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Abstract. The limited number of servers and more number of users in a distributed system is a great concern in load

balancing. In this paper the efficient way of allocating tasks to available servers using equitable coloring of graphs

is studied. For balancing the load, the complexity of graph is reduced by spectral clustering, which partitions the

graph for further processes. The web model of graphs such as generalized structure of wheel and web graphs are

investigated. The spectrum of these graphs are calculated for partitioning and then equitable coloring is applied.

This approach results in the proper distribution of load in the web networks.
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1. INTRODUCTION

The graph considered in this paper is an undirected web structure graphs namely generalized

wheel graph and generalized web graph. Both these graphs starts from the hub, which imitates

the connections of clients to the server. The clients are taken as the vertices at different layers

of the cycles in these graphs. Likewise the distributed network may have few servers providing
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service to more number of clients in a complex network. The aim of load balancing is the eq-

uitable distribution of work among all the reliable servers in the network. This can be acheived

by grouping and allocating users equally in the hotspot among the servers.

Our focus is to design and implement the load balancing with equitable coloring by spectral

partitoning and then assigning colors. The spectrum is obtained by the eigenvalues of the adja-

cency matrix of W(n,m) and WB(n,m). For partitioning the eigenvector of the λ th
mn eigenvalue is

calibrated and the vertices are clustered according to the positive and negative elements of the

eigenvector Xmn. Further the cut edge disconnects the clusters from the central point and adja-

cent layers of cycles. Later the coloring of the vertices is done based on the adjacency within

the clusters, which satisfies the condition of equitablility. In 1973, Meyer[1] introduced the idea

of equity in vertex coloring, this concept helps in balancing the load in a distributed system.

The graph spectra appears to be one of the interesting concept in computer science and net-

work analysis, which helps in the partition of graphs using eigenvalues. The study on spectra

of graphs can be found in many papers, see e.g.[2, 3]. The proposed method of spectral clus-

tering is a new approach to reduce the complexity of graph. The idea of applying equitable

coloring in load balancing technique is a novel perspective. In this paper, the spectral clustering

and optimal coloring in an equitable way for generalized W(n,m) and WB(n,m) are studied and

illustrated.

2. PRELIMINARIES

Definition 2.1. [4] For any integer m≥ 4, the wheel graph Wm consists of m vertices is obtained

by joining the center vertex v with every other m−1 vertices {v1,v2, . . . ,vm} of the cycle graph

Cm−1.

Definition 2.2. [5] A double-wheel graph DWm of size m consists of 2Cm +K1, which contains

two cycles of size m, where all the vertices of two cycles are attached to a common hub.

Definition 2.3. A n-wheel graph W(n,m) of size mn+ 1 consists of nCm +K1, which contains n

cycles of size m, where all the vertices on n cycles are connected to a common hub.

Definition 2.4. [6] The web graph W(2,n) is obtained by joining pendant vertices of helm Hn to

form a cycle and then adding a pendant edge to each vertex of outer cycle.
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Definition 2.5. [7] A generalized web graph WB(n,m), n ≥ 3, m ≥ 2, is a graph obtained by

joining all vertices v(i,m), 1 ≤ i ≤ n, of the generalized prism Pm
n to a further vertex w, called

the centre. Thus WB(n,m) contains mn+1 vertices and 2mn edges.

Definition 2.6. [8] The spectrum of a graph G is defined as σ(G) = (λ1,λ2, . . . ,λn), where

λ1 ≤ λ2 ≤ . . .≤ λn are the eigenvalues of the adjacency matrix of G.

Definition 2.7. [9] A cut vertex of a graph G is a vertex whose removal increases the number

of connected components of the graph. A cut edge of a graph is defined in a similar manner

as an edge whose removal increases the number of connected components of the graph. For a

connected graph of order n has atmost n−2 cut vertices and atmost n−1 cut edges.

Definition 2.8. [10] If the set of vertices of a graph G can be partitioned into k classes V1,V2, ...,Vk

such that each Vi is an independent set and the condition ||Vi|− |V j|| ≤ 1 holds for every pair

(i, j), then G is said to be equitably k-colorable. The smallest integer k for which G is equitably

k-colorable is known as the equitable chromatic number of G and denoted by χ=(G).

3. EQUITABLE COLORING ON SPECTRAL CLUSTERING OF GENERALIZED WHEEL

AND WEB GRAPHS

Theorem 3.1. The equitable coloring of n-wheel graph W(n,m) with n partitioned clusters is

χ=(W(n,m)) =


3, i f m is odd

2, i f m is even.

Proof. The n-wheel graph consists of mn+ 1 vertices and 2mn edges. Its adjacency matrix is

formed by

A(W(n,m)) =


1, i f i and j are adjacent

0, i f i and j are non- adjacent.

The adjacency situations of n-wheel graph are with 1’s on

i = 1, j = 2,3, . . . ,mn+1

i = 2,3, . . . ,mn+1, j = 1

i = (n−1)m+2, j = mn+1,

i = mn+1, j = (n−1)m+2,



1746 J. VENINSTINE VIVIK, P. XAVIER

(n−1)m+2≤ i≤ mn, j = i+1,

(n−1)m+3≤ i≤ mn+1, j = i−1.

