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Abstract. The objective of this paper is to study generalized monotone mapping, which is the addition of coco-

ercive mapping and monotone mapping. First resolvent operator is obtained and discussion of its few properties.

Then we give the resolvent equation associated with the resolvent operator and find a solution to a variational-like

inclusion problem.
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1. INTRODUCTION

Variational inclusion is a natural generalization of variational inequalities. Since monotonic-

ity is a key factor in the study of variational inclusions. Therefore, mathematicians introduced

and studied many types of monotonicity e.g. maximal monotone mapping, relaxed monotone

mapping, H-monotone mapping, A-monotone mapping etc., and discussed the solvability of
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different variational inclusion problems with the help of underlying different monotone map-

pings, see [4, 5],[7]-[10],[15],[22, 23],[25]-[27],[28, 29]. The resolvent operator technique

which is the generalized form of projection technique, is very efficient tool to solve variational

inclusions and their generalizations. Many heuristics generalized the monotonicity such as

(H,η)-monotone, (A,η)-monotone, (A,η)-maximal relaxed monotone etc. They introduced

and studied different variational inclusions problems involving these monotone mapping in

Hilbert spaces (Benach spaces), see [8, 9, 22, 25, 28].

Recently, Sahu et al. [26] proved the existence of solutions for a class of nonlinear implicit

variational inclusion problems in semi-inner product spaces, which is more general than the

results studied in [27]. Very recently Luo and Huang [23], introduced and studied (H,ϕ)-η-

monotone mapping in Banch spaces. Bhat and Zahoor [4, 5] introduced and studied (H,φ)-η-

monotone mapping in semi-inner product space. For the applications point of view we refer

to see [7]-[10],[17, 22, 23],[25]-[29],[31, 32]. The proposed work is impelled by the noble

research works mentioned above. First we study the generalized monotone mapping which is

the addition of cocoercive mapping and monotone mapping and call it H(., ., .)-ϕ-η-cocoercive

mapping in semi-inner product spaces. Then, resolvent operator and its resolvent equation are

obtained and discuss its few properties. In last existence and convergence results are obtained

for a variational inclusion problem in 2-uniformly smooth Banach spaces. Our work is extension

and refinement of some result. For details, see [7]-[10],[12]-[18],[22, 23],[25]-[29],[31, 32].

Definition 1.1. [24, 26] Let us consider the vector space Y over the field F of real or complex

numbers. A functional [., .] : Y ×Y → F is called a semi inner product if

(i) [u1 +u2,v1] = [u1,v1]+ [u2,v1], ∀u1,u2,v1 ∈ Y

(ii) [αu1,v1] = α[u1,v1], ∀α ∈ F, u1,v1 ∈ Y

(iii) [u1,u1]≥ 0, f or u1 6= 0

(iv) |[u1,v1]|2 ≤ [u1,u1][v1,v1], ∀u1,v1 ∈ Y

The pair (Y, [., .]) is called a semi-inner product space.

“We observed that ‖u1‖= [u1,u1]1/2 is a norm and we can say a semi-inner product space is

a normed linear space with the norm. Every normed linear space can be made into a semi-inner

product space in infinitely many different ways. Giles [11] had shown that if the underlying
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space Y is a uniformly convex smooth Banach space then it is possible to define a semi-inner

product uniquely. For a detailed study and fundamental results on semi-inner product spaces,

one may refer to Lumer [24], Giles [11] and Koehler [21],” [4].

Definition 1.2. [26, 30] The Y be a Banach space, then

(i) modulus of smoothness of Y defined as

ρY (s) = sup
{
‖u1 + v1‖+‖u1− v1‖

2
−1 : ‖u1‖ ≤ 1, ‖v1‖ ≤ s

}
.

(ii) Y be uniformly smooth if lims→0 ρY (s)/s = 0

(iii) Y be p-uniformly smooth for p > 1, if there exists c > 0 such that ρY (s)≤ csp.

(iv) Y be 2-uniformly smooth if there exists c > 0 such that ρY (s)≤ cs2.

Lemma 1.3. [26, 30] Let p > 1 be a real number and Y be a smooth Banach space. Then the

following statements are equivalent:

(i) Y is 2-uniformly smooth.

