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Abstract. For a graph G(V (G),E(G), the problem to find a set S ⊆ V (G) where every edge in E(G) is covered

by least two fixed geodesics between the vertices in S is called the strong doubly edge geodetic problem and the

cardinality of the smallest such S is the strong doubly edge geodetic number of G. In this paper the computational

complexity for strong doubly edge geodetic problem is studied and also some bounds for general graphs are

derived.
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1. INTRODUCTION

Consider a graph G(V (G),E(G)), with order |V (G)| and size |E(G)|. An (x− y) geodesic

is the length of the shortest path between the vertices x and y. For a graph G, the length of the

maximum geodesic is called the graph diameter, denoted as diam(G). Harary et al introduced

a graph theoretical parameter in [2] called the geodetic number of a graph and it was further

studied in [3]. Let I[u,v] be the set of all vertices lying on some u− v geodesic of G, and for

some non empty subset S of V (G), I[S] = ∪u,v∈SI[u,v]. The set S of vertices of G is called
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a geodetic set of G, if I[S] = V . A geodetic set of minimum cardinality is called minimum

geodetic set of G. The cardinality of the minimum geodetic set of G is the geodetic number

g(G) of G. The geodetic set decision problem is NP-complete [12]. The set S ⊆ V (G) is an

edge geodetic cover of G if every edge of G is contained in the geodesic between some pair of

vertices in S, and the cardinality of minimum edge geodetic cover is called the edge geodetic

number of G denoted as g1(G) [13].

Strong geodetic problem is a variation of geodetic problem and is defined in [10] as follows.

For a graph G(V (G),E(G)), given a set S ⊆ V (G), for each pair of vertices (x,y) ⊆ S, x 6= y,

let g̃(x,y) be a selected fixed shortest path between x and y. Let Ĩ(S) = {g̃(x,y) : x,y ∈ S} and

V (Ĩ(S)) = ∪P̃∈Ĩ(S)V (P̃). If V (Ĩ(S)) = V for some Ĩ(S), then S is called a strong geodetic set .

The cardinality of the minimum strong geodetic set is the strong geodetic number of G and is

denoted by sg(G). The strong geodetic problem was later studied in [4][5][6][7][8][9][15].The

edge version of the strong geodetic problem is defined in [11] i.e. a set S ⊆ V (G) is called a

strong edge geodetic set if for any pair x,y ∈ S a shortest path Pxy can be assigned such that

∪{x,y}∈(S
2)

E(Pxy) = E(G). The cardinality of the smallest strong edge geodetic set of G is called

the strong edge geodetic number and is denoted as sge(G).

In [16] another variant of geodetic problem named doubly geodetic problem is introduced and

is defined as follows: For any graph G(V,E) two geodesics gp(x,y) and gq(u,v) are distinct if

I[gp(x,y)] 6= I[gq(u,v)] where {u,v,x,y} ∈V (G). A set S ⊆V (G) is called the doubly geodetic

set if each vertex in V (G)\S lies on at least two geodesics between the vertices in S and the

cardinality of the smallest such S is the doubly geodetic number of G, denoted as d̈g(G). Later

in [17] the edge version of this problem is defined. A set S ⊆ V (G)is called a doubly edge

geodetic set of if each edge e ∈ E(G)\E(S) lies on at least two distinct geodesics of vertices of

S, where E(S) is the edge set of the sub graph induced by the vertices of S. The doubly edge

geodetic number d̈ge(G) is the minimum cardinality of a doubly edge geodetic set.

2. MOTIVATION

Smarandache geometries and Smarandache multispaces are sigficant topics in Mathematics.

In graph theory the study of Smarandache path k− cover is initiated in [1]. Also, in [14]

Smarandache edge geodetic set is defined. A set T ⊆V (G) is a Smarandache edge geodetic set
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if each edge in E(G) lies on at least two geodesic between the vertices in T .

In [11] an urban road network problem is modelled into a graph where the vertices represent

the bus stops or junctions and the edges represent the roads connecting them, subjected to the

condition that a road is a geodesic and it is patrolled by a pair of road inspectors by placing

one inspector at each end. Also, one pair of road inspectors is not assigned to more than one

road segment. The strong edge geodetic problem is to identify the minimum number of road

inspectors to patrol the urban road network i.e. each edge is patrolled by at least one pair of

inspectors. Assume that the inspectors are working under the following condition. In order to

guard and secure a road(geodesic), there should necessarily be a communication between the

inspectors who are guarding that particular road(geodesic). Suppose there is a communication

problem or other network related issues between a pair of inspectors then the edges in the fixed

geodesic patrolled by that particular pair of inspectors are unsecured. To avoid this situation we

can arrange at least two pair of inspectors for an edge. In this arrangement, even if one pair of

inspector had lost the communication, then the other pair of inspectors can guard that particular

edge. With this motivation the strong doubly edge geodetic set can be defined.

3. STRONG DOUBLY EDGE GEODETIC NUMBER

A set S ⊆ V (G) is called a strong doubly edge geodetic set of if each edge e ∈ E(G) lies on

at least two distinct fixed geodesics between vertices of S. The strong doubly edge geodetic

number sd̈ge(G) is the minimum cardinality of a strong doubly edge geodetic set.

