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Abstract. This paper is concerned with, structural properties and construction of quantum codes over Zp by using

(1+(p−2)ν)-Constacyclic codes over the finite commutative non-chain ring ℜ = Zp +νZp where ν2 = ν and Zp

is field having p elements with characteristic p where p is prime. A Gray map is defined between ℜ and Z2
p. The

parameters of quantum codes over Zp are obtained by decomposing (1+(p−2)ν)-constacyclic codes into cyclic

and negacyclic codes over Zp. As an application, some examples of quantum codes of arbitrary length, are also

obtained.
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1. INTRODUCTION

There has been an enormous development in the research on quantum codes. As the disclo-

sure that quantum codes secure quantum information similar to classical codes classic infor-

mation. Quantum information can propagate faster than light under certain conditions, while

classical information cannot. Quantum information can’t be duplicated but classical informa-

tion can be. Quantum codes provide the most efficient way to overcome decoherence. The
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first quantum code was found by Shor [7]. From then on, the construction of quantum codes

through classical cyclic codes and their generalizations haRs developed rapidly. Quantum codes

attracted world wide attention therefore. Later on, Calderbank et al. [1] gave a technique to

build quantum codes through classical codes in 1998. Recently the theory of quantum codes is

on the path of everlasting development. In recent years, the theory of quantum code has been

developed rapidly (see reference [4, 8, 9]).

A significant development in the construction of quantum codes through cyclic codes over finite

chain ring F2 + uF2 where u2 = 0 of odd length was made by Qian [2]. Kai and Zhu [10] also

gave a method to construct quantum codes through cyclic codes over finite chain ring F4 +uF4

where u2 = 0 of odd length. Qian [3] studied quantum codes of arbitrary length through cyclic

codes over finite non-chain ring F2+vF2 where v2 = v. Recently, Ashraf and Mohammad [5] de-

fined the construction of quantum codes through cyclic codes over finite non-chain ring F3+vF3

where v2 = 1. Then in [6] Ashraf and Mohammad studied this topic over the different finite non-

chain ring Fq+vFq where v2 = v. In this paper, encouraged by these type of problems, we study

quantum codes through (1+(p−2)ν)-constacyclic codes over finite non-chain ring Zp +νZp

where ν2 = ν .

This paper is structured as follows. Section 2 contains preliminaries that deal with some basic

properties of the considered ring and some basic definitions. In section 3, Gray Map is defined

over the considered ring and the construction of quantum codes through constacyclic codes

over the considered ring are given. Some examples are provided to illustrate the main result in

section 4. Finally, paper is concluded in section 5.

2. PRELIMINARIES

Let Zp is a finite filed having p elements for some odd prime p. We first start with a general

overview of the ring ℜ = Zp + νZp where ν2 = ν , ℜ is a finite, commutative and non-chain,

semi-local ring with p2 elements. One of the Unit of ℜ is (1+(p−2)ν). The considered ring

ℜ has two maximal ideals which are < ν > and < 1−ν >. Since, it is clear that ℜ/ < ν >,

ℜ/ < 1−ν > both are isomorphic to Zp.

Now by chinese remainder theorem, the considered ring can be expressed as ℜ ∼= < ν > ⊕ <

1− ν > ∼= Zp⊕ Zp. Therefore, an arbitrary element α + ν β of the considered ring can be
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written as (α +β ) (ν)+(α)(1−ν) for all α,β ∈ Zp.

