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Abstract. In this article, we establish the result on existence and uniqueness of a Atangana-Baleanu fractional

neutral differential equations with dependence on the Lipschitz first derivative conditions in Banach space. These

results are based on fixed point theorems. Moreover, an example is also provided to illustrate the main results.
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1. INTRODUCTION

Fractional differential equations have appeared in various fields in the past few decades such

as chemistry, physics, engineering, control theory, aerodynamics, electrodynamics of complex

medium and control of dynamical systems and so on. In consequence, fractional differential

equations is obtaining much significance and attention. For details, we refer readers to [12, 18,

19, 23] and references therein. The nonlocal characteristic of the fractional order operators
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is the main reasons for the popularity of the fractional calculus, which take into account the

hereditary properties of several materials and processes.

Many researchers paid more attention to ABC-derivative with several conditions in various

spaces in recent years. The AB fractional derivative is familiar to followings nonsingularity

as known as nonlocality of the kernel, which acquires the generalized Mittag-Leffler function.

Some of the latest studies on ABC-derivatives such as, Atangana and Koca find the chaos in a

simple nonlinear system with AB-fractional derivatives [10]. Jarad et al. investigated a Ordinary

Differential Equations in the form of AB-derivative [20]. Ravichandran et al. discussed in

details the AB-fractional neutral integro-differntial equations [25].

More precisely Sene discussed Stokes’ first problem for heated flat plate with AB-derivative

[33]. Owolabi studied the modelling and simulation of a dynamical system with the Atangana-

Baleanu fractional derivative [32]. A substantial deal of research work has been carry through

on the application of fractional neutral derivative. Liu et al. discussed a coupled system of

nonlinear neutral fractional differential equations [24]. Zhou et al. studied the fractional of

neutral differntial equations with infinite delay [36].

In this paper, we are interested in the existence and uniqueness of solutions of the Atangana-

Baleanu fractional neutral differential equation in the sense of Caputo to the following abstract

form

(ABC
a Dα)(u(t)−g(t,u(t),u′(t,u(t))) = f (t,u(t),u′(t,u(t))), 1 < α ≤ 2,(1)

u(a) = u0.(2)

with t ∈C[a,b], where ABC
a Dα is the left Caputo AB fractional derivative, u(t),(ABC

a Dα)u, f ∈

C[a,b], f (a,u(a),u′(a,u(a))) = 0. Consider Du(t) = u′(t,u(t)). Then (1) becomes

(ABC
a Dα)(u(t)−g(t,u(t),Du(t)) = f (t,u(t),Du(t)), 1 < α ≤ 2,(3)

u(a) = u0(4)

The organization of the paper is as follows: In Section 2, we review some useful properties,

definitions, propositions and lemmas of fractional calculus. The existence and uniqueness of
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solutions for AB-fractional neutral derivative results are proved in Section 3. In the last section

is devoted to illustrate an example numerically solved.

2. PRELIMINARIES

In this section, we presents some definitions, lemmas and proposotions of fractonal calculus,

which will be used throughout this paper.

The definition of Riemann-Liouville fractional integral and derivatives are given as follows:

• For α > 0, the left R-L fractional integral of order α is given as [20]

(5) (aIαu)(t) =
1

Γ(α)

∫ t

a
(t− s)α−1u(s)ds.

• For 0 < α < 1, the left R-L fractional derivative of order α is given as [20]

(6) (aDαu)(t) =
d
dt

(
1

Γ(1−α)

∫ t

a
(t− s)−αu(s)ds

)
• For 0≤ α ≤ 1, the Caputo fractional derivative of order α is given as [20]

(7) (Ca Dαu)(t) =
1

Γ(1−α)

∫ t

a
(t− s)−αu′(s)ds.

Definition 2.1. [7] Let u ∈ H1(a,b), a < b and α in [0,1]. The Caputo Atangana-Baleanu

fractional derivative of u of order α is defined by

(8) (ABC
a Dαu)(t) =

B(α)

(1−α)

∫ t

0
u′(s)Eα

[
−α

(t− s)α

1−α

]
ds.

where Eα is the Mittag-Leffler function defined by Eα(z) = ∑
∞
n=0

zn

Γ(nα+1) [27, 34] and B(α)> 0

is a normalizing function satisfying B(0) = B(1) = 1. The Riemann Atangana-Baleanu frac-

tional derivative of u of order α is defined by

(9) (ABR
a Dαu)(t) =

B(α)

1−α

d
dt

∫ t

0
u(s)Eα

[
−α

(t− s)α

1−α

]
ds.