(ii) There is a constant k > 0 such that for every v1,w1 ∈ Y , the following inequality holds

‖v1 +w1‖2 ≤ ‖v1‖2 +2〈w1, fv1〉+ k‖w1‖2,(1.1)

where fv1 ∈ J(v1) and J(v1) = {v1∗ ∈Y ∗ : 〈v1,v1∗〉= ‖v1‖2 and ‖v1∗‖= ‖v1‖} is the normalized

duality mapping.

“Every normed linear space Y is a semi-inner product space (see [24]). Infact, by Hahn-Banach

theorem, for each v1 ∈Y , there exists at least one functional fv1 ∈Y ∗ such that 〈v1, fv1〉= ‖v1‖2.

Given any such mapping f : Y →Y ∗, we can verify that [w1,v1] = 〈w1, fv1〉 defines a semi-inner

product. Hence we can write the inequality (2.1) as

‖v1 +w1‖2 ≤ ‖v1‖2 +2[w1, fv1]+ s‖w1‖2.(1.2)

The constant s is known as constant of smoothness of Y , is chosen with best possible minimum

value”, [26].
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2. PRELIMINARIES

Let Y be a 2-uniformly smooth Banach space. Its norm and topological dual space is given

by ‖.‖ and Y ∗, respectively. The semi-inner product [., .] signify the dual pair among Y and Y ∗.

In order to proceed the next, we recall some basic concepts, which will be needed in the subse-

quent sections.

Definition 2.1. [23, 26] Let Y be real 2-uniformly smooth Banach space. Let single-valued

mapping Q : Y → Y and mapping η : Y ×Y → Y, then

(i) Q is (r,η)-strongly monotone if there ∃ constant r > 0 such that

[Q(u)−Q(u′),η(u,u′)] ≥ r ‖u−u′‖2, ∀u, u′ ∈ Y ;

(ii) Q is (s,η)-cocoercive if there ∃ constant s > 0 such that

[Q(u)−Q(u′),η(u,u′)] ≥ s ‖Q(u)−Q(u′)‖2, ∀u, u′ ∈ Y ;

(iii) Q is (s′,η)-relaxed cocoercive if there ∃ constant s > 0 such that

[Q(u)−Q(u′),η(u,u′)] ≥ −s′ ‖Q(u)−Q(u′)‖2, ∀u, u′ ∈ Y ;

(iv) Q is α-expansive if there ∃ constant α > 0

‖Q(u)−Q(u′)‖ ≥ α ‖u−u′‖, ∀u, u′ ∈ Y ;

(v) η is be τ-Lipschitz continuous if there ∃ constant τ > 0 such that

‖η(u,u′)‖ ≤ τ ‖u−u′‖, ∀u, u′ ∈ Y.

Definition 2.2. [17] Let us consider the single-valued mappings Q,R,S : Y → Y , mapping η :

Y ×Y → Y, H : Y ×Y ×Y → Y , then

(i) H(Q, ., .) is (µ,η)-cocoercive in regards R if there ∃ constant µ > 0 such that

[H(Qu,x,x)−H(Qu′,x,x), η(u,u′)] ≥ µ ‖Qu−Qu′‖2, ∀x, u, u′ ∈ Y ;

(ii) H(.,R, .) is (γ,η)-relaxed cocoercive in regards R if there ∃ constant γ > 0 such that

[H(x,Ru,x)−H(x,Ru′,x),η(u,u′)] ≥ −γ ‖Ru−Ru′‖2, ∀x, u, u′ ∈ Y ;
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(iii) H(., .,S) is (δ ,η)-strongly monotone in regards S if there ∃ constant δ > 0 such that

[H(x,x,Su)−H(x,x,Su′),η(u,u′)] ≥ δ ‖u−u′‖2, ∀x, u, u′ ∈ Y ;

(iv) H(Q, ., .) is κ1-Lipschitz continuous in regards Q if there ∃ constant κ1 such that

‖H(Qu,x,x)−H(Qu′,x,x)‖ ≤ κ1 ‖u−u′‖, ∀x, u,u′ ∈ Y.

