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Abstract. Let X = (X ,∗,0) be a B-algebra and f a self-map on X . We study some properties of X for the self-map

d f
q is an outside and inside fq-derivation of X , respectively, as follows:

(∀x,y ∈ X)(d f
q (x∗ y) = f (x)∗d f

q (y)),

(∀x,y ∈ X)(d f
q (x∗ y) = d f

q (x)∗ f (y)).

In addition, we define and study some properties of (right-left) and (left-right) fq-derivation of X , respectively, as

follows:

(∀x,y ∈ X)(d f
q (x∗ y) = ( f (x)∗d f

q (y))∧ (d f
q (x)∗ f (y))),

(∀x,y ∈ X)(d f
q (x∗ y) = (d f

q (x)∗ f (y))∧ ( f (x)∗d f
q (y))).
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1. INTRODUCTION AND PRELIMINARIES

In 1966, Iséki [8] introduced the class of BCI-algebras as follows:

Definition 1.1. Let X be a non-empty set with a binary operation ∗ and a constant 0 in X . An

algebra X = (X ,∗,0) is called a BCI-algebra if it satisfies the following axioms:

(BCI1) (∀x ∈ X)(x∗ x = 0),

(BCI2) (∀x,y,z ∈ X)(((x∗ y)∗ (x∗ z))∗ (z∗ y) = 0),

(BCI3) (∀x,y ∈ X)(x∗ y = 0,y∗ x = 0⇒ x = y),

(BCI4) (∀x,y ∈ X)((x∗ (x∗ y))∗ y = 0).

In any BCI-algebra X , the following property holds:

(BCI5) (∀x ∈ X)(x∗0 = x).

In 1983, Hu and Li [6] introduced a new class of algebras so-called a BCH-algebra. They

proved that the class of BCI-algebras is a proper subclass of BCH-algebras and studied some

properties of this algebra.

Definition 1.2. A BCH-algebra is an algebra X = (X ,∗,0) satisfying the following axioms:

(BCH1) (∀x ∈ X)(x∗ x = 0),

(BCH2) (∀x ∈ X)(x∗0 = x),

(BCH3) (∀x,y ∈ X)(x∗ y = 0,y∗ x = 0⇒ x = y).

Next, Bandru and Rafi [5] introduced a new notion, called G-algebra. This notion played an

important role in algebra and many applications as follows:

Definition 1.3. A G-algebra is an algebra X = (X ,∗,0) satisfying the following axioms:

(G1) (∀x ∈ X)(x∗ x = 0),

(G2) (∀x,y ∈ X)(x∗ (x∗ y) = y).

In 2002, Neggers and Kim [11] introduced a new algebraic structure, they took some proper-

ties from BCI and BCH-algebras, called B-algebra.

Definition 1.4. A B-algebra is an algebra X = (X ,∗,0) satisfying the following axioms:

(B1) (∀x ∈ X)(x∗ x = 0),
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(B2) (∀x ∈ X)(x∗0 = x),

(B3) (∀x,y,z ∈ X)((x∗ y)∗ z = x∗ (z∗ (0∗ y))).

Example 1.5. Let X = {0,1,2,3} with the Cayley table (Table 1) as follows:

* 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

Table 1

Then X = (X ,∗,0) is a B-algebra.

Theorem 1.6. [11] If X = (X ,∗,0) is a B-algebra, then:

(B4) (∀x,y ∈ X)((x∗ y)∗ (0∗ y) = x),

(B5) (∀x,y,z ∈ X)(x∗ (y∗ z) = (x∗ (0∗ z))∗ y),

(B6) (∀x,y ∈ X)(x∗ y = 0⇒ x = y),

(B7) (∀x ∈ X)(0∗ (0∗ x) = x),

(B8) (∀x,y,z ∈ X)(x∗ z = y∗ z⇒ x = y) (right cancelation law),

(B9) (∀x,y,z ∈ X)(z∗ x = z∗ y⇒ x = y) (left cancelation law).

Theorem 1.7. [11] An algebra X = (X ,∗,0) is a B-algebra if and only if it satisfies the following

axioms:

(B10) (∀x ∈ X)(x∗ x = 0),

(B11) (∀x ∈ X)(0∗ (0∗ x) = x),

(B12) (∀x,y,z ∈ X)((x∗ z)∗ (y∗ z) = x∗ y),

(B13) (∀x,y ∈ X)(0∗ (x∗ y) = y∗ x).