The associative fractional integral is defined by

(10) (AB
a Iαu)(t) =

1−α

B(α)
u(t)+

α

B(α)
(aIαu)(t)

where aIα is the left Riemann-Liouville fractional integral given in (5).
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Lemma 2.2. [7] Let u ∈ H1(a,b) and α ∈ [0,1]. Then the following relation holds.

(11) (ABC
a Dαu)(t) = (ABR

a Dαu)(t)− B(α)

1−α
u(a)Eα

(
− α

1−α
(t−a)α

)
.

Lemma 2.3. [20] Suppose that α > 0, c(t)(1− 1−α

B(α)d(t))
−1 is a nonnegative, nondegreasing

and locally integrable function on [a,b), αd(t)
B(α) (1−

1−α

B(α)d(t))
−1 is non-negative and bounded on

[a,b) and u(t) is nonnegative and locally integrable [a,b) with

(12) u(t)≤ c(t)+d(t)(AB
a Iαu)(t),

then

(13) u(t)≤ c(t)B(α)

B(α)− (1−α)d(t)
Eα

(
α d(t)(t−a)α

B(α)− (1−α)d(t)

)
.

Theorem 2.4. (Ascoli-Arzela Theorem)([16]) Let S be a compact metric spaces.Then M⊂C(Ω)

is relatively compact iff M is uniformly bounded and uniformly equicontinuous.

Theorem 2.5. (Krasnoselskii Fixed Point Theorem)([16]) Let S be a closed, bounded and con-

vex subset of a real Banach space X and let T1 and T2 be operators on S satisfying the following

conditions

• T1(s)+T2(s)⊂ S

• T1 is a strict contraction on S, i.e., there exist a l ∈ [a,b) such that

‖T1(u)−T1(v)‖ ≤ l‖u− v‖ ∀ u,v ∈ S

• T2 is continuous on S and T2(s) is a relatively compact subset of X .

Then, there exist a u ∈ S such that T1u+T2u = u

Proposition 2.6. ([4]) For 0≤ α ≤ 1, we conclude that

(AB
a Iα(ABC

a Dαu))(t) = u(t)−u(a)Eα(λ tα)− α

1−α
u(a)Eα,α+1(λ tα)

= u(t)−u(a).

Proposition 2.7. ([22, 30]) f ′(u) ∈ D satisfy the Lipschitz condition.

i.e.,There exist a constant l > 0 such that

(14) ‖ f ′(u)− f ′(v)‖ ≤ l (‖u− v‖), u,v ∈ D.
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Definition 2.8. A continuous function u : [a,b]→ ℜ is called a mild solution of the following

Atangana-Baleanu fractional derivative equation in the sense of Caputo

 (ABC
a Dα)(u(t)−g(t)) = f (t), 1 < α ≤ 2,

u(a) = u0

for each t ∈C[a,b], u(t) satisfies the following integral equation

u(t) = uo−g(a)+g(t)+AB
a Iα f (t)

3. EXISTENCE AND UNIQUENESS

In this section, we prove the existence and uniqueness solutions of (3) and (4) is studied with

the following assumptions.

A1: Let u ∈C[a,b] and g ∈ (C[a,b]×ℜ×ℜ,ℜ) is continuous function and there exist a

positive constants M1,M2 and M such that

‖g(t,u1,v1)−g(t,u2,v2)‖ ≤M1(‖u1−u2‖+‖v1− v2‖)

for all u1,v1,u2,v2 in Y , M2 = maxt∈ℜ ‖g(t,0,0)‖ and M = max{M1,M2}. Let Y =

C[ℜ,X ] be the set continuous functions on ℜ with values in the Banach spaces X .

A2: Let u ∈C[a,b] and f ∈ (C[a,b]×ℜ×ℜ,ℜ) is continuous function and there exist a

positive constants N1,N2 and N such that

‖ f (t,u1,v1)− f (t,u2,v2)‖ ≤N1(‖u1−u2‖+‖v1− v2‖)

for all u1,v1,u2,v2 in Y , N2 = maxt∈ℜ ‖ f (t,0,0)‖ and N= max{N1,N2}.

