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Abstract: In this paper, we consider a new operator RI ,T,Lj,/; :A, > A, peN, defined by
RIJY f(z) =(@- )R] f(2)+ A}, ,T(2),4=0,where A denote the class of analytic functions in

the unit disc U={z:z¢ C,|Z| < , of the form

f(z)=2z" +Zf=p+lakzk Ry f(2),peN,me N, =NU{0} is the Ruscheweyh operator and

" o a+kp
Ipﬂ,ﬂf(z): Zp +ka+1(a+ pﬂ

number with a + pf > 0. Few interesting results of differential subordination and superordination are

J az, peNmeN,=NU{0}, £>0, and a a real

m,A

obtained using the new operator RI e

Further, we also consider the sandwich-type results for this operator.
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Denote by U the open unit disc of the complex plane, U ={z e C:|z| <1}.Let HU)

be the space of analytic functions inU . For p e N,a € C we define:
H[a, p]={f eHV): f(z) =a+a,z" +a,,z2"" +..},zeU,

A, ={f eHU): f(z)=2" +a,,2"" +a_,,2"* +...},zeU,

p+1 p+2

and we set A = A, a well-known class of normalized analytic functions in U.

For f,g e HU), we say that the function f is subordinate tog, or the function g is

superordinate to f , if there exists a Schwarz function w, analytic in U , with w(0) =0 and
\w(z)| <1, for all zeU, such that f(z)=g(w(z)), for zeU. In such a case we write

f < g. Furthermore, if the function g is univalent in U ,then we have the following

equivalence (See [15],[16] and [17]):
f(z) < g(z) ifand only if f(0)=g(0) and fU) < g(U).

Supposing that hand g are two analytic functions in U, let ¢(r,s,t;z) ‘C®*xU > C.If

hand @(h(z),zh (z),z?h"(z);z) are univalent functions in U and if h satisfies the second-order

superordination

(1.1) 9(2) < p(h(2), 2 (2),2°h (2);2),

then g is called to be a solution of the differential superordination (1.1). A function qe H(U) is

called a subordinant of (1.1), if q(z) < h(z) for all the functions h satisfying (1.1). A univalent

subordinant (}that satisfies ((z) < c}(z) for all of the subordinants g of (1.1), is said to be the best

subordinant.

Recently, Miller and Mocanu [20] obtained sufficient conditions on the functions g,qand

¢ for which the following implication holds:

9(2) < @(h(2),zh (2),2°h (2);2) = 9(2) < h(2).
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Using the results of Miller and Mocanu [20], Bulboaca [7] considered certain classes of first
order differential superordinations. Ali et. al. [2], have used the results of Bulboaca [7] to obtain

sufficient conditions for normalised analytic functions to satisfy:

zf (2)
f(2)

0 (2) < <09,(2),

where ¢, (z)and g, (z) are given univalent normalised functions in U.

Very recently, Macovei ([13] and [14]) obtained differential subordinations and
superordinations for analytic functions defined by the Ruscheweyh linear operator and the
author [30] extended and improved these results for certain subclasses of analytic functions
defined by the Ruscheweyh derivative and a new generalized multiplier transformation(see

[28]).

We now state the following definitions with few remarks.

Definition 1.1 ([28]). For f e A;,me N, =NU{0},#>0 and « a real number with

m

a+ pp >0, a new generalized multiplier operator | is defined by the following infinite

p.a.f
series:
N +kpB i k
(1.2) Iy ,f(2)=2"+ (a jaz ,zeU.
Pah k—Zerl a+pp ‘
It follows from (1.2) that
I [r)n,a,O f (Z) = f (2)1

(1.3) (@+pA) s f@=al], ,f @)+ 17, ,1(2),

We note that

o 1M, f(2)=1",f(2)(See [27]).
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o 17..1(@=1](x)f(2), >—p(See [1], [25] and [26]).
I m

Nepppp T @) =17 (1) f(2),1 >—p, B2 0(See Catas [8]).

e 17, f(z)=D"f(z)(See [5], [12] and [22]).