Similarly we can define the Lipschitz continuity for H(., ., .) in regards second and third com-

ponent.

“Let M :Y (Y be a set-valued mapping, then graph of M is given by graph(M)= {(v,w) : w∈

M(v)}. The domain of M is given by

Dom(M) = {v ∈ Y : ∃w ∈ Y : (v,w) ∈M}.

The Range of (M) is given by

Range(M) = {w ∈ Y : ∃V ∈ Y : (v,w) ∈M}.

The inverse of (M) is given by

M−1 = {(w,v) : (v,w) ∈M}.

For any two set-valued mappings N and M, and any real number β , we define

N +M = {(v,w+w′) : (v,w) ∈ N,(v,w′) ∈M},

βM = {(v,βw) : (v,w,) ∈M}.

For a mapping A and a set-valued map M : Y ( Y , we define A+M = {(v,w+w′) : Av =

w,(v,w′) ∈M}”, [4].

Definition 2.3. [23, 26] A set-valued mapping M : Y (Y is said to be (m,η)-relaxed monotone

if ∃ a constant m > 0 such that

[v∗−w∗,η(v,w)] ≥ −m ‖v−w‖2, ∀v,w ∈ Y, v∗ ∈M(v), w∗ ∈M(w).

Definition 2.4. Let G,η : Y ×Y → Y be the mappings. Then
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(i) G is (ν ,η)-relaxed monotone in regards first component if ∃ a constant ν > 0 such that

[G(v,u∗)−G(w,u∗),η(v,w)] ≥ −ν‖v−w‖2, ∀v,w,u∗ ∈ Y ;

(ii) G(., .) is ε1-Lipschitz continuous in regards first component if ∃ a constant ε1 > 0 such that

‖G(v,u∗)−G(w,u∗)‖ ≤ ε1 ‖v−w‖, ∀v,w,u∗ ∈ Y ;

Definition 2.5. [6] The Hausdorff metric D(., .) on CB(Y ), is defined by

D(A,B) = max
{

sup
u∈A

inf
v∈B

d(u,v),sup
v∈B

inf
u∈A

d(u,v)
}
, A,B ∈CB(Y ),

where d(., .) is the induced metric on Y and CB(Y ) denotes the family of all nonempty closed

and bounded subsets of X .

Definition 2.6. [6] A multi-valued mapping S : Y ( CB(Y ) is called D-Lipschitz continuous

with constant λS > 0, if

D(Sv,Sw)≤ λS ‖v−w‖, ∀v, w ∈ Y.

3. GENERALIZED H(., ., .)-ϕ -η -COCOERCIVE MAPPING

Let Y be 2-uniformly smooth Banach space. Assume that η ,H :Y×Y×Y→Y , and ϕ,Q,R,S :

Y → Y be single-valued mappings and M : Y ( Y be a multi-valued mapping.

Definition 3.1. Let H(., ., .) is (µ,η)-cocoercive in regards Q with non-negative constant µ ,

(γ,η)-relaxed cocoercive in regards R with non-negative constant γ and (δ ,η)-strongly mono-

tone in regards S with non-negative constant δ , then M is called generalized H(., ., .)-ϕ-η-

cocoercive in regards Q, R and S if

(i) ϕoM is (m,η)-relaxed monotone;

(ii) (H(., ., .)+λϕoM)(Y ) = Y, λ > 0.

Let us consider the following assumptions:

Assumption M1: Let H is (µ,η)-cocoercive in regards Q with non-negative constant µ , (γ,η)-

relaxed cocoercive in regards R with non-negative constant γ and (δ ,η)-strongly monotone in

regards S with non-negative constant δ with µ > γ .
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Assumption M2: Let Q is α-expansive and R is β -Lipschitz continuous with α > β .

Assumption M3: Let η is τ-Lipschitz continuous.

Assumption M4: Let M is generalized H(., ., .)-ϕ-η-cocoercive operator in regards Q, R and

S.

Theorem 3.2. Let assumptions M1, M2 and M4 hold good with ` = µα2 − γβ 2 + δ > m,

then (H(Q,R,S)+λϕoM)−1 is single-valued.