A nonempty subset K of ℜn is a linear code over ℜ of length n. If K is an ℜ-submodule of

ℜn and the elements of K are codewords. Let ϒ,Λ and f are the maps from ℜn to ℜn defined

as

ϒ(χ0,χ1, ...,χn−1) = (χn−1,χ0, ...,χn−2),

Λ(χ0,χ1, ...,χn−1) = (−χn−1,χ0, ...,χn−2),

f(χ0,χ1, ...,χn−1) = ((1+(p−2)ν)χn−1,χ0, ...,χn−2),

respectively. Then K is a cyclic, negacyclic, (1 + (p− 2)ν)-constacyclic if ϒ(K ) = K ,

Λ(K ) = K , f(K ) = K respectively. For the arbitrary elements χ = (χ0,χ1, ...,χn−1) and

ψ = (ψ0,ψ1, ...,ψn−1) of ℜ, the inner product is defined as

χ.ψ = (χ0ψ0 +χ1ψ1 + ...+χn−1ψn−1).

If χ.ψ = 0, then χ and ψ are orthogonal. If K is a linear code over ℜ of length n, then the dual

code of K is defined as

K ⊥ = { χ ∈ ℜ
n : χ.ψ = 0 f or all ψ ∈K }.

which is also a linear code over the ring ℜ of length n. A code K is said to be self orthogonal

if K ⊆K ⊥ and said to be self dual if K = K ⊥.

The hamming weight wH(χ) for any codeword χ = (χ0,χ1, ...,χn−1) ∈ ℜn is defined as the

number of all non-zero components in χ = (χ0,χ1, ...,χn−1). The minimum weight of a code

K , that is, wH(K ) is the least weight among all of its non zero codewords. The Hamming

distance between two codes χ = (χ0,χ1, ...,χn−1) and ψ = (ψ0,ψ1, ...,ψn−1) of ℜn, denoted

by dH(χ,ψ) = wH(χ−ψ) and is defined as

dH(χ,ψ) = | {i | χi 6= ψi} | .

Minimum distance of K , denoted by dH and is given by minimum distance between the differ-

ent pairs of codewords of the linear code K . For any codeword χ = (χ0,χ1, ...,χn−1) ∈ℜn, the

lee weight is defined as wL(χ) = ∑
n−1
i=0 wL(χi) and lee distance of (χ, χ̂) is given by dL(χ, χ̂) =

wL(χ− χ̂) = ∑
n−1
i=0 wL(χi− χ̂i).
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Minimum lee distance of K is denoted by dL and is given by minimum lee distance of different

pairs of codewords of the linear code K .

3. QUANTUM CODES OBTAINED THROUGH (1+(p−2)ν)-CONSTACYCLIC CODES OVER

ℜ

The Gray map ϕ from ℜ to Z2
p, that is, ϕ: ℜ→ Z2

p is defined as

ϕ(w = w1 +νw2) = (w1,w1 +w2)

This map can be extended to ℜn, that is ϕ: ℜn→ Z2n
p as

ϕ(α1,α2,α3, ...,αn−1) = (w1,w1 +w·1,w2,w2 +w·2, ...,wn−1,wn−1 +w·n−1)

where αi = wi +νw·i for all 0≤ i≤ n−1.

It is obvious that, the map ϕ is linear and distance preserving isometry from (ℜn,dL) to (Z2n
p ,dH),

where dL and dH are the lee distance and hamming distance in ℜn and Z2n
p respectively.

For a linear code K of length n over ℜ, we characterize

K∞ = {a ∈ Zn
p| f or some b ∈ Zn

p such that (a+νb) ∈ K }

K∈ = {a+b ∈ Zn
p| such that (a+νb) ∈ K }

are 2 p-ary codes such that

(1−ν) K∞ = K mod ν

and

ν K∈ = K mod (1−ν).

Therefore, K∞ and K∈ are linear codes over the ring Zp of length n. Moreover, the linear code

K can be uniquely expressed as

K = (1−ν) K∞ ⊕ ν K∈

and also |K |= |K∞||K∈|.

The following proposition can be obtained directly by the above defined Gray map ϕ .