Definition 1.8. [10] A B-algebra X = (X ,∗,0) is said to be 0-commutative if it satisfies the

following axioms:

(∀x,y ∈ X)(x∗ (0∗ y) = y∗ (0∗ x)).

Example 1.9. In Example 1.5, we have X = (X ,∗,0) is a 0-commutative B-algebra.
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Theorem 1.10. [10] If X = (X ,∗,0) is a 0-commutative B-algebra, then:

(B14) (∀x,y ∈ X)((0∗ x)∗ (0∗ y) = y∗ x),

(B15) (∀x,y,z ∈ X)((z∗ y)∗ (z∗ x) = x∗ y),

(B16) (∀x,y,z ∈ X)((x∗ y)∗ z = (x∗ z)∗ y),

(B17) (∀x,y ∈ X)((x∗ (x∗ y))∗ y = 0),

(B18) (∀x,y,z, t ∈ X)((x∗ z)∗ (y∗ t) = (t ∗ z)∗ (y∗ x)),

(B19) (∀x,y,z ∈ X)((x∗ y)∗ z = x∗ (y∗ z)),

(B20) (∀x,y ∈ X)(x∗ (x∗ y) = y).

For a B-algebra X = (X ,∗,0), we denote x∧ y = y∗ (y∗ x) for all x,y ∈ X .

Definition 1.11. [2, 9] A self-map d on a B-algebra X = (X ,∗,0) is called

(1) a (left-right)-derivation ((l,r)-derivation, in short) of X if

(∀x,y ∈ X)(d(x∗ y) = (d(x)∗ y)∧ (x∗d(y))),

(2) a (right-left)-derivation ((r, l)-derivation, in short) of X if

(∀x,y ∈ X)(d(x∗ y) = (x∗d(y))∧ (d(x)∗ y)),

(3) a derivation of X if it is both an (l,r) and an (r, l)-derivation of X .

Definition 1.12. [2, 7, 9, 13] A self-map d on a B-algebra X = (X ,∗,0) is said to be regular if

d(0) = 0; otherwise, d is said to be irregular.

Example 1.13. [2, 9] In Example 1.5, we define a self-map d on X by:

d(x) =


0 if x = 0

2 otherwise.

Then d is regular.
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Example 1.14. [2, 9] In Example 1.5, we define a self-map d on X by:

d(x) =



3 if x = 0

2 if x = 1

1 if x = 2

0 if x = 3.

Then d is a derivation of X , and we see that d is irregular.

Definition 1.15. A self-map f on a B-algebra X = (X ,∗,0) is called an endomorphism if

(∀x,y ∈ X)( f (x∗ y) = f (x)∗ f (y)).

Definition 1.16. [3] Let f be an endomorphism of a B-algebra X = (X ,∗,0). A self-map d on

X is called

(1) a (left-right)- f -derivation ((l,r)- f -derivation, in short) of X if

(∀x,y ∈ X)(d(x∗ y) = (d(x)∗ f (y))∧ ( f (x)∗d(y))),

(2) a (right-left)- f -derivation ((r, l)- f -derivation, in short) of X if

(∀x,y ∈ X)(d(x∗ y) = ( f (x)∗d(y))∧ (d(x)∗ f (y))),

(3) an f -derivation of X if it is both an (l,r) and an (r, l)- f -derivation of X .

Note that if f is the identity map on a B-algebra X = (X ,∗,0), then every f -derivation of X

is a derivation.

Let f be an endomorphism of a B-algebra X = (X ,∗,0) and q ∈ X . The self-map d f
q on X is

defined by

(∀x ∈ X)(d f
q (x) = f (x)∗q).

We note that d f
0 = f ; indeed, d f

0 (x) = f (x)∗0 = f (x) for all x ∈ X .

Definition 1.17. [1] Let f be an endomorphism of a B-algebra X = (X ,∗,0). A self-map d f
q on

X is called

(1) an outside fq-derivation of X if

(∀x,y ∈ X)(d f
q (x∗ y) = f (x)∗d f

q (y)),
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(2) an inside fq-derivation of X if

(∀x,y ∈ X)(d f
q (x∗ y) = d f

q (x)∗ f (y)),

(3) an fq-derivation of X if it is both an outside and inside fq-derivation of X .

Next, we introduce a new concept of a (left-right) and a (right-left) fq-derivation by the

concept of [1, 4] as follows:

Definition 1.18. Let f be an endomorphism of a B-algebra X = (X ,∗,0). A self-map d f
q on X

is called

(1) an (left-right) fq-derivation of X if

(∀x,y ∈ X)(d f
q (x∗ y) = (d f

q (x)∗ f (y))∧ ( f (x)∗d f
q (y))),

(2) an (right-left) fq-derivation of X if

(∀x,y ∈ X)(d f
q (x∗ y) = ( f (x)∗d f

q (y))∧ (d f
q (x)∗ f (y))).