Remark 1.3 i) 17 («) f (z) was considered in [1], [25] and [26] for & >0and I }(5,1) f (2)
was defined in [8] for 1>0,420 , i) 1’()f()=17CDf(2)I>-p ,
i) 17(B0)f(2)=D, (B f(z) , p=0, was mentioned in Aouf etal. [4], iv)
D" (), >0, was introduced by Al-Oboudi [3],v) D;"()) f(z) =D" f(z) was defined by
Salagean [24] and was considered for m>0in [6] , vi) I," () f (2),« > 0, was investigated in

[9] and [10] and vii) 1" (1) was due to Uralegaddi and Somanatha[33].

Definition 1.3 (Goel and sohi [11]). For me N,, f € A, the operator R is defined by

RI:A — A,
R f(2)=f(2),
R, f(z)=2f'(2)/ p,
(1.4) (m+ p)R;””f(z) =2z(R} f(2))+mR} f(2),z €U,

Remark 1.4. The operator R" = R™ was introduced and studied by Ruscheweyh in [23].

Definition 1.5. Letme N,,A>0,4>0 and « a real number with & + pg > 0. Denote by

RI ;" ;the operator given by RI "t A) — A,

RI™ f(z)=(L—A)R™f(2)+ A"

D f(z),z €U.

p.a.f

Remark 1.6. Clearly RIJ  =RMandRI" =17

5 =104, The operator Rl =Rl was

la,p
introduced in [29] and examined in [30], [31] and [32].
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In this paper, we investigate interesting results of differential subordination and

superordination, using the new operator RI ;"j ;- Further, we also consider the sandwich-type

results for this operator.

2. Preliminaries
In order to prove our results, we need the following definition and lemmas.

Definition 2.1 ([20]). We denote by Q, the set of all functions g that are analytic and

injective on U \E(q), where E(q) ={¢ eoU :Iingq(z) =oo}and are such that q'($) = Ofor

¢ € U \E(q).

Lemma 2. 2([21]). Let the functionqg be univalent in U and let & and ¢ be analytic in a
domain D containing q(U) , with ¢(w) =0 , when we q(U). Set Q(z) = zq'(z)¢#(q(z)) and
h(z) = 6(q(z)) + Q(z). Suppose that either

1) his convex inU or
i) Qis starlike in U .

In addition, assume that
iii) Re(mj >0,zeU.
Q(2)
If p(z) e HU), with p(0) =q(0), p(U) < Dand
a(p(2)) +zp'(2)p(p(2)) < 6(a(2)) + 20’ (2)¢(a(2)) ,
then p(z) <q(z),and qis the best dominant.
Lemma 2. 3([7]). let 8 and ¢ be analytic in a domain D and let g be univalent in U , with

gU) < D. Set Q(z) = zq'(z)¢(q(z)) and suppose that

i)Qis starlike in U
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and

i) Re[e (a(z ))] >0,z eU.
9(a(2))

If p(z) eH[q(0)1]nQ, pU) < Dand 8(p(z))+zp'(z2)e(p(z))is univalent in U and
0(9(2)) + zq'(2)e(q(z2)) < 8(p(2)) + zp'(2)(p(2)) then q(z) < p(z),z €U and q is the best

subordinant.

3. Main Results

Theorem 3.1. Let f e Ap,m eN,=NuU{0},4>0,4>0,4 >0, a real number such that

a + ppB > 0.Let the function qbe univalent in U and suppose that it satisfies the conditions

(3.1) Re(q(z2)) >0,z€U
and
(3.2) Re{zq"(z) _4@) +1} >0,zeU.
q(z) a2
Let
| m,A f | m+1i
(33) @, (M, 1, 4,2, 3;2) = [—ﬂ()J + p(m+ p)+() #(m+ p)
z RIZ,(2)

A[a+pB le‘*jﬂf(z) _(g_ ] paﬂf(z)}
+ [ K 5 (m+ p) RIT T2\ B m —ng“jﬂf(z)

(3.4) @, (M, 4, a, B;7) <q(z) + 29(2) ,ZeU,
q(2)

then
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RI™ f(z
(—P“ﬁ ( )] <q(z),and q is the best dominant.
zP