Proof. Let y,z ∈ (H(Q,R,S)+λϕoM)−1(x) for any given x ∈ Y . It is obvious that −H(Qy,Ry,Sy)+ x ∈ λϕoM(y),

−H(Qz,Rz,Sz)+ x ∈ λϕoM(z).

Since ϕoM is (m,η)-relaxed monotone in the first argument, we have

−mλ‖y− z‖2 ≤ [−H(Qy,Ry,Sy)+ x− (−H(Qz,Rz,Sz)+ x), η(y,z)]

= [H(Qy,Ry,Sy)−H(Qz,Rz,Sz), η(y,z)]

Since assumption M1, M2 hold, we have

−mλ‖y− z‖2 =−(µα
2− γ +δ ) ‖y− z‖2

0≤−(`−mλ ) ‖y− z‖2 ≤ 0,where ` = µα
2− γβ

2 +δ .

Since µ > γ, α > β ,δ > 0, it follows that ‖y− z‖ ≤ 0. We get y = z, therefore (H(Q,R,S)+

λϕoM)−1 is single-valued.

Definition 3.3. Let assumptions M1, M2 and M4 hold good with `= µα2− γβ 2+δ > mλ then

the resolvent operator RH(.,.,.)−η

M,λ ,ϕ : Y → Y is given as

RH(.,.,.)−η

M,λ ,ϕ (u) = (H(Q,R,S)+λϕoM)−1(u), ∀ u ∈ Y.(3.1)

The next attempt is to prove the Lipschitz continuity of the resolvent operator defined by

(3.1).
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Theorem 3.4. Let assumptions M1-M4 hold good with ` = µα2− γβ 2 + δ > mλ and η is

τ-Lipschitz then RH(.,.,.)−η

M,λ ,ϕ : Y → Y is τ

`−mλ
-Lipschitz continuous, that is,

‖RH(.,.,.)−η

M,λ ,ϕ (y)−RH(.,.,.)−η

M,λ ,ϕ (z)‖ ≤ τ

`−mλ
‖y− z‖, ∀ y,z ∈ Y.

Proof. Let any given points y,z ∈ Y . From (3.3), we have

RH(.,.,.)−η

M,λ ,ϕ (y) = (H(Q,R,S)+λϕoM)−1(y),

RH(.,.,.)−η

M,λ ,ϕ (z) = (H(Q,R,S)+λϕoM)−1(z).

Let u0 = RH(.,.,.)−η

M,λ ,ϕ (y) and u1 = RH(.,.,.)−η

M,λ ,ϕ (z).

 λ−1
(

y−H
(

Q(u0),R(u0),S(u0)
))
∈ ϕoM(u0)

λ−1
(

z−H
(

Q(u1),R(u1),S(u1)
))
∈ ϕoM(u1).

Since ϕoM is (m,η)-relaxed monotone in the first arguments, we have

[(y−H(Q(u0),R(u0),S(u0)))− (z−H(Q(u1),R(u1),S(u1))),η(u0,u1)] ≥ −mλ ‖u0−u1‖2,

which implies

[y− z,η(u0,u1)]≥ [H(Q(u0),R(u0),S(u0))−H(Q(u1),R(u1),S(u1)),η(u0,u1)]−mλ ‖u0−u1‖2.

Now, we have

‖y− z‖ ‖η(u0,u1)‖ ≥ [y− z, η(u0,u1)]≥−mλ ‖u0−u1‖2

+[H(Q(u0),R(u0),S(u0))−H(Q(u1),R(u1),S(u1)),η(u0,u1)].

Since assumption M1-M3 hold and η is τ-Lipschitz continuous

‖y− z‖ τ ‖u0−u1‖ ≥ (µα
2− γβ

2 +δ ) ‖u0−u1‖2−mλ ‖u0−u1‖2

≥ (`−mλ ) ‖u0−u1‖2, where ` = (µα
2− γβ

2 +δ ).

Thus

‖RH(.,.,.)−η

M,λ ,ϕ (y)−RH(.,.,.)−η

M,λ ,ϕ (z)‖ ≤ τ

`−mλ
‖y− z‖, ∀ y,z ∈ Y.