A3: Let u′ ∈ C[a,b] satisfy the Lipschitz condition. i.e.,There exist a positive constants

L1,L2 and L such that

‖D(t,u)−D(t,v)‖ ≤ L1(‖u− v‖),

for all u,v in Y . L2 = maxt∈D ‖D(t,0)‖ and L= max{L1,L2}.

A4: For each λ > 0, Let Bλ ∈ {u ∈ Y : ‖u‖ ≤ λ} ⊂ Y , them Bλ is clearly a bounded

closed and convex set in (C[a,b],R) where λ = ((1−2C)−1(‖u0‖)+C) and take C =

max{M,N} and C< 1
2 .
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Lemma 3.1. If A3 are satisfied, then the estimate

‖Du(t)‖ ≤ t(L1‖u‖+L2), ‖Du(t)−Dv(t)‖ ≤ Lt‖u− v‖, are satisfied for any t ∈ ℜ, and

u,v ∈ Y.

Theorem 3.2. Let u(t) ∈C[a,b] such that (ABC
a Dαu)(t) ∈C[a,b]. Suppose that f ∈C([a,b]×

ℜ×ℜ,ℜ) satisfies A1−A4. Then, if g(a,u(a),Du(a)) = f (a,u(a),Du(a)) = 0 and
(
Lt+(1+

Lt)
(

1−α

B(α) +
(b−a)α

B(α)Γ(α)

))
≤ 1 the problem (3) and (4) has an unique solution.

Proof. First, we show that u(t) satisfies the problem (3) and (4) iff u(t) satisfies the integral

equation

u(t) = u0−g(a,u(a),Du(a))+g(t,u(t),Du(t))+AB
a Iα f (t,u(t),Du(t))(15)

Let u(t) satisfy (3). To apply the AB fractional integral to both sides of (3), we get

(AB
a Iα(ABC

a Dα)(u(t)−g(t,u(t),Du(t)))) =AB
a Iα f (t,u(t),Du(t))(16)

Now, constructing use of Proposition 2.4, we get

u(t)−g(t,u(t),Du(t))− (u(a)−g(a,u(a),Du(a))) =AB
a Iα f (t,u(t),Du(t))(17)

Since u(a) = u0 from (4) and f (a,u(a),Du(a)) = 0, (15) is satisfied. If u(t) satifies (15), then

by using that f (a,u(a),Du(a)) = 0 it is obvious that u(a) = u0.

To apply the Riemann-Liouville AB fractional derivative to both sides of (15) and utilize that

(AB
a Dα(AB

a Iαu))(t) = u(t). We get

(ABR
a Dαu)(t) = u0(

ABR
a Dα1)(t)+(ABR

a Dα)g(t,u(t),Du(t))+(ABR
a Dα(AB

a Iα))(t) f (t,u(t),Du(t))(18)

Thus, we have

(ABR
a Dα)(u(t)−g(t,u(t),Du(t))) = (u0−g(a,u(a),Du(a)))Eα

(
− α

1−α
(t−a)α

)
+ f (t,u(t),Du(t))(19)

Then, the result is acquired by getting from theorem(1) in [7]. Now, we can consider the oper-

ator T defined by

Tu(t) = u0−g(a,u(a),Du(a))+g(t,u(t),Du(t)))+AB
a Iα f (t,u(t),Du(t)).
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Then, by A3, ‖u‖ ≤ λ we get

‖Tu(t)‖ ≤ ‖u0‖+M(‖u‖+ t(L1‖u‖+L2))+
1−α

B(α)
(N1(‖u‖+L1t‖u‖)

+
1−α

B(α)
N2+

α

B(α)
(N1‖u‖+Lt‖u‖)((AB

a Iα)(t)

≤ ‖u0‖+C‖u‖+C
(
Lt +

1−α

B(α)
(1+Lt)+

(b−a)α

B(α)Γ(α)
(1+Lt)

)
‖u‖

+C
(
Lt +

1−α

B(α)
(1+Lt)+

(b−a)α

B(α)Γ(α)
(1+Lt)