Moreover, we present some examples to illustrate and support our results.

Example 1.19. Let X = {0,1,2} with the Cayley table (Table 2) as follows:

* 0 1 2

0 0 1 2

1 1 0 2

2 2 1 0

Table 2

Then X = (X ,∗,0) is a B-algebra. Define an endomorphism f : X → X by

x 7→


0 if x = 0,

2 if x = 1,

1 if x = 2.

Then d f
0 is a (left-right) and a (right-left) fq-derivation of X but d f

2 is not a (left-right) fq-

derivation or a (right-left) fq-derivation of X . Indeed, d f
2 (1 ∗ 2) = 2 6= 0 = (d f

2 (1) ∗ f (2))∧

( f (1)∗d f
2 (2)) and d f

2 (1∗2) = 2 6= 1 = ( f (1)∗d f
2 (2))∧ (d

f
2 (1)∗ f (2)) = 1.
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2. MAIN RESULTS

In this section, our main results are divided into two parts as follows: 1. Outside and inside

fq-derivations, and 2. (Left-right) and (right-left) fq-derivations.

From now on, we shall let X be a B-algebra X = (X ,∗,0).

2.1. Outside and inside fq-derivations.

Theorem 2.1. d f
0 is an fq-derivation of X.

Proof. Let x,y ∈ X . Then

d f
0 (x∗ y) = ( f (x∗ y))∗0 = ( f (x)∗ f (y))∗0 = f (x)∗ f (y).(2.1)

f (x)∗d f
0 (y) = f (x)∗ ( f (y)∗ (0)) = f (x)∗ f (y).(2.2)

d f
0 (x)∗ f (y) = ( f (x)∗0)∗ f (y) = f (x)∗ f (y).(2.3)

By (2.1), (2.2) and (2.3), we get f (x) ∗ d f
0 (y) = d f

0 (x ∗ y) = d f
0 (x) ∗ f (y). Hence, d f

0 is an fq-

derivation of X . �

Theorem 2.2. If X is an associative B-algebra, then d f
q is an outside fq-derivation of X for all

q ∈ X.

Proof. Let q,x,y ∈ X . Then

d f
q (x∗ y) = f (x∗ y)∗q

= ( f (x)∗ f (y))∗q

= f (x)∗ ( f (y)∗q)(associative law)

= f (x)∗d f
q (y).

Hence, d f
q is an outside fq-derivation of X . �

Proposition 2.3. If X is a medial B-algebra, then d f
q is an inside fq-derivation of X for all

q ∈ X.
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Proof. Let q,x,y ∈ X . Then

d f
q (x∗ y) = f (x∗ y)∗q

= ( f (x)∗ f (y))∗q

= ( f (x)∗q)∗ f (y)(medial law)

= d f
q (x)∗ f (y).

Hence, d f
q is an inside fq-derivation of X . �

Corollary 2.4. If X is an associative medial B-algebra, then d f
q is an fq-derivation of X for all

q ∈ X.

Proof. It is straightforward by Propositions 2.2 and 2.3. �

Theorem 2.5. If d f
q is an outside (resp., inside) fq-derivation of X, then d f

q (0) = f (x) ∗ d f
q (x)

(resp., d f
q (0) = d f

q (x)∗ f (x)) for all x ∈ X.

Proof. We obtain the results from (B1). �

Theorem 2.6. Let X be a medial B-algebra. If d f
q is an outside fq-derivation of X, then d f

q is

an fq-derivation of X.

Proof. It is straightforward by Proposition 2.3. �

Theorem 2.7. Let X be an associative B-algebra. If d f
q is an inside fq-derivation of X, then d f

q

is an fq-derivation of X.

Proof. It is straightforward by Proposition 2.4. �

Theorem 2.8. If d f
q is a regular inside (outside) fq-derivation of X, then d f

q = f .

Proof. Let x ∈ X . By (B1), we have 0 = d f
q (0) = d f

q (x ∗ x) = d f
q (x) ∗ f (x). By (B6), we have

d f
q (x) = f (x) for all x ∈ X , that is, d f

q = f . �
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2.2. (Left-right) and (right-left) fq-derivations.