For the graph given in Figure 1: the set {b, f ,g} forms a minimum strong edge geodetic set

whereas the {a,b,c, f ,g} is a strong doubly edge geodetic set. Thus sge(G) = 3 and sd̈ge(G) =

5.

A graph G which has a strong doubly edge geodetic set is called a strong doubly edge geodetic

graph. The complete graph Kn and the graph (Kn− e) are not strong doubly edge geodetic

graphs.

A graph may have strong doubly geodetic set but not strong doubly edge geodetic set. For

example, complete graph Kn is a strong doubly geodetic graph but not a strong doubly edge

geodetic graph.

Throughout this paper, we assume G to be a strong doubly edge geodetic graph.
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FIGURE 1. Illustration of Strong doubly edge geodetic number of a graph.

Result 1. Every simplicial vertices belongs to each strong doubly edge geodetic set.

Result 2. For a graph G, 3≤ sd̈ge(G)≤ n.

The bounds are sharp, i.e.if G = Pn, then sd̈ge(Pn) = 3 and for G =C5, sd̈ge(C5) = 5.

4. COMPUTATIONAL COMPLEXITY

The proof for the NP-completeness of the strong doubly edge geodetic problem for gen-

eral graphs can be reduced from the vertex cover problem which is already proved to be NP-

complete.

Theorem 1. Strong doubly edge geodetic problem is NP-complete for general graphs.

Proof. The graph Ḡ(V̄ , Ē) is constructed from a given graph G(V,E) as follows : The vertex set

V̄ = {a,b}∪V ∪V
′ ∪V

′′
where V

′
induces a clique in Ḡ and V

′′
is an independent set of order

2|V |. The edge set of Ḡ is Ē = E ∪E
′ ∪E

′′ ∪E
′′′

where E
′

is the edge set of Ḡ(V
′
) which is a

complete graph with |V | vertices, E
′′
= {vv

′}∪{v′v′′1}∪{v
′
v
′′
2} : v ∈ V,v′ ∈ V ′,v

′′
1,v

′′
2 ∈ V ′′ and

E
′′′
= {vb}∪ {ab} : v ∈ V . Refer figure 2. Let X = V ′′ ∪{a}. Since the vertices of V ′′ ∪{a}

forms a set of simplicial vertices and they are the elements of any strong doubly edge geodetic

set in Ḡ. Let T be a vertex cover set of G. We will prove that T ∪X forms a strong doubly edge

geodetic set set for Ḡ. For v∈ T and u∈N(v), the geodesics v→ u→ u′→ u
′′
1, v→ u→ u′→ u

′′
2,

v→ v′→ v
′′
1, v→ v′→ v

′′
2, a→ b→ v→ v′→ v

′′
1,a→ b→ v→ v′→ v

′′
2,v

′′
1→ v′→ u′→ u

′′
1 and

v
′′
1→ v′→ u′→ u

′′
2 are the fixed geodesics between the vertices of T ∪X and they will cover all

the edges in Ē(Ḡ) at least twice. Thus T ∪X forms a strong doubly edge geodetic set for Ḡ.

Conversely, assume that A is a strong doubly edge geodetic set of Ḡ. If b ∈ A then A∗ = A\{b}
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FIGURE 2. Illustration of G and Ḡ.

otherwise A∗ = A. Clearly, A∗ is a strong doubly edge geodetic set of Ḡ and |A∗| ≤ |A|. The

geodesics between the vertices in V
′′ ∪{a} does not cover any edges in V i.e. A∗∩V 6= φ . Also,

if v′ ∈ A then replace v′ by its corresponding vertex v. Let A∗∗ = {v\v′ ∈ A}∪{A∩V}∪X . It is

straightforward that |A∗∗| ≤ |A∗| and A∗∗ is a strong doubly edge geodetic set of Ḡ. It is easy to

see that A∗∗\X is a vertex cover set for G.

�

5. MAIN RESULTS

Theorem 2. If G(V,E) is a graph with diameter d then sd̈ge(G)≥ d+
√

d2+16d|E|
2d .

Proof. Let S ⊆ V (G) be a minimum strong doubly geodetic set, where |S| = sd̈ge(G). This

implies that every e ∈ E(G) lies on at least 2 geodesics between the vertices in S and each

geodesic covers d edges. Thus 2|E| ≤ d
(|S|

2

)
which in turn implies that sd̈ge(G)≥ d+

√
d2+16d|E|

2d .

�

This bound is sharp for the graphs in Figure 3.

Result 3. For path, Pn where n≥ 3, sd̈ge(Pn) = 3.

Result 4. For cycle Cn where n≥ 5, sd̈ge(Cn) = 5
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FIGURE 3. IIustration of graphs with sd̈ge(G) =
d+
√

d2+16d|E|
2d

Result 5. For star graph, K1,m where m≥ 3, sd̈ge(K1,m) = m.

Result 6. For wheel graph, Wn where n≥ 7, sd̈ge(Wn) = n−1.

