mean

TT

U
Br

−
=



2

is the Brinkmann number, 
3

4 wT
N




=  the Radiation parameter and 

.
43

3

+
=

N

N
L  The corresponding boundary conditions for temperature field are: 

0:0 ==
dr

dT
r ,   .:1

dr

dT
Tr −==                           (14) 

The Nusselt number can be found by substituting u and T  in the compatibility condition 
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where entropy generation due to heat transfer is given by 
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The approximate analytical expression of the velocity profile is as follows: 
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where 1C  is as defined in an eqn.(23). 
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Using HAM, the initial and first approximations of the temperature profiles are as follows: 
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The approximate analytical expressions of the temperature profile are as follows: 
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where 2C is defined as in eqn.(27). 

The approximate analytical expression of the nusselt number is as follows: 
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where 1C  is as defined in (3). 
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The approximate analytical expression of the entropy generation rate is given as follows: 
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The approximate analytical expressions of the Bejan number is as follows: 
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4. RESULTS AND DISCUSSION 

 

Fig:2 Dimensionless coordinate r versus dimensionless velocity profile u. The curves are plotted 

using the eqn.(24)  for fixed F,, 1  and varying .andM  

 
Fig:3 Dimensionless coordinate r versus dimensionless velocity profile u. The curves are plotted  

using the eqn.(24)  for fixed  ,,, 1 M  and varying F . 
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Fig:4 Dimensionless coordinate r versus dimensionless temperature profile T. The curves are 

plotted using the eqn.(28)  for fixed NFBrM ,,,,, 1   and varying . and  

 

Fig:5 Dimensionless coordinate r versus dimensionless temperature profile T. The curves are  

plotted using the eqn. (28)  for fixed NF,,,,, 1    and varying .BrandM  
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Fig:6 Dimensionless coordinate r versus dimensionless temperature profile T. The curves are   

plotted using the eqn.(28)  for fixed NBrM ,,,,,, 1    and varying .F  

 

Fig:7 Dimensionless coordinate r versus dimensionless temperature profile T. The curves are  

plotted using the eqn.(28)  for fixed FBrM ,,,,,, 1    and varying .N  
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Fig:8 Dimensionless coordinate r versus dimensionless entropy generation Ns. The curves  are  

plotted using the eqn.(30)  for fixed NPeBrM ,,,,,,, 1    and varying .F  

 

Fig:9 Dimensionless coordinate r versus dimensionless entropy generation Ns. The curves are  

plotted using the eqn.(30)  for fixed NFPeBrM ,,,,,,, 1    and varying .  
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Fig:10 Dimensionless coordinate r versus dimensionless entropy generation Ns. The curves are  

plotted using the eqn.(30)  for fixed NFPeM ,,,,,,, 1    and varying .Br  

 

Fig:11 Dimensionless coordinate r versus dmensionless entropy generation Ns. The curves are  

plotted using the eqn.(30)  for fixed NFPeBr ,,,,,,, 1    and varying .M  



1428 

M. JEYARAMAN, L. SAHAYA AMALRAJ, V. ANANTHASWAMY 

 

Fig:12 Dimensionless coordinate r versus dimensionless entropy generation Ns. The curves are  

plotted using the eqn.(30)  for fixed FPeBrM ,,,,,,, 1    and varying N  

 

Fig:13 Dimensionless coordinate r versus Bejan number Be. The curves are  plotted using (31)  

for fixed NFPeM ,,,,,,, 1   and varying Br . 
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Fig:14 Dimensionless coordinate r versus Bejan number Be. The curves are plotted using the 

eqn.(31)  for fixed NPeBrM ,,,,,,, 1   and varying .F  

 

Fig:15 Dimensionless coordinate r versus Bejan number Be. The curves are  plotted using the 

eqn.(31)  for fixed NFPeBrM ,,,,,,,, 1   and varying .M  
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Fig:16. Dimensionless coordinate r versus Bejan number Be. The curves are plotted using the 

eqn.(31)  for fixed FPeBrM ,,,,,,, 1   and varying .N  

Figures 2 and 3 denote the dimensionless velocity profile with respect to the dimensionless 

coordinate r. From Fig.2, we find that due to the increase in the intensity of the magnetic field M, 

the velocity decreases. Also we observe that due to the increase in the slip parameter α, the velocity 

increases. From Fig.3, we observe that the velocity decreases as the forchheimer number F 

increases. From the above two Figs., we observe that the velocity is high at the centre of the circular 

tube. 