Theorem 2.9. If d f
q is an (l,r)- fq-derivation of X , then

(∀x ∈ X)(d f
q (0) = d f

q (x)∗ f (x)).

Moreover, if X is 0-commutative, then

(∀x ∈ X)(d f
q (0) = d f

q (x)∗ f (x) = 0∗q).

Proof. Let x ∈ X . Then

d f
q (0) = d f

q (x∗ x)((B1))

= (d f
q (x)∗ f (x))∧ ( f (x)∗d f

q (x))

= ( f (x)∗d f
q (x))∗ (( f (x)∗d f

q (x))∗ (d f
q (x)∗ f (x)))

= (( f (x)∗d f
q (x))∗ (0∗ (d f

q (x)∗ f (x))))∗ ( f (x)∗d f
q (x))((B5))

= (( f (x)∗d f
q (x))∗ ( f (x)∗d f

q (x)))∗ ( f (x)∗d f
q (x))((B13))

= 0∗ ( f (x)∗d f
q (x))((B1))

= d f
q (x)∗ f (x)((B13))

= ( f (x)∗q)∗ f (x)

= ( f (x)∗ f (x))∗q((B16))

= 0∗q.((B1))

Hence, d f
q (0) = d f

q (x)∗ f (x) = 0∗q for all x ∈ X . �

Theorem 2.10. If d f
q is an (r, l)- fq-derivation of X, then

(∀x ∈ X)(d f
q (0) = f (x)∗d f

q (x)).

Moreover, if X is 0-commutative, then

(∀x ∈ X)(d f
q (0) = f (x)∗d f

q (x) = q).
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Proof. Let x ∈ X . Then

d f
q (0) =d f

q (x∗ x)((B1))

=( f (x)∗d f
q (x))∧ (d f

q (x)∗ f (x))

=(d f
q (x)∗ f (x))∗ ((d f

q (x)∗ f (x))∗ ( f (x)∗d f
q (x)))

=((d f
q (x)∗ f (x))∗ (0∗ ( f (x)∗d f

q (x))))∗ (d f
q (x)∗ f (x))((B5))

=((d f
q (x)∗ f (x))∗ (d f

q (x)∗ f (x)))∗ (d f
q (x)∗ f (x))((B13))

=0∗ (d f
q (x)∗ f (x))((B1))

= f (x)∗d f
q (x)((B13))

= f (x)∗ ( f (x)∗q)

=q.((B20))

Hence, d f
q (0) = f (x)∗d f

q (x) = q for all x ∈ X . �

Theorem 2.11. If d f
q is an (l,r)- fq-derivation ((r, l)- fq-derivation) of X, then:

(1) d f
q is injective if and only if f is injective,

(2) if d f
q is regular, then d f

q = f ,

(3) if there is an element x0 ∈ X such that d f
q (x0) = f (x0), then d f

q = f .

Proof. (1) Suppose that d f
q is injective and let x,y∈X be such that f (x)= f (y). By Theorem 2.9,

we have d f
q (y)∗ f (y) = d f

q (0) = d f
q (x)∗ f (x) = d f

q (x)∗ f (y). By (B8), we have d f
q (x) = d f

q (y).

Hence, x = y because d f
q is injective, so f is injective.

Conversely, suppose that f is injective and let x,y ∈ X be such that d f
q (x) = d f

q (y). By The-

orem 2.9, we have d f
q (y) ∗ f (y) = d f

q (0) = d f
q (x) ∗ f (x) = d f

q (y) ∗ f (x). By (B9), we have

f (x) = f (y). Hence, x = y because f is injective, so d f
q is injective.

(2) Suppose that d f
q is regular and let x ∈ X . By Theorem 2.9, we have 0 = d f

q (0) = d f
q (x)∗

f (x). By (B6), we have d f
q (x) = f (x) for all x ∈ X , that is, d f

q = f .

(3) Suppose that there is an element x0 ∈ X such that d f
q (x0) = f (x0). By (B1) and Theorem

2.9, we have d f
q (0) = d f

q (x0)∗ f (x0) = 0. Thus d f
q is regular. It follows from (2) that d f

q = f .

Similarly, if d f
q is an (r, l)- fq-derivation of X , the proof follows by Theorem 2.10. �
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3. CONCLUSION AND DISCUSSION

In this paper, we have introduced the concept of a (left-right) and a (right-left) fq-derivation

of B-algebras and some properties are provided. Moreover, we also get the results related to

0-commutative B-algebras and regular (l,r)- fq-derivation ((r, l)- fq-derivation) of B-algebras.
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