Proof. Define the function p(z) by

RI™ f(z
(3.5) p(z) = {MJ zeU.
ZP

Differentiating (3.5) logarithmically, with respect to z, and making use of (1.3) and (1.4), we
get,

p'(z) (RI™ @)Y RI ™2 £ (2)
(3.6) p2)+ 228 [ Toes T | gy e D mpy+

p(2) z Rl 5 T(2)

A[e+pB Jl,i”ﬁﬁf(z) _(g_ J 1", f(2)
WH s mp) RIJY,f(2) \p " RIT f(z) |

From (3.3), (3.4) and (3.6), we obtain p(2)+ 2@ < q(2)+ 29 , cu.
p(2) q(z)

By setting &(w) =wand ¢(w) =1/w, it can easily be observed that &(w) is analytic in
the complex plane C and ¢(w) is analytic in the complex plane C\{0} and that
#(w) = 0,w e C\{0}.Also, by letting

29'(2)

Q@) =29 (2)¢(a(2)) = — = 1)

and

2q'(2)

h(z) = 6(q(2)) +Q(2) = q(z) + ,
a(z)

we find thatQ(z) is starlike in U (on using (3.2)) and that Re( ZQ(( ))] >0,z €U (on using
z

(3.1) and (3.2)).Hence the result now follows by an application of Lemma 2.2.

Theorem 3.2. Let the function qbe convex in U and suppose that it satisfies the relations

(3.2) and
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(3.7 Re(q(z)q'(z)) >0,z €U.

Let f e A,,meN; =NU{0}, x>0,4>0, 5 >0, areal number such that « + pg >0, and

RITZ f(2)Y _ : :
————| €H[q(0)1] Q. If the function ® (M, &, 1,, B;2), given by (3.3), is

Zp

univalentin U and q(z)+%(§)<®p(m,y,ﬂ,a,,8; z), then
q(z

RIT f(z)) _ .
q(z) <| —==——= ,and q is the best subordinant.

ZP
Proof. It can be proved easily by using the same technique of Theorem 3.1 and by an
application of Lemma 2.3.

Combining the results of Theorem 3.1 and Theorem 3.2, we state the following

Sandwich theorem.

Theorem 3.3. Let f e A;,meN; =NU{0},#>0,4>0,8>0,xa real number such that

RI™ f(2))"
a+ pp>0,and (%(Z)J € H[q(0)1] Q. Let® (m, 1, 1, , B;2), given by (3.3), be
z

univalent in U. Letq, be convex in U andq, be univalent inU . Suppose that the function

q, satisfy relations (3.2) and (3.7) and the function q, satisfy relations (3.1) and (3.2). If

26, (2) <@ (M, u,Aa, B2) <0,(2)+ 20, (2)

A+ @ %@

then
RI™ f(2))"
q1(z) = (%(Z)] = qz (Z),

g,and g, are respectively the best subordinant and best dominant.
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Theorem 3.4. Let f e A;,me N, =N U{0},x>0,4>0,5>0,xa real number such that

a + pB > 0.Let the function gbe univalent in U and suppose that it satisfies the conditions

(3.1) and (3.2). Let

. [RIPEA(2) 22 Y RIges f(2)
(3.9) ‘Pp(m,y,ﬂ,,a,ﬂ,z)_( 7 J[le" f(z)j +(m+ p+1)[RI,T’j’§f(z) l}

p.a.p

_Ri by 1(2) a+pB 172 £(2)
+p(m+ p){l nr f(z)}+ﬂ( F; (m+p Jrl)j—RI T )

p.a.p p.a.p

I m+1

/Lu( ﬂ (m ! p)J RI m. 4 f(Z) ﬂ{ﬂ (m +1)J RI m+1,1 f (Z)

p.a.p p.a.p

+/1y[g—m]M,z eU

BRI T(2)

