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Abstract. In this paper, we propose a truncated version of generalized Cauchy distribution suggested by

Rider[19] in a special setting. One possible use for the proposed model is in life-testing where the domain

of definition is not only non-negative but also guarantees no failure before a given time (truncated

parameter). The parameters, reliability and failure rate functions are estimated using the maximum

likelihood and Bayes methods. The Bayes estimates (BE′s) are obtained under the squared-error and

liner exponential (LINEX) loss functions. The computations have been carried out using the Markov

Chain Monte Carlo (MCMC) algorithm.
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1. Introduction

The Cauchy distribution is a symmetric distribution with bell-shaped density func-

tion as the normal distribution but with a greater probability mass in the tails. The

distribution is often used in the cases which arise in outlier analysis.
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It is well-known that the Cauchy distribution can arise as the ratio of two independent

normal variates. The probability density function (PDF ) with location parameter β (rep-

resenting the population median) and scale parameter γ (representing the semi-quartile

range) is given by

fX(x) =
1

πγ

[
1 +

(
x− β

γ

)2]−1

,−∞ < x <∞,−∞ < β <∞, γ > 0.(1)

Balmer et al [2], Cane [4], Chan [5], and Howlader and Weiss [13-14] found the maxi-

mum likelihood and Bayes estimates of β, γ and the reliability function. Copas [6] and

Gabrielsen [10] have established that the joint maximum is unique. Also, Hinkley [11] has

carried out large-scale computer simulation of samples of sizes 20 and 25 and found that

Newton-Raphson iteration method rarely failed to converge rapidly.

Ferguson [8] gave closed-form solutions for the maximum likelihood estimators of β and

γ when n < 5.

Frank [9] studied the problem of testing the normal versus Cauchy distributions and

Spiegelhalter [20] used Frank’s results to obtain exact Bayes estimators for β and γ using

a non-informative prior. Howlader and Weiss [12] used Lindley’s approximation form to

obtain the Bayes estimates of β and γ. The book by Johnson, Kotz and Balakrishnan [15]

covers the Cauchy distribution in many of its aspects starting from the history, properties,

developments and applications up to the most recent research done in the subject matter,

to the date of the book’s publication.

A random variableX is said to have a generalized Cauchy distribution (GCD) according

to Rider[19], if its PDF , takes the form

fX(x) =
δ Γ(ω)

2 Γ(1/δ) Γ(ω − 1/δ)

[
1 + |x− β|δ

] −ω

,

where

−∞ < x <∞,−∞ < β <∞, δ, ω > 0 and δ ω > 1.

The Cauchy distribution has received applications in many areas, including biological

analysis, clinical trials, stochastic modeling of decreasing failure rate life components,

queueing theory, and reliability. For data from these areas, there is no reason to believe
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that empirical moments of any order should be infinite. Thus, the choice of the Cauchy

distribution as a model is unrealistic since its moments of all orders are not finite.

The introduced truncated generalized Cauchy distribution can be a more appropriate

model for the kind of data mentioned.

We suggest a left truncated version of Rider’s GCD at β when δ = 2, ω = α + 1/2 and

introduce a scale parameter γ so that the PDF takes the form

fX(x) =
2√
π

Γ(α + 1/2)

γ Γ(α)

[
1 +

(
x− β

γ

)2 ] −α−1/2

, x ≥ β, (β, γ, α > 0).(2)

We shall write X ∼ TGCD(β, γ, α) to denote that the random variable X has PDF (1.2).

Ateya and Madhagi [1] introduced a multivariate version of TGCD, MV TGCD, and

derived its moment generating function, conditional density functions, mixed moments

and estimate its parameters using the maximum likelihood and Bayes methods.

One reason for truncation at β is that, in industry, we sometimes require a minimum

time β before which no failure occurs. This minimum time β is known as the guarantee

time.Another use for truncation at β > 0 is in epidemiological or biomedical applications

where β may represent the latent period of some disease. For example, in cancer research

problems, β is regarded as the time elapsed between first exposure to carcinogen and the

appearance of tumer.