)
≤ λ (1−2C)+2Cλ

= λ

i.e., ‖Tu(t)‖ ≤ λ . Now to prove uniqueness

‖T (u)−T (v)‖ ≤ ‖g(t,u1(t),Du(t))+g(a,u(a),Du(a))+AB
a Iα f (t,u(t),Du(t))

−[g(t,v(t),Dv(t))+g(a,v(a),Dv(a))+AB
a Iα f (t,v(t),Dv(t))]‖

≤ M(1+Lt)‖u− v‖+ 1−α

B(α)
(N(1+Lt))‖u− v‖]

+
α

B(α)
(M(1+Lt))‖u− v‖((AB

a Iα)(t)

≤ C‖u− v‖+C
(
Lt +(1+Lt)

(1−α

B(α)
+

(b−a)α

B(α)Γ(α)

))
‖u− v‖

≤ 2C‖u− v‖

≤ ‖u− v‖

Hence, the operator Tu(t), t ∈ Bλ proved the existence and uniqueness conditions and has a

fixed point by Banach contraction principle in Banach spaces X.

Next, we investigate the problem (3) and (4) has a fixed point by utilizing Krasnoselskii’s

fixed point theroem.

Theorem 3.3. If A1−A4 are satisfied and q(t2−t1) = [N(‖u(t2)−u(t1)‖+Lt‖u(t2)−u(t1)‖)],

then the problem (3) and (4) has a solution.
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Proof. Now, for any λ0 > 0 and u ∈ Bλ0 , we define two operator T1 and T2 on Bλ0 as follows

(T1u)(t) = u0−g(0,u(0),0)+g(t,u(t),Du(t))(20)

(T2u)(t) = AB
a Iα f (t,u(t),Du(t)).(21)

Obviously, u is a solution of (3) and (4) iff the operator T1u+T2u = u has a solution u ∈ Bλ0

This proof will be given in three steps.

Step 1. ‖T1u+T2u‖ ≤ λ0 whenever u ∈ Bλ0 .

For every u ∈ Bλ0 , we have

‖(T1u)(t)+(T2u)(t)‖ ≤ ‖u0‖+M(‖u‖+ t(L1‖u‖+L2))+
1−α

B(α)
(N1(‖u‖+L1t‖u‖)

+
1−α

B(α)
N2+

α

B(α)
(N1‖u‖+Lt‖u‖)(AB

a Iα)(t)+
α

B(α)
N2(

AB
a Iα)(t)

≤ ‖u0‖+C‖u‖+C
(
Lt +

1−α

B(α)
(1+Lt)+

(b−a)α

B(α)Γ(α)
(1+Lt)

)
‖u‖

+C
(
Lt +

1−α

B(α)
(1+Lt)+

(b−a)α

B(α)Γ(α)
(1+Lt)

)
≤ λ (1−2C)+2Cλ

≤ λ0

Hence, ‖T1u+T2u‖ ≤ λ0 for every u ∈ Bλ0 .

Step 2. T1 is a contraction on Bλ0 for every u,v ∈ Bλ0 , according to A4 and (20), we have

‖(T1u)(t)− (T1v)(t‖ ≤ ‖u0− v0‖+ l‖u0− v0‖+M‖u− v‖+MLt‖u− v‖

≤ ‖u0− v0‖[1+ l +M‖u− v‖+MLt‖u− v‖]

≤ R‖u0− v0‖

which implies that ‖T1u− T1v‖ ≤ R‖u0− v0‖, since R = 1, where R = 1+ l +M‖u− v‖+

MLt‖u− v‖. This shows that T1 is a contraction.

Step 3. T2 is completely continuous operator.

First we have to prove that T2 is continuous on Bλ0. For every un,u⊂ Bλ0, n = 1,2,3.... with

limn→u ‖un−u‖= 0, we get limn→u un(t) = u(t), for t ∈ [a,b].