Result 7. For fan graph, F1,m where m≥ 7, sd̈ge(F1,m) = m

Result 8. For a tree T on l ≥ 3 leaves, sd̈ge(T ) = l.

Two edges e, f ∈ E(G) are geodesic if they belong to some shortest path of G and are other-

wise called non-geodesic edges [11].

Theorem 3. Consider a graph G with a set of pairwise non-geodesic edges A. If G−A consists

convex components then sd̈ge(G)≥
⌈

a a
√

4|A|
a(a−1)

⌉
where a≥ 2 is the number of components in

G−A.

Proof. Let the components in G−A be G1,G2, . . . ,Ga and S be the strong doubly edge geodetic

set of G. Also let Si be the strong doubly edge geodetic set of Gi and Si∩ S j = φ where i, j ∈

[1,2 . . . ,a]. As each component of G−A is assumed to be convex, no geodesics between the

vertices in Si will contain an edge in A. Since S is assumed to be the strong doubly edge geodetic

set of G, there exists two geodesic between the vertices of Si and S j where each geodesics

contains at most one edge from A. This implies that ∑
i6= j
|Si||S j| ≥ 2|A|. Also for any positive

real numbers, their arithmetic mean is greater than or equal to their geometric mean, i.e. |S| =
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a
∑

k=1
|Sk| ≥ a a

√
a
∏

k=1
|Sk|. But for all |Sk| ≥ 1,

a
∏

k=1
|Sk| ≥ |Si||S j|. This inequality holds for all

(a
2

)
pairs i.e.

(a
2

) a
∏

k=1
|Sk| ≥ ∑

i 6= j
|Si||S j|. Thus |S| ≥ a

a

√
∑

i6= j
|Si||S j|

(a
2)

. From this we get,|S| ≥ a a

√
2|A|
(a

2)
. On

solving this inequality and considering only the integral part, |S| ≥
⌈

a a
√

4|A|
a(a−1)

⌉
.

�

If a = 2 in the above theorem then the set A is a convex edge cut and hence the following

theorem.

Corollary 1. For a graph G with convex edge cut A, sd̈ge(G)≥ d2
√

2|A|e.

This bound is sharp for Glued binary trees without randomization GT1(r) and GT2(r). The

glued binary tree GT2(r) is obtained by adding cross edges to each leaves of GT1(r) (Refer

Figure 4 and Figure 5). For GT1(r), A = 2r and it can be easily verified that sd̈ge(GT1(r)) =

d2
√

2r+1e. Similarly for GT2(r), A = 2r+1 and it can be easily verified that sd̈ge(GT2(r)) =

d4
√

2re.

FIGURE 4. Illustration of GT1(3)
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FIGURE 5. Illustration of GT2(3)

Theorem 4. For three positive integers r,d,a where 4 < r < d ≤ 2r and a ≥ 5, there exists a

connected graph G with radius(G) = G, diameter(G) = d and sd̈ge(G) = a.

v1

u1
u2

ud-r-1
ud-r

v2

v3vr

vr+1

v2r w
1
w2w3 wa-2

FIGURE 6. Graph G with radius(G) = r, diameter(G) = d and sd̈ge(G) = a.

Proof. For G = Ka, sd̈ge(G) = a with r = d = 1. For G = K1,a, sd̈ge(G) = a with r = 1

and d = 2. For r ≥ 2, the graph G is constructed by identifying a vertex u0 of the path

P : u0,u1,u2, . . . ,ud−r with the vertex v1 of the cycle C : v1,v2,v3, . . . ,v2r,v1 and adding new

vertices w1,w2, . . . ,wa−2 where each wi,1 ≤ i ≤ a− 2 to the vertex vd−r−1 (Refer Figure: 6).

Clearly, the set {w1,w2, . . . ,wa−2,ur+1,vd−r} forms a strong doubly edge geodetic set for G.

Thus the graph G is obtained where sd̈ge(G) = a, radius(G) = G and diameter(G) = d.

�

Theorem 5. For two positive integers a,b where 5 ≤ a < b, there exists a connected graph G

with d̈ge(G) = a and sd̈ge(G) = b.
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FIGURE 7. Graph G with d̈ge(G) = a and sd̈ge(G) = b

Proof. Let G be a graph obtained from the path P3 : p1,u1, p3 and adding new vertices

u2,u3, . . . ,ub a−1
2 c

,v1,v2, . . . ,vb−a in such a way that each ui,2≤ i≤ ba−1
2 c and v j,1≤ j ≤ b−a

are joined to the vertices p1 and p3 respectively. Also, join the vertices w1,w2, . . .wa−1 to the

vertex p1 (Refer Figure: 7). It is straightforward to see that S = {w1,w2, . . . ,wa−1, p3} forms a

doubly edge geodetic set for G. But S does-not form a strong doubly edge geodetic set for G.

It can be easily seen that T = S∪{v1,v2, . . . ,vb−a} forms a strong doubly edge geodetic set for

G. Thus d̈ge(G) = a and sd̈ge(G) = b−a+a−1+1 = b.

�
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