The non-adjacency situations are with 0’s on i = j and elsewhere. Here n represents the number

of cycles and m is the number of vertices on each cycle. Therefore the adjacency matrix is

constructed as follows.



v1 v2 v3 · · · vm vm+1 vm+2 vm+3 · · · vmn vmn+1

v1 0 1 1 . . . 1 1 1 1 . . . 1 1

v2 1 0 1 . . . 0 1 0 0 . . . 0 0

v3 1 1 0 . . . 0 0 0 0 . . . 0 0
...

...
...

... . . . ...
...

...
... . . . ...

...

vm 1 0 0 . . . 0 1 0 0 . . . 0 0

vm+1 1 1 0 . . . 1 0 0 0 . . . 0 0

vm+2 1 0 0 . . . 0 0 0 1 . . . 0 0

vm+3 1 0 0 . . . 0 0 1 0 . . . 0 0
...

...
...

... . . . ...
...

...
... . . . ...

...

vmn 1 0 0 . . . 0 0 0 0 . . . 0 1

vmn+1 1 0 0 . . . 0 0 0 0 . . . 1 0


Set det (A(nWm)−λ I) = 0. The characteristic equation of this adjacency matrix with order

mn+1 is of the form (−λ )mn+1+ tr(−λ )mn+ . . .+det(A) = 0 which has exactly mn+1 roots.

Therfore there should be mn+1 eigen values.

i.e, λ1,λ2, . . . ,λmn+1.

By determining the eigen vectors of these eigen values and choosing the eigenvector of λmn,

the clustering is done by grouping the positive and negative entries of this eigen vector and fix-

ing the median value as zero. Hence the entire graph can be partitioned into n+1 clusters. The

links within the clusters remains and the edge cut set S removes the links between the vertices

of the clusters.

S = {v1v2,v1v3,v1v4, . . . ,v1vmn+1}

The clusters are

C1 = {v1}
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C2 = {v2,v3, . . . ,vm+1}

C3 = {vm+2,vm+3, . . . ,v2m+1}
...

Cn+1 = {vm(n−1)+2,vm(n−1)+3, . . . ,vmn+1}

For the vertex v1 in the cluster C1, assign the color 1 in both the following cases.

Case 1. If m is odd, the vertices of the remaining clusters can be grouped as

Ci = {vk/(i−2)m+2≤ k ≤ (i−1)m+1;2≤ i≤ n+1}.

(i)If m≡ 0 mod 3 and m≡ 2 mod 3, the colors assigned for its vertices are

vk =


1, k ≡ 2 mod 3

2, k ≡ 0 mod 3

3, k ≡ 1 mod 3,(i−2)m+2≤ k ≤ (i−1)m+1;2≤ i≤ n+1

(ii)If m≡ 1 mod 3, the colors assigned are

vk =


1, k ≡ 2 mod 3

2, k ≡ 0 mod 3

3, k ≡ 1 mod 3,(i−2)m+2≤ k ≤ (i−1)m;2≤ i≤ n+1

For the vertices v(i−1)m+1,2≤ i≤ n+1, the colors assigned are

vp =


1, p≡ 1 mod 3

2, p≡ 2 mod 3

3, p≡ 0 mod 3,where p = (i−1)m+1

Case 2. If m is even

For the vertices vk(2≤ k≤mn+1) in the clusters C2,C3, . . . ,Cn+1, the colors are assigned as

vk =


1, k ≡ 1 mod 2

2, k ≡ 0 mod 2.
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As the graph is sub-divided, note that the coloring is done based on the adjacency within

the clusters such that the equitable condition ||Vi|− |Vj|| ≤ 1, i 6= j, is attained. It is clear that

χ=(W(n,m)) =


3, i f m is odd

2, i f m is even.
�

Illustration:

Consider the generalized wheel graph of order W(4,4) with 4 cycles and having 4 vertices on

each cycle. The eigen values of the adjacency matrix for this graph are

λ1 =−3.1231 λ2 =−2 λ3 =−2

λ4 =−2 λ5 =−2 λ6 =−4.0731e−15

λ7 =−1.3430e−15 λ8 =−1.3298e−15 λ9 =−1.1311e−15

λ10 =−8.1937e−16 λ11 =−4.5415e−16 λ12 = 9.2461e−16

λ13 = 2.2519e−15 λ14 = 2 λ15 = 2

λ16 = 2 λ17 = 5.1231

The eigenvector X corresponding to λ16 is

X16 = [−8.39118888453039e−18 −0.0688123852947728 −0.0688123852947728

−0.0688123852947728 −0.0688123852947727 0.382901015740260

0.382901015740260 0.382901015740260 0.382901015740260

−0.314088630445487 −0.314088630445487 −0.314088630445487

−0.314088630445487 −2.96604146969705e−17 5.51453879638563e−17

3.80516035815009e−17 −2.12946529880272e−34]T

Now the vertices are clustered as C1 = {v1}, C2 = {v2,v3,v4,v5}, C3 = {v6,v7,v8,v9}, C4 =

{v10,v11,v12,v13}, C5 = {v14,v15,v16,v17}, afterwards the coloring is allocated and found to be

equitable as shown in figure 1.