Hence, we get the required result.
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4. FORMULATION OF THE PROBLEM AND EXISTENCE OF SOLUTION

Now we make an attempt to show that generalized H(., ., .)-ϕ-η-cocorecive operator under

acceptable assumptions can be used as a powerful tool to solve variational inclusion problems.

Let Y be 2-uniformly smooth Banach space. Let V,W : Y →CB(Y ) be the multi-valued map-

pings, and let Q,R,S, f ,ϕ : Y → Y , η ,G : Y ×Y → Y and H : Y ×Y ×Y → Y be single-valued

mappings. Suppose that multi-valued mapping M : Y ( Y be a generalized H(., ., .)-ϕ-η-

cocoercive operator in regards Q, R and S and range ( f ) ∩ dom M 6= /0. We consider the

following generalized set-valued variational like inclusion problem to find u ∈ Y , v ∈V (u) and

w ∈W (u) such that

0 ∈ G(v,w)+M( f (u)).(4.1)

If Y is real Hilbert space and M is maximal monotone operator, then the similar problem to (4.1)

studied by Huang et al. [15].

Lemma 4.1. Let us consider the mapping ϕ : Y → Y such that ϕ(v+w) = ϕ(v)+ϕ(w) and

Ker(ϕ) = {0}, where Ker(ϕ) = {v ∈ Y : ϕ(v) = 0}. If (u,v,w), where u ∈ Y , v ∈ V (u) and

w ∈W (u) is a solution of problem (4.1) if and only if (u,v,w) satisfies the following relation:

f (u) = RH(.,.,.)−η

M,λ ,ϕ [H(Q( f u),R( f u),S( f u))−λϕoG(v,w)].(4.2)

The resolvent equation corresponding to generalized set-valued variational-like inclusion

problem (4.1).

ϕo G(v,w)+λ
−1JH(.,.,.)−η

M,λ ,ϕ (t) = 0.(4.3)

where λ > 0,

JH(.,.,.)−η

M,λ ,ϕ (t) =
[
I−H(Q(RH(.,.,.)−η

M,λ ,ϕ (t)),R(RH(.,.,.)−η

M,λ ,ϕ (t)),S(RH(.,.,.)−η

M,λ ,ϕ (t)))
]
,

I is the identity mapping and

H(Q,R,S)
[
RH(.,.,.)−η

M,λ ,ϕ (t)
]
= H

(
Q(RH(.,.,.)−η

M,λ ,ϕ (t)),R(RH(.,.,.)−η

M,λ ,ϕ (t)),S(RH(.,.,.)−η

M,λ ,ϕ (t))
)
.

Now, we show that the problem (4.1) is equivalent to the resolvent equation problem (4.3).
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Lemma 4.2. If (u,v,w) with u ∈Y , v ∈V (u) and w ∈W (u) is a solution of problem (4.1) if and

only if the resolvent equation problem (4.3) has a solution (t,u,v,w) with t,u ∈Y , v ∈V (u) and

w ∈W (u), where

f (u) = RH(.,.,.)−η

M,λ ,ϕ (t),(4.4)

and t = H(Q( f u),R( f u),S( f u))−λϕoG(v,w).

Proof: Let (u,v,w) be a solution of problem (4.1), and from Lemma 4.1 Using the fact that

JH(.,.,.)−η

M,λ ,ϕ =
[
I−H

(
Q(RH(.,.,.)−η

M,λ ,ϕ ),R(RH(.,.,.)−η

M,λ ,ϕ ),S(RH(.,.,.)−η

M,λ ,ϕ )
)]

,

JH(.,.,.)−η

M,λ ,ϕ (t) = JH(.,.,.)−η

M,λ ,ϕ

[
H(Q( f u),R( f u),S( f u))−λϕoG(v,w)

]
=
[
I−H

(
Q(RH(.,.,.)−η

M,λ ,ϕ ),R(RH(.,.,.)−η

M,λ ,ϕ ),S(RH(.,.,.)−η

M,λ ,ϕ )
)][

H(Q( f u),R( f u),S( f u))−λϕoG(v,w)
]