A special case of (2) may be obtained when α = k − 1/2, k = 1, 2, ... in this case, the

PDF becomes

fX(x) =
2 Γ(k)√

π γ Γ(k − 1/2)

[
1 +

(
x− β

γ

)2 ] −k

, x ≥ β.(3)

If k = 1, fX(x) is then the left truncated version of the Cauchy PDF (1) that takes the

form

fX(x) =
2

πγ

[
1 +

(
x− β

γ

)2]−1

, x ≥ β.(4)

Dahiya et al [7] studied the maximum likelihood estimates (MLE ′s) of the parameters of

a doubly truncated Cauchy distribution.
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If k ≥ 2 we then have

fX(x) =
2k (k − 1)!

γ π[1.3.5...(2k − 3)]

[
1 +

(
x− β

γ

)2 ] −k

, x ≥ β.(5)

Another special case of (2) is when γ2 = 2α = k so that

fX(x) =
2 Γ(k+1

2
)

Γ(k/2)
√
kπ

[
1 +

(x− β)2

k

]− k+1
2

, x ≥ β.(6)

This is the PDF of a left truncated t-distribution with k degrees of freedom.

1.1. Properties of the TGCD

The PDF (2) of the TGCD is monotone decreasing on the interval [β,∞). The maxi-

mum value of f is attained at x = β and f(β) = 2Γ(α + 1/2)/[
√
π γ Γ(α)].

Wile the moment generating function (MGF ) of the Cauchy PDF (1)(and the moments

of any order) do not exist, the MGF of the TGCD and moments of all orders do exist.

In fact, it can be shown that if X ∼ TGCD(β, γ, α), then

MX(t) =
2√
π

Γ(α + 1/2)

Γ(α)

∫ π/2

0

exp[(β + γ tanϕ)t] (cosϕ)2α−1 dϕ.

For r = 1, 2, ... such that r < 2α,

E(Xr) =
1√
π

Γ(α + 1/2)

Γ(α)

r∑
i=0

(
r

i

)
γ i β r−i Beta(α− i

2
,
i+ 1

2
),

where B(a, b) =
∫ 1

0
za−1 (1− z)b−1 dz, is the standard beta integral.

Furthermore, the cumulative distribution function (CDF ) takes the form

FX(x) =
2√
π

Γ(α + 1/2)

Γ(α)

∫ tan−1(x−β
γ

)

0

(cosϕ)2α−1 dϕ.

The reliability function (RF ) and hazard rate function (HRF ), are defined, respectively,

at time x, by

(7) RX(x) = 1− FX(x) and hX(x) = fX(x)/RX(x).
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Graphs of fX(x), RX(x) and hX(x) are shown in Figures 1, 2 and 3 for different choices

of (β, γ, α)
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2. Maximum likelihood estimation

Let X1, ..., Xn be a random sample drawn from a population having a PDF given by

(2). The likelihood function (LF ) is then given, for xi ≥ β, i = 1, 2, ..., n, by

L(β, γ, α|x) =
n∏

i=1

[
2√
π

Γ(α + 1/2)

γ Γ(α)

[
1 +

(
xi − β

γ

)2 ] −α−1/2]
.(8)

where x = (x1, ..., xn) is the vector of observations (realization of X1, ..., Xn). The LF

(8) is a monotone increasing function of the parameter β on the interval (0,min{xi}), so

that, the maximum likelihood estimator of the parameter β, denoted by β̂, is given by

(9) β̂ = min{Xi}.
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The logarithm of (8) is given by

ℓ(β, γ, α| x ) =n ln(2)− n

2
ln(π)− n ln(γ)− n ln(Γ(α)) + n ln(Γ(α + 1/2))

− (α + 1/2)
n∑

i=1

ln

[
1 +

(
xi − β

γ

)2 ]
.

(10)

Replacing the parameter β by β̂ in (10), differentiating with respect to γ and α and

then setting to zero, we obtain the two likelihood equations (LE ′s)
∂ℓ
∂γ

= 0 = −n/γ̂ + (2α̂ + 1)
∑n

i=1(xi − β̂)2/{γ̂[γ̂2 + (xi − β̂)2]},

∂ℓ
∂α

= 0 = −n ψ(α̂) + n ψ(α̂+ 1/2)−
∑n

i=1 ln

[
1 +

(
[xi − β̂]/γ̂

)2 ]
.