Figures 4 to 7 reprents that the dimensionless temperature profile with respect to the dimensionless 

coordinate r. From Fig.4, it is observed that the temperature decreases as the slip perameter α 

increases and the temperature increases as the temperature slip parameter β increases. From Fig.5, 

we observe that the temperature increases as the Brinkmann number increases. Also the 

temperature increases with the magnetic field M. From Fig.6, we observe that the temperatue 

decreses with the forchheimer number. From Fig.7, it follows that the temperature increases with 

the radiation parameter N. From these four Figs., we observe that the temperature is high at the 

centre of the circular tube.  



 `   1431 

ENTROPY ANALYSIS IN MHD FORCED CONVECTIVE FLOW 

The Figures 8 to 12 indicate that the dimensionless entrpy generation Ns with respect to the 

dimensionless coordinate r. From Fig.8, it is observed that the entropy generation becomes lower 

as the forchheimer number F increases. From Fig.9, we find that the entropy generation increases 

with the temperature slip parameter β. From Fig.10, we observe that the entropy generation 

becomes higher as the Brinkmann number increases and from Fig.11, we observe that the entropy 

generation becomes larger with Hartman number M. From Fig.12, we observe that the entropy 

generation increases with the radiation parameter N. 

Figures 13 to 16 depict the Bejan number Be  with respect to the dimensionless coordinate r. From 

these Figs., we observe that the Bejan number becomes higher with the radiation parameter N, the 

Brinkmann number Br, the Forchheimer number F and Hartman number M. Moreover we see that 

the Bejan number attains its maximum value. 

 

5. CONCLUSION 

In this paper, we investigated the flow of a viscous incompressible fluid within a circular channel 

concentrated with low density gas in the midst of a transverse magnetic field, thermal radiation 

and uniform heat flux on the walls. The velocity and heat equations were solved analytically using 

the Homotopy Analysis Method (HAM) and using them the entropy generation, the Bejan number 

and the Nusselt number were determined. The results were discussed graphically and the findings 

were conformed with the previous work. 

 

APPENDIX: A 

Approximate analytical expressions of the non-linear differential eqns.(8), (9), (13) and (14) 

using the Homotopy analysis method [12 – 19] 

In this Appendix, how we derive the eqns. (24) and (27) using the Homotopy analysis method. 

The differential equations are 
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With initial conditions 
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We construct the Homotopy for the eqns. (A.1) and  (A.2)  are as follows: 
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Let the approximate analytical solution of the eqns. (A.1) and (A.2)  
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Substituting the eqns.(A.6), (A.7) into  the eqns. (A.4), (A.5) and comparing the coefficients of 

the powers of p we get the following eqns. 
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The initial approximations are as follows: 
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Solving the eqns.(A.8) - (A.11) and using the initial approximations eqns. (A.12) and (A.13),  we 

obtain the following results. 
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According to HAM we conclude that  
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Substituting the eqns.(A.14)  and (A.15) into an eqn. (A.20) and substituting the eqns. (A.16) and 

(A.17) into an eqn.(A.21),  we obtain the solutions  in the text eqns. (24) and (28) respectively. 

The obtained velocity profile and temperature profile are utilized to obtain the Nusselt number, 

Entropy generation and the Bejan number in the text eqns.(29), (30) and (31) respectively. 
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Appendix: B: Nomenclature 

Symbols Meaning 

Br Brinkmann number 

Be Bejan number 

pc
 

Specific heat 

F Forchheimer number 

Κ Thermal conductivity 

K  Permeability 

M Hartman number 

N Radiation perameter 

Ns Entropy generation coefficient 

Nu Nusselt number 

P Negative of applied pressure gradient in x direction 

R Radius of circular channel 

T Dimensionless temperature 

wT  Temperature at wall 

Α Dimensionless velocity slip coefficient 

Β Dimensionless temperature slip coefficient 

μ Dynamic viscosity 

1  
Viscosity ratio 
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