Thus by A2, we know limn→∞ f (t,un(t),Dun(t)) = f (t,u(t),Du(t)) for every t ∈ [a,b].
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We can conclude that

sup
s∈[a,b]

‖ f (t,un(t),Dun(t))− f (t,u(t),Du(t))‖→ 0 as n→ ∞

On other hand, for t ∈ [a,b] we can obtain that

‖(T2un)(t)− (T2u)(t)‖ ≤ ‖AB
a Iα f (t,un(t),Dun(t))−AB

a Iα f (t,u(t),Du(t))‖

≤ 1−α

B(α)
‖AB

a Iα f (t,un(t),Dun(t))−AB
a Iα f (t,u(t),Du(t))‖

+
α

B(α)
‖AB

a Iα f (t,un(t),Dun(t))−AB
a Iα f (t,u(t),Du(t))‖aIα(t)

≤ 1−α

B(α)
sup

s∈[a,b]
‖ f (t,un(t),Dun(t))− f (t,u(t),Du(t))‖

+
(b−a)α

B(α)Γ(α)
sup

s∈[a,b]
‖ f (t,un(t),Dun(t))− f (t,u(t),Du(t))‖

≤
(1−α

B(α)
− (b−a)α

B(α)Γ(α)

)
sup

s∈[a,b]
‖ f (t,un(t),Dun(t))− f (t,u(t),Du(t))‖

Hence ‖(T2un)(t)− (T2u)(t)‖→ 0 as n→ ∞. Therefore T2 is continuous on Bλ0.

Now, we have to show that T2u,u ∈ Bλ0 is relatively compact which is enough to prove that

the function T2u,u ∈ Bλ0 uniformly bounded and equicontinuous, and ∀ t ∈ [a,b]

‖T2u‖ ≤ λ0, for any u ∈ Bλ0 , therefore (T2u)(t),u ∈ Bλ0 is bounded uniformly.

Now, we show that (T2u)(t),u ∈ Bλ0 is a equicontinuous.

For any u ∈ Bλ0 and a≤ t1 ≤ t2 ≤ t, we get

‖(T2u)(t2)− (T2u)(t1)‖ ≤ ‖AB
a Iα f (t2,u(t2),Du(t2))−AB

a Iα f (t1,u(t1),Du(t1))‖

≤ 1−α

B(α)
‖ f (t2,u(t2),Du(t2))− f (t1,u(t1),Du(t1))‖

+
α

B(α)
aIα‖ f (t2,u(t2),Du(t2))− f (t1,u(t1),Du(t1))‖

≤ 1−α

B(α)
(N(‖u(t2)−u(t1)‖+Lt‖u(t2)−u(t1)‖))

+
α

B(α)
(N(‖u(t2)−u(t1)‖+Lt‖u(t2)−u(t1)‖))(aIα)(t2− t1)
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≤ 1−α

B(α)
q(t2− t1)+

α

B(α)
q(t2− t1)

(t2− t1)α

αΓ(α)

≤ q
(1−α

B(α)
− (t2− t1)α

B(α)Γ(α)

)
(t2− t1)

‖(T2u)(t2)−(T2u)(t1)‖→ 0 as t2→ t1. Therefore, the operator T2 is a equicontinuous on Bλ0 .

Hence, which implies T2 is relatively compact on Bλ0 .

Therefore T2 is satisfies the condition of theorem 2.4 and theorem 2,5, we can conclude that

T2 has a fixed point. Therefore the problem (3) and (4), the operator T has a fixed point u.

4. EXAMPLE

In this section an example is presented for the existence results to the following problem.

(ABC
0 D

3
2 )(u(t)− t

3
√

(π)
sin(u(t)+u′(t)))) =

t

3
√

(π)
cos(u(t)+u′(t)),(22)

u(0) = 1, t ∈ [1,2], B(α) = 1(23)

Notice that g(0,u(0),Du(0)) = f (0,u(0),Du(0)) = 0 and u′(t) ∈ C[1,2] satisfy the Lipschitz

conditions.

Let g(t,u,v) = t
3
√

(π)
sin(u+ v), f (t,u,v) = t

3
√

(π)
cos(u+ v), t ∈ [1,2].

It is easy to see that

(ABC
0 D

3
2 )(u(t)−g(t,u,v)) = f (t,u,v),(24)

u(0) = 1, t ∈ [1,2], B(α) = 1(25)

Therefore, by Banach contraction principle theorem (24) and (25) has an unique solution, this

can be written as

u(t) = limn→∞ un(t) , where

un(t) = 1+
1

3
√

π
gn−1(t)+

1−α

3
√

π
fn−1(t)+

α

3
√

πΓ(α)

∫ t

0
(t− s)α−1 fn−1(s)ds,

where n = 1,2,3, ...
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