(11)

where

ψ(z) = d
dz
ln Γ(z), is the digamma function.

Equations (11) represent two nonlinear equations which can be solved using some iteration

scheme, such as Newton-Raphson, to obtain the MLE ′s of γ and α, denoted by γ̂ and

α̂. The invariance property of MLE ′s can be applied to obtain MLE ′s for the RF and

HRF , RX(x
∗) and hX(x

∗), at some x∗.

3. Bayes estimation

Let u(θ) be a general function of the vector of parameters θ = (θ1, θ2, ..., θm). Under

the squared error loss function (SEL), L∗ = [û(θ)− u(θ)]2, the Bayes estimate of u(θ)

is given by

ûS(θ) = E(u(θ)| x) =
∫
...

∫
u(θ) π∗(θ|x) dθ1...dθm.(12)

The integrals are taken over the m-dimensional space.

The SEL function has probably been the most popular loss function used in literature.

The symmetric nature of SEL function gives equal weight to over- and underestima-

tion of the parameter(s) under consideration. However, in life testing, overestimation
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may be more serious than underestimation or vice-versa. Research has then been direct-

ed towards asymmetric loss functions and Varian [22] suggested the use of the linear-

exponential(LINEX) loss function to be of the form

L∗(∆) = b

[
ea∆ − a∆− 1

]
,

where |a| ≠ 0, b ≥ 0,∆ = û(θ)− u(θ).

Thompson and Basu [21] generalized the LINEX loss function to the squared-exponential

(SQUAREX) loss function to be in the form

L∗(∆) = b

[
ea∆ − d∆2 − a∆− 1

]
,

where d ̸= 0, a, b and ∆ are as before.

Indeed, the SQUAREX loss function reduces to the LINEX loss function if d = 0.

If a = 0, the SQUAREX loss function reduces to SEL function.

We shall use the LINEX loss function since it is simpler to use than the SQUAREX

loss function. Notice that in LINEX loss function, for û(θ)− u(θ) = 0, L∗(∆) = 0. For

a > 0, the loss declines almost exponentially for û(θ)− u(θ) > 0 and rises approximately

linearly when û(θ) − u(θ) < 0. For a < 0, the reverse is true. By expanding ea∆, L∗(∆)

can be approximated to the SEL function when û(θ) − u(θ) is small. Without loss of

generality we shall take b = 1.

Using the LINEX loss function, the Bayes estimate of u(θ) is given by

ûL(θ) =
−1

a
ln[E(e−a u(θ)|x)] = −1

a
ln

[ ∫
...

∫
e−a u(θ) π∗(θ|x) dθ1...dθm

]
,(13)

where π∗(θ| x) ∝ π(θ)L(θ| x) is the posterior PDF of the vector of parameters θ given

the vector of observations x, π(θ) is a prior density function of θ and L(θ| x) is the LF

of θ given x. The integrals are taken over the m-dimensional space Rm.

To compute the integrals, we use Markov Chain Monte Carlo (MCMC), method

to generate a random sample [θi = (θi1, ..., θ
i
m), i = 1, 2, ..., k] from the posterior density

function π∗(θ| x) and then write (3.1) and (3.2), respectively in the forms,

ûS(θ) =

∑k
i=1 u(θ

i)

k
(14)
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and

ûL(θ) = (−1/a) ln

[
1

k

k∑
i=1

e−au(θi)

]
.(15)

The MCMC method is described in Kandu and Howlader [16] and Press [18].

3.1. Bayes estimation of β, γ, α,RX(x∗) and hX(x∗) under squared

error loss function

In this subsection the BE ′s of β, γ, α,RX(x
∗) and hX(x

∗) are obtained under squared

error loss function in case of informative and non-informative priors. To estimate these

parameters and functions we define a function u(β, γ, α) as

(16) u(β, γ, α) = βδ1 γδ2 αδ3 (f(x∗))δ4 (RX(x
∗))δ5 .