Theorem 3.2. The equitable coloring of generalized web graph WB(n,m) with n partitioned

clusters is χ=(WB(n,m)) =


3, i f m is odd

2, i f m is even.
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FIGURE 1. Clustering the vertices of W(4,4).

Proof. The generalized web graph consists of m(n+ 1)+ 1 vertices and m(2n+ 1) edges. Its

adjacency matrix is formed by

A(WB(n,m)) =


1, i f i and j are adjacent

0, i f i and j are non- adjacent.

The adjacency matrix of generalized web graph is with 1’s on

i = 1, j = 2,3, . . . ,m+1,

j = 1, i = 2,3, . . . ,m+1,

if 1≤ k ≤ m

(k−1)n+2≤ i≤ kn+1, j = i+n,

(k−1)n+2≤ j ≤ kn+1, i = j+n,

for k ≤ m−1

i = (k−1)n+2, j = kn+1,

i = kn+1, j = (k−1)n+2,

(k−1)n+2≤ i≤ kn, j = i+1,

(k−1)n+3≤ i≤ kn+1, j = i−1

The non-adjacency situations are with 0’s on i = j and elsewhere. Here n represents the number
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of cycles and m is the number of vertices on each cycle.



v1 v2 v3 · · · vm vm+1 vm+2 vm+3 · · · vm(n+1) vm(n+1)+1

v1 0 1 1 . . . 1 1 0 0 . . . 0 0

v2 1 0 1 . . . 0 1 1 0 . . . 0 0

v3 1 1 0 . . . 0 0 0 1 . . . 0 0
...

...
...

... . . . ...
...

...
... . . . ...

...

vm 1 0 0 . . . 0 1 0 0 . . . 0 0

vm+1 1 1 0 . . . 1 0 0 0 . . . 0 0

vm+2 0 1 0 . . . 0 0 0 1 . . . 0 0

vm+3 0 0 1 . . . 0 0 1 0 . . . 0 0
...

...
...

... . . . ...
...

...
... . . . ...

...

vm(n+1) 0 0 0 . . . 0 0 0 0 . . . 0 0

vm(n+1)+1 0 0 0 . . . 0 0 0 0 . . . 0 0


By finding the characteristic equation of this adjacency matrix and determining its eigenval-

ues and eigenvectors, the vertices are clustered, subsequently followed by equitable coloring.

The remaining proof is similar to theorem 3.1. �

Illustration:

Consider the generalized web graph of order WB(4,7) with 4 cycles and having 7 vertices on

each cycle. The eigenvalues of the adjacency matrix for this graph are

λ1 =−3.3028 λ2 =−3.3028 λ3 =−2.0399 λ4 =−2.0399

λ5 =−2.0143 λ6 =−2.0143 λ7 =−1.9205 λ8 =−0.9197

λ9 =−0.9197 λ10 =−0.7514 λ11 =−0.7514 λ12 =−0.6099

λ13 =−0.6099 λ14 =−0.4788 λ15 = 0.1718 λ16 = 0.1718

λ17 = 0.3453 λ18 = 0.3453 λ19 = 0.5468 λ20 = 0.5468

λ21 = 1.2208 λ22 = 1.2536 λ23 = 1.2536 λ24 = 1.5531

λ25 = 1.5531 λ26 = 2.7674 λ27 = 2.7674 λ28 = 2.9467

λ29 = 4.2319
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The eigenvector X corresponding to λ28 is

X28 = [0.2836 0.1194 0.1194 0.1194 0.1194

0.1194 0.1194 0.1194 −0.1706

−0.1706 −0.1706 −0.1706 −0.1706 −0.1706

−0.1706 −0.2809 −0.2809 −0.2809 −0.2809

−0.2809 −0.2809 −0.2809 −0.0953 −0.0953

−0.0953 −0.0953 −0.0953 −0.0953 −0.0953]T

Based on the eigenvectors the spectral clustering of vertices are C1 = {v1},

C2 = {v2,v3,v4,v5,v6,v7,v8}, C3 = {v9,v10,v11,v12,v13,v14,v15},

C4 = {v16,v17,v18,v19,v20,v21,v22}, C5 = {v23,v24,v25,v26,v27,v28,v29}, later the coloring is

assigned and which is equitable as shown in figure 2.

FIGURE 2. Clustering the vertices of WB(4,7).

4. CONCLUSION

The spectral clustering has extensive applications in the field of chemical compounds of

molecular graphs and protein structures etc. It is hard to cluster the the natural complex structure

of graphs. By relating the spectrum, the graph is partitioned and graph coloring is applied which
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enables the idea of sharing of resources to the craving users. This paper suggests the method

of spectral partitioning and equitable coloring of graphs. The model of generalized graphs

W(n,m) and WB(n,m) are investigated and illustrated. Moreover this procedure can be executed

for various model of complex structured graphs.
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