=
[
H(Q( f u),R( f u),S( f u))−λϕoG(v,w)

]
−H
(

Q(RH(.,.,.)−η

M,λ ,ϕ ),R(RH(.,.,.)−η

M,λ ,ϕ ),S(RH(.,.,.)−η

M,λ ,ϕ )
)(

H(Q( f u),R( f u),S( f u))−λϕoG(v,w)
)

=
[
H(Q( f u),R( f u),S( f u))−λϕoG(v,w)

]
−H(Q( f u),R( f u),S( f u))

=−λϕoG(v,w)

This implies that

ϕoG(v,w)+λ
−1JH(.,.,.)−η

M,λ ,ϕ (t) = 0.

Conversely, let (t,u,v,w) is a solution of resolvent equation problem (4.3), then

JH(.,.,.)−η

M,λ ,ϕ (t) =−λϕoG(v,w)[
I−H

(
Q(RH(.,.,.)−η

M,λϕ
),R(RH(.,.,.)−η

M,λϕ
),S(RH(.,.,.)−η

M,λϕ
)
)]

(t) =−λϕoG(v,w)

t−H(Q( f u),R( f u),S( f u)) =−λϕoG(v,w).

This implies that

t = H(Q( f u),R( f u),S( f u))−λϕoG(v,w).

Hence (u,v,w) is a solution of variational inclusion problem (4.1).
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Lemma 4.1 and Lemma 4.2 are very crucial from the numerical point of view. They permit

us to suggest the following iterative scheme for finding the approximate solution of (4.3).

Algorithm 4.3. For any given (t0,u0,v0,w0), we can choose t0, u0 ∈ Y , v0 ∈ V (u0) and w0 ∈

V (u0) and 0 < ε < 1 such that sequences {tk},{uk}, {vk} and {wk} satisfy



f (uk) = RH(.,.,.)−η

M,λ ,ϕ (tk),

vk ∈V (uk), ‖vk− vk+1 ‖ ≤ D(V (uk),V (uk+1))+ εk+1‖uk−uk+1‖,

wk ∈W (uk),‖wk−wk+1‖ ≤ D(W (uk),W (uk+1))+ εk+1‖uk−uk+1‖,

tk+1 = H(Q( f uk),R( f uk),S( f uk))−λϕoG(vk,wk),

where λ > 0, k ≥ 0, and D(., .) is the Hausdorff metric on CB(Y ).

Next, we find the convergence of the iterative algorithm for the resolvent equation problem

(4.3) corresponding generalized set-valued variational inclusion problem (4.1).

Theorem 4.4. Let us consider the problem (4.1) with assumptions M1-M4 and ϕ : Y → Y be a

single-valued mapping with ϕ(v+w) = ϕ(v)+ϕ(w) and Ker(ϕ) = {0}. Assume that

(i) V and W are λV and λW continuous, respectively;

(ii) ϕoG is (ν ,η)-relaxed monotone in regards first component;

(iii) ϕoG is ε1, ε2-Lipschitz continuous in regards first and second component, respectively;

(iv) H(Q,R,S) is κ1, κ2, κ3-Lipschitz continuous in regards Q, R and S, respectively;

(v) f is r-strongly monotone and λ f -Lipschitz continuous;

(vi) 0<
√{

λ 2
f κ2 +2νλλ 2

V −2ε1λλV

(
λ f κ + τλV

)
+ ε2

1 λ 2λ 2
V

}
<

(1−
√

1−2r+λ 2
f )(`−mλ )

τ
−ε2λλW ;

where κ = κ1 +κ2 +κ3

(vii) ‖RH(.,.)−ϕ−η

Mk(.,tk)
(u)−RH(.,.)−ϕ−η

Mk−1(.,tk−1)
(u)‖ ≤ ξ‖tk− tk−1‖, ∀ tk, tk−1 ∈ Y,ξ > 0;

Then the iterative sequences {tk},{uk},{vk}, and {wk} generated by Algorithm 4.3 converges

strongly to the unique solution (t,u,v,w) of the resolvent equation problem (4.3).
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Proof. Using Algorithms 4.3 and λV ,λW -D Lipschitz continuity of V,W , we have

‖vk− vk−1‖ ≤ D(V (uk),V (uk−1))+ ε
k‖uk−uk−1‖ ≤ {λV + ε

k}‖uk−uk−1‖,(4.5)

‖wk−wk−1‖ ≤ D(W (uk),W (uk−1))+ ε
k‖uk−uk−1‖ ≤ {λW + ε

k}‖uk−uk−1‖,(4.6)

where k = 1, 2, .....