The Bayes estimate of u(β, γ, α) is obtained in five cases:

(1) when δ1 = 1, δ2 = δ3 = δ4 = δ5 = 0, which is equivalent to estimating β,

(2) when δ2 = 1, δ1 = δ3 = δ4 = δ5 = 0, which is equivalent to estimating γ,

(3) when δ3 = 1, δ1 = δ2 = δ4 = δ5 = 0, which is equivalent to estimating α.

(4) when δ5 = 1, δ1 = δ2 = δ3 = δ4 = 0, which is equivalent to estimating RX(x
∗).

(5) when δ4 = 1, δ5 = −1, δ1 = δ2 = δ3 = 0, which is equivalent to estimating hX(x
∗).

3.1.1. Bayes estimation in case of informative prior

Suppose that the prior belief of the experimenter is measured by a function π(β, γ, α),

where α is assumed to be independent of β and γ, so that the prior density function is

given by

π(β, γ, α) = π1(β, γ) π2(α)

= π11(β | γ) π12(γ) π2(α).
(17)
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Suppose that π11(β | γ) is Gamma (c1, γ), π12(γ) is Gamma (c2, c3) and π2(α) is

Gamma(c4, c5), with respective densities

π11(β|γ) ∝ γ c1 βc1−1 exp(−γ β), β, γ > 0, (c1 > 0),

π12(γ) ∝ γ c2−1 exp(−c3 γ), γ > 0, (c2, c3 > 0),

π2(α) ∝ α c4−1 exp(−c5 α), α > 0, (c4, c5 > 0),

It then follows that the prior density of β, γ and α is given by

π(β, γ, α) ∝ α c4−1 βc1−1 γc1+c2−1 exp(−γ β − c3 γ − c5 α),

α, β, γ > 0, (c1, c2, c3, c4, c5 > 0),
(18)

where, c1, c2, c3, c4 and c5 are the prior parameters (also known as hyperparameters). From

(8) and (18), the posterior density function can be written in the form

π∗(β, γ, α| x) = A α c4−1 βc1−1 γc1+c2−1 exp(−γ β − c3 γ − c5 α).

n∏
i=1

[
2√
π

Γ(α+ 1/2)

γ Γ(α)

[
1 +

(
xi − β

γ

)2 ] −α−1/2]
,

α, β, γ > 0, (c1, c2, c3, c4, c5 > 0),

(19)

where A is a normalizing constant.

Using MCMC method, we get the BE ′s of the considered parameters and functions.

3.1.2. Bayes estimation in case of non-informative prior

In this case, we consider independent non-informative priors of the parameters β, γ and

α in the forms

π1(β) ∝ 1/β, β > 0,

π2(γ) ∝ 1/γ, γ > 0,

π3(α) ∝ 1/α, α > 0.

so that

(20) π(β, γ, α) ∝ (α β γ)−1.
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Using this prior and the LF (8), the posterior density function of β, γ and α can be

written in the form

π∗(β, γ, α| x) = A1 α
−1 β−1 γ−1

n∏
i=1

[
2√
π

Γ(α + 1/2)

γ Γ(α)

[
1 +

(
xi − β

γ

)2 ] −α−1/2]
,

α, β, γ > 0,

(21)

where A1 is a normalizing constant.

Using MCMC method, we can obtain the BE ′s of β, γ, α,RX(x
∗) and hX(x

∗).

3.2. Bayes estimation of β, γ, α,RX(x∗) and hX(x∗) under LINEX

loss function

TheMCMC method is used to generate a random sample of size k, [θi = (θi1, ..., θ
i
m), i =

1, 2, ..., k] by using the posteriors (19) and (21). Equation (15),(a=1, 7), is then used to

compute the BE ′s of the parameters and functions of such parameters under LINEX

loss function.

4. Simulation study

In this section the maximum likelihood and Bayes estimates of β, γ, α,RX(x
∗) and

hX(x
∗) are obtained as follows :

(1) For a given set of prior parameters, generate the population parameters β, γ, α.

(2) Making use of the generated population parameters, generate random samples of

different sizes (15, 25, 40) from the population distribution under study.