If

(3.10) W (M, 1,4, B 7) < A(2) + 29 ()
a(z)

then

p m,A
z Rl 5

RI™H £ (2) 2P g . .
R @ <q(2),z €U, andq is the best dominant.
z

RI ™ £ (z) 2P 8
Proof. Let p(2) =( P J( f )J . Then the function p(z) is analytic in U and
z

p m,A
z RIS

p(0) =1. Differentiating this function logarithmically, with respect to z, and making use of

(1.3) and (1.4), we obtain

zp(2) _[RIGL; T(2) R RITZf(2)
(3.11) p(2)+ o(2) —( > j{RI — f(z)] +(m+ erl){—RI ") 1}

p.a.f p.a.p




SR SWAMY™ 1794

R T@ ], (a+pB 15y £ (2)
+ﬂ(m+p){l i f(z)}%( 5 (m+p+l)lem*“f(z)

p.a.p p.a.p

/w( o (m+ p)lem% @) ﬂ{ﬁ (m+1)JRI”‘*1'ﬂf(z)

p.a.p p.a.p

p RI g"’j‘ﬂ f(2)
From (3.10) and (3.11), we have p(z)+ 2p (2) <q(2)+ 2q(2) ,2eU.
p(2) q(2)

We apply now Lemma 2.2, with the functions 8(w) =wand ¢(w) =1/wto obtain the

conclusion of our theorem.

Theorem 3.5. Let f e A;,me N, =NuU{0},x>0,420,5>0,aa real number such that

p m,A
Z RI Dt

RI ™ £ (z) 2P 8
a+pp>0, and = @ e H[q(0)1]~ Q. Let ¥ ,(m u, 1,2, 3;2) ,

defined by (3.9), be univalent in U. Let the function qbe convex in U and suppose that it

satisfies the relations (3.2) and (3.7). If

(3.12) q(2) + 2q(2) =¥, (M u, 4 a p2),z€U,
q(z2)

then

RI™M £ (2) 7P g
Q(Z)—<( 77 J(RVM f(Z)J ,zeU

p.a.fB
and g is the best subordinant.

Proof. Theorem 3.5 follows by using the same technique of proof of Theorem 3.4 and by an

application of Lemma 2.3.

Combining the results of Theorem 3.4 and Theorem 3.5, we get the following

sandwich theorem.
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Theorem 3.6. Let f e A;,me N, =NU{0}, #>0,42>0,8>0,aa real number such that

S
a+pp>0, and - e H[q(0)1]~ Q. Let ¥, (M, 1, 1,2, 3:2) ,
zP R T(2)

given by (3.9), be univalent in U. Letq, be convex in U andq, be univalent in U . Suppose
the function q, satisfies relations (3.2) and (3.7) and the function q, satisfies relations (3.1)

and (3.2). If

20, (2) =W, (M u,Aa,B7) <0,(2)+ 20, (2)

,2eU,
q,(2) d,(2)

0,(2) +

then

RITf(2) z° g
A =Ly SR

pa.p
where g, and g, are respectively the best subordinant and best dominant.

A =1in Theorem 3.6 yields
Corollary 3.7. Let feA,meN,=NuU{0},x>0,8>0,a a real number such that

o+ pﬁ>0,and( v | (Z)j( A j e H[q(0)1] ~ Q. Let
z? lpes f(2)

[ e @) z° " a+pB [V ous _';T,:},ﬂ
T"(m’”’ﬂ’a’ﬂ’z)_[ 2’ ]( Wf(z)] { ; Mlm 1}’{1 'STMH

be univalent in U. Letq, be convex in U andq, be univalent in U . Suppose the function

q, satisfies relations (3.2) and (3.7) and the function g, satisfies relations (3.1) and (3.2). If

ql(Z)+L(Z)<rp(m,,u,a,ﬂ;z) <q,(z) + 22 20, (Z) cU,
(2 e

then
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|mel,gf(Z) zP 8
AP (L) EESN S

where g, and g, are respectively the best subordinant and best dominant.