Now, we compute

‖tk+1− tk‖= ‖H(Q( f uk),R( f uk),S( f uk))−H(Q( f uk−1),R( f uk−1),S( f uk−1))

−λ (ϕoG(vk,wk)−ϕoG(vk−1,wk−1))‖

≤ ‖H(Q( f uk),R( f uk),S( f uk))−H(Q( f uk−1),R( f uk−1),S( f uk−1))

−λ (ϕoG(vk,wk)−ϕoG(vk−1,wk))‖

+λ‖ϕoG(vk−1,wk)−ϕoG(vk−1,wk−1))‖.(4.7)

‖H(Q( f uk),R( f uk),S( f uk))−H(Q( f uk−1),R( f uk−1),S( f uk−1))

−λ (ϕoG(vk,wk)−ϕoG(vk−1,wk))‖2

≤ ‖H(Q( f uk),R( f uk),S( f uk))−H(Q( f uk−1),R( f uk−1),S( f uk−1))‖2

−2λ [ϕoG(vk,wk)−ϕoG(vk−1,wk),η(vk,vk−1)]

+2λ‖ϕoG(vk,wk)−ϕoG(vk−1,wk)‖

×
{
‖H(Q( f uk),R( f uk),S( f uk))−H(Q( f uk−1),R( f uk−1),S( f uk−1))‖+‖η(vn,vn−1)‖

}
+λ

2‖ϕoG(vk,wk)−ϕoG(vk−1,wk)‖2.(4.8)

Since H(Q,R,S) is κ1,κ2,κ3-Lipschitz continuous in regards Q,R,S, respectively, We have

‖H(Q( f uk),R( f uk),S( f uk))−H(Q( f uk−1),R( f uk−1),S( f uk−1))‖2

≤ λ
2
f κ

2‖uk−uk−1‖2,where κ = κ1 +κ2 +κ3(4.9)

Since ϕoG is (ν ,η)-relaxed monotone, then we have Since ϕoG is (ν ,η)-relaxed monotone,

then we have

[ϕoG(vk,wk)−ϕoG(vk−1,wk),η(vk,vk−1)]≥−ν{λV + ε
k}2‖uk−uk−1‖2.(4.10)
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As ϕoG(., .) is ε1,ε2-Lipschitz continuous in the first, second arguments, respectively and using

(4.5),(4.6), we have

‖ϕoG(vk,wk)−ϕoG(vk−1,wk)‖ ≤ ε1‖vk− vk−1‖ ≤ ε1{λV + ε
k}‖uk−uk−1‖,(4.11)

‖ϕoG(vk−1,wk)−ϕoG(vk−1,wk−1)‖ ≤ ε2‖wk−wk−1‖ ≤ ε2{λW + ε
k}‖uk−uk−1‖.(4.12)

By using M-3 and (4.9)-(4.12) in (4.8), we have

‖H(Q( f uk),R( f uk),S( f uk))−H(Q( f uk−1),R( f uk−1),S( f uk−1))

−(ϕoG(vk,wk)−ϕoG(vk−1,wk))‖

≤
√[

λ 2
f κ2 +2νλ{λV + εk}2 +2ε1λ{λV + εk}

{
λ f κ + τ{λV + εk}

}
+ ε2

1 λ 2{λV + εk}2
]

×‖uk−uk−1‖.(4.13)

Using (4.12) and (4.13) in (4.7), we get

‖tk+1− tk‖

≤
[√[

λ 2
f κ2 +2νλ{λV + εk}2 +2ε1λ{λV + εk}

{
λ f κ + τ{λV + εk}

}
+ ε2

1 λ 2{λV + εk}2
]