(3) The maximum likelihood estimate (MLE) of the parameter β is the minimum

value of the random sample.

(4) The MLE β̂ of β, given by (9), on the basis of the samples of sizes 15, 25, 40,

obtained in step 2. The estimate β̂ is then substituted in the nonlinear equations

(11). Solving these equations we get the maximum likelihood estimates γ̂ of γ and

α̂ of α.
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The use of the invariance property of the MLE ′s yields MLE ′s of RF and HRF ,

given by (7).

(5) TheBE ′s of β, γ, α,RX(x
∗) and hX(x

∗) are computed under the SEL and LINEX

loss functions using the function u, defined in (16), for different values of δi, i =

1, 2, ..., 5. the MCMC technique is used in the computations.

(6) Steps 2− 5 are repeated m = 1000 times.

(7) If θ̂j is an estimate of θ, based on sample j, j = 1, 2, ...,m, then the average

estimate over the m samples is given by

θ̂ = 1
m

∑m
j=1 θ̂j.

(8) The variance of θ̂ , V (θ̂), over the m samples is given by

V (θ̂) = 1
m

∑m
j=1(θ̂j − θ̂)2.

Using steps (7) and (8), compute
¯̂
β, ¯̂γ, ¯̂α,

¯̂
R(x∗),

¯̂
h(x∗), V (β̂), V (γ̂), V (α̂), V (R̂(x∗)) and

V (ĥ(x∗)).

In our study, Table(1) displays the average estimates and variances of the MLE ′s and

BE ′s, using informative and non-informative priors, under squared error loss function,

based on samples of different sizes n and for m =1000 repetitions. Tables(2) and (3) dis-

play the same data as Table(1) under LINEX loss function in case of a = 1 and a = 7.

The given vector of haperparamters is (c1 = 1.7, c2 = 1.0, c3 = 1.8, c4 = 2.0, c5 = 2.7) and

the generated population parameters are (β = 2.5, γ = 1.7, α = 3.5). The population reli-

ability and hazard rate functions are computed at x∗ = 3.5, using (7) and the population

parameters. Their values are RX(x
∗) = 0.1636 and hX(x

∗) = 2.2317.
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Table(1): Maximum likelihood and Bayes estimation under SEL function.

n Method
¯̂
β ¯̂γ ¯̂α

¯̂
R(x∗)

¯̂
h(x∗)

V (β̂) V (γ̂) V (α̂) V (R̂(x∗)) V (ĥ(x∗))

15 B Informative Prior 2.6805 1.7941 3.4027 0.2351 1.9703

0.1998 0.0917 0.2186 0.0516 0.8215

Non-Informative Prior 2.6947 1.8013 3.3901 0.2607 1.9133

0.2018 0.0994 0.2397 0.0651 0.8913

ML 2.7132 1.8215 3.3156 0.2939 1.8925

0.2215 0.1084 0.2447 0.0733 0.9761

25 B Informative Prior 2.5311 1.7508 3.4713 0.2183 2.1625

0.0878 0.0685 0.1366 0.0492 0.5917

Non-Informative Prior 2.5303 1.7759 3.4435 0.2206 2.1316

0.1251 0.0692 0.1514 0.0588 0.6351

ML 2.6105 1.7936 3.4236 0.2364 2.005

0.1423 0.0790 0.1678 0.0633 0.7009

40 B Informative Prior 2.5093 1.72110 3.5116 0.1701 2.2013

0.0735 0.04719 0.0925 0.0297 0.4902

Non-Informative Prior 2.5108 1.7194 3.4911 0.1739 2.1933

0.0882 0.05032 0.1051 0.0381 0.5922

ML 2.5210 1.7131 3.4871 0.1751 2.1655

0.0990 0.0534 0.1303 0.0433 0.6313



ON TRUNCATED GENERALIZED CAUCHY DISTRIBUTION 301

Table(2): Maximum likelihood and Bayes estimation under LINEX loss

function (a = 1).

n Method
¯̂
β ¯̂γ ¯̂α

¯̂
R(x∗)

¯̂
h(x∗)