Proposition 3.1. Let K be a linear code over the ring ℜ of length n. If K is self orthogonal,

then ϕ(K ) is also self orthogonal.
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Proof. Let K be a self orthogonal code and η1,η2 ∈ K such that η1 = ξ1 + νϖ1 and η2 =

ξ2 +νϖ2 where ξ1,ξ2,ϖ1,ϖ2 ∈ Zp. From the definition of self orthogonality, η1.η2 = 0, that

is, ξ1ξ2 +ν(ξ1ϖ2 + ξ2ϖ1 +ϖ1ϖ2) = 0, it follow that ξ1ξ2 = ξ1ϖ2 + ξ2ϖ1 +ϖ1ϖ2 = 0. Now,

applying ϕ on η1,η2 we have ϕ(η1) = (ξ1,ξ1 + ϖ1) and ϕ(η2) = (ξ2,ξ2 + ϖ2) and hence

ϕ(η1).ϕ(η2) = 2ξ1ξ2 +ξ1ϖ2 +ξ2ϖ1 +ϖ1ϖ2 = 0 this implies ϕ(K ) is self orthogonal. �

Proposition 3.2. Let K = (1+ν)K∞ ⊕ νK∈ be a linear code over the ring ℜ of length n such

that K∞ be a linear code having parameters [n, k1, d1] and K∈ be a linear code having parame-

ters [n, k2, d2]. Then ϕ(K ) is a q-ary linear code having parameters [2n, k1+k2, min(d1,d2)].

Lemma 3.3. Let K = (1− ν)K∞ ⊕ νK∈ be linear code over the ring ℜ of length n where

K∞, K∈, are linear codes over the ring Zp. Then K is a (1+(p− 2)ν)-constacyclic codes

over the ring ℜ of length n if and only if K∞ is Cyclic code and K∈ is negaacyclic code over

the ring Zp of length n.

Proof. Let ȧ = (ȧ0, ȧ1, ..., ˙an−1) ∈K∞ and ḃ = (ḃ0, ḃ1, ..., ˙bn−1) ∈K∈. For an arbitrary element

ζi = (1−ν)ȧi +ν ḃi where ȧi, ḃi ∈ Zp for i = 0,1, ...,n−1.

Let ζ = (ζ0,ζ1, ...,ζn−1) ∈K .

First we assume that K is a (1+(p−2)ν)-constacyclic code over the ring ℜ of length n then,

f(ζ ) = ((1+(p−2)ν)ζn−1,ζ0, ...,ζn−2)

= ((1−ν) ˙an−1− (ν) ˙bn−1,(1−ν)ȧ0 +(ν)ḃ0, ...,(1−ν) ˙an−2 +(ν) ˙bn−2)

= (1−ν)ϒ(ȧ)+(ν)Λ(ḃ)

which is an element of the linear code K . Therefore, K∞ is a cyclic and K∈ is a negacyclic

codes over the ring Zp of length n.

Conversely, for any ζ = (ζ0,ζ1, ...,ζn−1) ∈K , where ζi = (1−ν)ȧi+(ν)ḃi and ȧi,ḃi ∈ Zp for i

= 0,1, ...,n−1. If K∞ is a cyclic codes and K∈ is a negacyclic codes over the ring Zp of length

n, then ϒ(ȧ) ∈K∞ and Λ(ḃ) ∈K∈. Hence, we have (1−ν)ϒ(ȧ)+(ν)Λ(ḃ) ∈K where f(ζ )

= (1−ν)ϒ(ȧ)+(ν)Λ(ḃ), which implies that f(ζ ) ∈K .

Therefore, K is a (1+(p−2)ν)-constacyclic codes over the ring ℜ of length n. �

The following lemma is similar to Theorem 4.2 [11].
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Lemma 3.4. Let K be a (1+(p−2)ν)-constacyclic codes over the ring ℜ of length n. Then

K = < (1−ν)g1(x),νg2(x)> = < (1−ν)g1(x)+νg2(x)>

with |K | = p2n−deg(g1(x))−deg(g2(x))

where gi(x) for i = 1,2 are the generator polynomials of K∞ and K∈ respectively.