+ε2λ{λW + ε
k}
]
×‖uk−uk−1‖.(4.14)

By Lipschitz continuity of resolvent operator and condition (vii),(4.7), we have

‖uk−uk−1‖=
∥∥∥uk−uk−1− ( f (uk)− f (uk−1))+RH(.,.,.)−η

M,λ ,ϕ (tk)−RH(.,.,.)−η

M,λ ,ϕ (tk−1)
∥∥∥

≤ ‖uk−uk−1− ( f (uk)− f (uk−1))‖+
τ

`−mλ
‖tk− tk−1‖(4.15)

‖uk−uk−1− ( f (uk)− f (uk−1))‖2 ≤ (1−2r+λ
2
f )‖uk−uk−1‖2.(4.16)

Using (4.16) in (4.15), we have

‖uk−uk−1‖ ≤
√

1−2r+λ 2
f ‖uk−uk−1‖+

τ

(`−mλ )
‖tk− tk−1‖

‖uk−uk−1‖ ≤
[

τ

(1−
√

1−2r+λ 2
f )(`−mλ )

]
‖tk− tk−1‖.(4.17)

Using (4.17) in (4.14), equation (4.14) becomes

‖tk+1− tk‖ ≤Θ(εk)‖tk− tk−1‖, where(4.18)
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Θ(εk) =
τ

√{
λ 2

f κ2+2νλ{λV+εk}2+2ε1λ{λV+εk}
(

λ f κ+τ{λV+εk}
)
+ε2

1 λ 2{λV+εk}2
}
+τε2λ{λW+εk}(

1−
√

1−2r+λ 2
f

)
(`−mλ )

.

Since 0 < ε < 1, this implies that Θ(εk)→Θ as k→ ∞, where

Θ =

τ

[√{
λ 2

f κ2 +2νλλ 2
V +2ε1λλV

(
λ f κ + τλV

)
+ ε2

1 λ 2λ 2
V

}
+ ε2λλW

]
(1−

√
1−2r+λ 2

f )(`−mλ )
.

It is given that Θ < 1, then {tk} is a Cauchy sequence in Banach space Y , then tk→ t as k→ ∞.

From (4.17), {uk} is also Cauchy sequence in Banach space Y , then there exist u such that

uk→ u.

From equation (4.5)-(4.7) and Algorithm 4.3, the sequences {vk} and {wk} are also Cauchy

sequences in Y . Thus, there exist v and w such that vk→ v and wk→ w as k→ ∞. Next we will

prove that v ∈V (u). Since vk ∈V (u), then

d(v, V (u)) ≤ ‖v− vk‖ + d(vk, V (u))

≤ ‖v− vk‖ + D(V (uk), V (u))

≤ ‖v− vk‖ + λV ‖uk−u‖→ 0, as k→ ∞,

which gives d(v, V (u)) = 0. Due to V (u) ∈CB(Y ), we have v ∈V (u). In the same manner, we

easily show that w ∈W (u).

By the continuity of RH(.,.,.)−η

M,λ ,ϕ , Q, R, S, V, W, ϕoG, f , η and M and Algorithms 4.3, we

know that u, v, w and k→ t satisfy

tk+1 = [H(Q( f uk),R( f uk),S( f uk))−ϕoG(vk,wk)],

→ t = [H(Q( f u),R( f u),S( f u))−ϕoG(v,w)] as k→ ∞

RH(.,.,.)−η

M,λ ,ϕ (tk) = f (uk)→ f (u) = RH(.,.,.)−η

M,λ ,ϕ (t) as k→ ∞.

Now using the Lemma 4.2, we have

ϕoG(v,w)+λ
−1(t−H(Q(RH(.,.,.)−η

M,λ ,ϕ (t)),R(RH(.,.,.)−η

M,λ ,ϕ (t)),S(RH(.,.,.)−η

M,λ ,ϕ (t))) = 0,

Thus we have

ϕoG(v,w)+λ
−1JH(.,.,.)−η

M,λ ,ϕ (t) = 0.(4.19)
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Hence (t,u,v,w) is a solution of the problem (4.3).
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