V (β̂) V (γ̂) V (α̂) V (R̂(x∗)) V (ĥ(x∗))

15 B Informative Prior 2.6908 1.8061 3.4011 0.1905 2.0132

0.2001 0.0977 0.2285 0.0531 0.8735

Non-Informative Prior 2.7023 1.8090 3.3170 0.2103 1.9074

0.2199 0.1015 0.2502 0.0691 0.9105

ML 2.7132 1.8215 3.3156 0.2939 1.8925

0.2230 0.1084 0.2447 0.0733 0.9761

25 B Informative Prior 2.5516 1.7861 3.4605 0.1822 2.1930

0.0920 0.0714 0.1509 0.0516 0.6220

Non-Informative Prior 2.5702 1.7905 3.4310 0.1952 2.1441

0.1413 0.0721 0.1622 0.0611 0.6616

ML 2.6105 1.7936 3.4236 0.2364 2.0056

0.1423 0.0790 0.1678 0.0633 0.7009

40 B Informative Prior 2.5116 1.7583 3.5311 0.1628 2.2218

0.0792 0.0504 0.1134 0.0325 0.5133

Non-Informative Prior 2.5174 1.7201 3.4893 0.1601 2.1915

0.0891 0.0511 0.1262 0.0404 0.6227

ML 2.5210 1.7131 3.4871 0.1751 2.1655

0.0990 0.0534 0.1303 0.0433 0.6313
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Table(3): Maximum likelihood and Bayes estimation under LINEX loss

function (a = 7).

n Method
¯̂
β ¯̂γ ¯̂α

¯̂
R(x∗)

¯̂
h(x∗)

V (β̂) V (γ̂) V (α̂) V (R̂(x∗)) V (ĥ(x∗))

15 B Informative Prior 2.6295 1.7714 3.4420 0.1873 2.0513

0.1806 0.0804 0.2060 0.0451 0.5911

Non-Informative Prior 2.6701 1.7910 3.4421 0.1903 1.9833

0.1942 0.0815 0.2331 0.0603 0.7005

ML 2.7132 1.8215 3.3156 0.2939 1.8925

0.2230 0.1084 0.2447 0.0733 0.9761

25 B Informative Prior 2.5234 1.7340 3.4726 0.1791 2.1766

0.0815 0.0407 0.1035 0.0382 0.4613

Non-Informative Prior 2.5291 1.7415 3.4603 0.1811 2.1012

0.1153 0.0570 0.1203 0.0476 0.5312

ML 2.6105 1.7936 3.4236 0.2364 2.0056

0.1423 0.0790 0.1678 0.0633 0.7009

40 B Informative Prior 2.5043 1.7021 3.5016 0.1651 2.2165

0.0692 0.0381 0.0813 0.0170 0.3855

Non-Informative Prior 2.5094 1.7092 3.5063 0.1706 2.1702

0.0735 0.0470 0.0948 0.0232 0.4622

ML 2.5210 1.7131 3.4871 0.1751 2.1655

0.0990 0.0534 0.1303 0.0433 0.6313

5. Concluding remarks

In our study, observe the following:

(1) the variances of the BE ′s (against the proposed subjective (informative) or objec-

tive (non-informative) prior) are smaller than the corresponding variances of the



ON TRUNCATED GENERALIZED CAUCHY DISTRIBUTION 303

MLE ′s. This means that the BE ′s (against the proposed priors) are better than

the MLE ′s,

(2) the variances of the BE ′s in case of informative prior are smaller than the corre-

sponding variances in case of non-informative prior,

(3) under LINEX loss function, a = 1, the variances of the BE ′s are greater than

the variances under SEL function. That is when a = 1, the use of SEL leads to

better estimates than the LINEX loss function.

(4) under LINEX loss function, a = 7, the variances of the BE ′s are smaller than

the variances under SEL function. That is when a = 7, the use of LINEX loss

function leads to better estimates than the SEL function.

(5) in Bayesian estimation, if the hyperparameters are unknown, they can be esti-

mated by using the empirical Bayes method [see Maritz and Lwin [17]] or the

hierarchical method [see Bernardo and Smith[3]].
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