Moreover K ⊥ = (1−ν)K ⊥
∞ ⊕νK ⊥

∈ is also (1+(p−2)ν)-constacyclic codes over the ring

ℜ of length n and

K ⊥ = < (1−ν)g?1(x),νg?2(x)> = < (1−ν)g?1(x)+νg?2(x)>

with |K ⊥| = pdeg(g1(x))+deg(g2(x))

where g?i (x) for i = 1,2 are reciprocal polynomials of xn+1
g1(x)

and xn−1
g2(x)

respectively.

Lemma 3.5. [1] If K is a cyclic or negacyclic code over the ring Zq with generator polynomial

g(x). Then, K contains its dual code if and only if xn− ι ≡ 0 mod(g(x)g?(x)), where ι =±1

Theorem 3.6. If K = < (1− ν)g1(x),νg2(x) > is a (1+(p− 2)ν)-constacyclic codes over

the ring ℜ of length n. Then K ⊥ ⊆K if and only if xn−1≡ 0 mod(g1(x)g?1(x)) for K∞ and

xn +1≡ 0 mod(g2(x)g?2(x)) for K∈.

Proof. Let K = < g(x)> = < (1−ν)g1(x)+νg2(x)> be a (1+(p−2)ν)-constacyclic codes

over the ring ℜ of length n. Then K = (1−ν)K∞⊕νK∈ where gi(x) are generator polynomial

of K∞ and K∈ for i = 1,2 respectively.

First we consider xn−1≡ 0 mod(g1(x)g?1(x)) for K∞ and xn +1≡ 0 mod(g2(x)g?2(x)) for K∈

respectively, then by above lemma, we have

K ⊥
∞ ⊆ K∞ and K ⊥

∈ ⊆ K∈

and therefore (1−ν)K ⊥
∞ ⊆ (1−ν)K∞ and νK ⊥

∈ ⊆ νK∈ which implies that

(1−ν)K ⊥
∞ ⊕ νK ⊥

∈ ⊆ (1−ν)K∞ ⊕ νK∈

Thus, we have < (1−ν)g?1(x)+νg?2(x)> ⊆ < (1−ν)g1(x)+νg2(x)>

and hence, K ⊥ ⊆K .
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Conversely, let us consider K ⊥ ⊆K , then

(1−ν)K ⊥
∞ ⊕ νK ⊥

∈ ⊆ (1−ν)K∞ ⊕ νK∈,

which implies that

(1−ν)K ⊥
∞ ⊆ (1−ν)K∞ and νK ⊥

∈ ⊆ νK∈,

hence

K ⊥
∞ ⊆ K∞ and K ⊥

∈ ⊆ K∈,

therefore we have

xn−1≡ 0 mod(g1(x)g?1(x)) for K∞ and xn +1≡ 0 mod(g2(x)g?2(x)) for K∈. �

By the above Theorem, we have the following corollary.

Corollary 3.7. Let K = (1− ν)K∞⊕ νK∈ be a (1+(p− 2)ν)-constacyclic codes over the

ring ℜ of length n where K∞, K∈ are linear code over the ring Zp of length n. Then K ⊥ ⊆K

if and only if K ⊥
∞ ⊆K∞ and K ⊥

∈ ⊆K∈.

Lemma 3.8. [1](CSS Construction). Let K be a linear code over the ring Zp having parame-

ters [n,k,d]. Then a quantum code having parameter [n, 2k−n, ≥ d]p can be obtained if K ⊥

⊆K .

The following theorem defines the construction of quantum codes by the use of Corollary 3.7

and Lemma 3.8.

Theorem 3.9. If K = (1− ν)K∞⊕ νK∈ = < (1− ν)g1(x)+ νg2(x) > is a (1+(p− 2)ν)-

constacyclic codes over the ring ℜ of length n where gi(x) are generator polynomials of K∞

and K∈ for i = 1,2 respectively. If K ⊥
∞ ⊆K∞ and K ⊥

∈ ⊆K∈ then K ⊥ ⊆K and there exists

a quantum code having parameters [2n,2k−2n,≥ dL]p where k is the dimension of linear code

ϕ(K ) and dL is minimum Lee distance of K .
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4. EXAMPLES

In this section, some examples are provided to illustrate the main result. Here, the quantum

codes through (1+(p−2)ν)-constacyclic codes over the ring ℜ = Zp +νZp where ν2 = ν are

also obtained.