Theorem 3.8. Let feA ,meN,=NU{0},21>0,8>0, a real number such that

a + pp > 0.Let the function gbe univalent in U and suppose that it satisfies the conditions

(3.1) and (3.2). If

|m+21 () R|m+llf(2)
@13  ©,(Mmia Biz)=(m+ p+1)% (m+ p—1)—‘r’n";ﬁ
P Ipaﬂf() |paﬂf(2)

a+pp_ s f (2) a+pp_ s £ (2)
”( ; (m+p+1)Jle*“f() ﬂ( ; (m+p)le"“ @)

p,a,f p.a.p

_ﬁ(g_(m +1)Ju+ﬁ(g_mJ¢
B RIg.sf(@ S RIC: 5 T(2)

If
(3.14) ©®,(m ,a, ;7)< q(z) + 2 (@) ;cu,
q(2)
m+l/1 ()
then % <q(z),z €U, andq is the best dominant.
RIG:, (2)
. : RIC (Z)
Proof. Define the function p(z) by p(z) = ™ ) Then
RIp:, f(2)

p(z) + (( )) ®,(m, 4, «, #;z) which, in light of hypothesis (3.14) of Theorem 3.8, yields

the following subordination

W@,

2p (2) <q(z)+ ,Z€

p(2) q(2)

p(z) +
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The assertion of Theorem 3.8 now follows by an application of Lemma 2.3 with
A(w) =wand g(w) =1/w.

Theorem 3.9. Let feA,meN,=NU{0},1>0,8>0, a real number such that

m+1i ()
a+ pB>0,and %
Rl f(2)

be univalent inU. Let the function g be convex in U and suppose that it satisfies the relations

(3.2) and (3.7). If

]eH[q(O),l]m Q. Let®,(mA,a,B;2), as given in (3.13),

q(z)+m <=0,(MA,a, B 7)
q(2)

RIT.s f(2)

RIC:,f(2)

then q(z) < ,Z€U,andq is the best subordinant.

Proof. Theorem 3.9 follows by using the same technique of proof of Theorem 3.8 and by an

application of Lemma 2.3.

Combining the results of Theorem 3.8 and Theorem 3.9, we have the following

sandwich result.
Theorem 3.10. Let feA,,meN,=NU{0},1>0,8>0, a real number such that

m+l/1 ( )
a+ pp>0,and o

RI’“ f(2)

)e H[q(0)1]~ Q. Let® ,(Mm, 1, , B;2), as defined in (3.13),
pa.f

be univalent inU. Let g, be convex in U andq, be univalent in U . Suppose the function

q, satisfies relations (3.2) and (3.7) and the function q, satisfies relations (3.1) and (3.2). If

q,(z) + 20,(2) <0, ,(mA,a,pB;2) <q,(z) + 20,'(2) ,ZeU,

0. (2) P q,(2)
RIp.s T (2) _ _
then q,(z) < |M—f() <0,(z),z€U, g,and g, are respectively the best subordinant and
p..B

best dominant.
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m+1
Corollary 3.11. Let f e A,me N, =N uU{0} and [ p.af fg ;J H[q(0),]] " Q. Let
Rpes
m+2 () Rm+lf)z) ) )
K, (M;z) = (m+ p+1) ] —(m+p-1)—————-1, be univalent inU. Let q, be
R”” f(2) Ry f)2)

convex in U and g, be univalent in U . Suppose the function g, satisfies relations (3.2) and

(3.7) and the function q, satisfies relations (3.1) and (3.2). If

26,'(2) _ 20,'(2)
g,(z) + K, (M;z) <q,(z) + ,2eU,
' ,.(2) i q,(2)
m+l )
then q,(z) < ——— RTT (D) <0,(z),z €U, g,andq, are respectively the best subordinant and best

dominant.

Remark 3.12. For p=1in Theorem 3.1 to Theorem 3.10, we obtain Theorem 3.1 to
Theorem 3.9 of the author [30], respectively. For A =0in Theorem 3.1 to Theorem 3.6, we

obtain results of Macovei [15] (Corrected versions). For A =1and g =1in Theorem 3.1 to
Theorem 3.3 and also in Theorem 3.8 to Theorem 3.10, we get corresponding results proved

by Macovei in [16], for the operator I ,f(z)=1],f(z), considered fora>0. But our

results hold true for a > —p.
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