Example 4.1. In Z5(t), t10−1 = (t +4)5(t +1)5 and t10 +1 = (t +2)5(t +3)5. Now, let K be

a (1+(p−2)ν)-constacyclic codes over the ring ℜ = Z5+νZ5 where ν2 = ν of length 10. Let

g1(t) = t+1, g2(t) = t+2, then g(t) = (1−ν)(t+1)+ν(t+2) be the generator polynomial of

K . Since g1(t)g∗1(t)|t10−1, g2(t)g∗2(t)|t10 +1 then by the use of Theorem 3.6, we get K ⊥ ⊆

K Further ϕ(K ) is a linear code over the ring Z5 having parameters [20, 18, 2]. Then, by the

application of Theorem 3.9, we obtain the quantum codes having parameters [20, 16, ≥ 2]5.

Example 4.2. In Z5(t), t20−1 = (t−4)5(t−2)5(t−3)5(t−1)5 and t20+1 = (t2−3)5(t2−2)5.

Now, let K be a (1+(p−2)ν)-constacyclic codes over the ring ℜ = Z5 +νZ5 where ν2 = ν

of length 20. Let g1(t) = (t− 3)2 and g2(t) = (t2− 3) then g(t) = (1−ν)(t− 3)2 +ν(t2− 3)

be the generator polynomial of K . Since g1(t)g∗1(t)|t20−1, g2(t)g∗2(t)|t20 +1 then by the use

of Theorem 3.6, we get K ⊥ ⊆ K Further ϕ(K ) is a linear code over the ring Z5 having

parameters [40, 36, 3]. Then, by the application of Theorem 3.9, we obtain the quantum codes

having parameters [40, 32, ≥ 3]5.

Example 4.3. In Z3(t), t3− 1 = (t + 2)3 and t3 + 1 = (t + 1)(t2− t + 1). Now, let K be a

(1+(p− 2)ν)-constacyclic codes over the ring ℜ = Z3 + νZ3 where ν2 = ν of length 3. Let

g1(t) = t +2 and g2(t) = t2− t +1 then g(t) = (1−ν)(t +2)+ν(t2− t +1) be the generator

polynomial of K . Since g1(t)g∗1(t)|t3−1, g2(t)g∗2(t)|t3 +1 then by the use of Theorem 3.6, we

get K ⊥ ⊆ K Further ϕ(K ) is a linear code over the ring Z3 having parameters [6, 3, 3].

Then, by the application of Theorem 3.9, we obtain the quantum codes having parameters

[6, 0, ≥ 3]3.

Example 4.4. In Z3(t), t12−1 = (t+1)3(t+2)3(t2+1)3 and t12+1 = (t2+2t+2)3(t2+t+2)3.

Now, let K be a (1+(p−2)ν)-constacyclic codes over the ring ℜ = Z3 +νZ3 where ν2 = ν

of length 12. Let g1(t) = t + 1 and g2(t) = t2 + 2t + 2, g(t) = (1− ν)(t + 1)+ ν(t2 + 2t + 2)
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be the generator polynomial of K . Since g1(t)g∗1(t)|t12−1, g2(t)g∗2(t)|t12 +1 then by the use

of Theorem 3.6, we get K ⊥ ⊆ K Further ϕ(K ) is a linear code over the ring Z3 having

parameters [24, 21, 3]. Then, by the application of Theorem 3.9, we obtain the quantum codes

having parameters [24, 18, ≥ 3]3.

5. CONCLUSION

In this work, we have given a construction for quantum codes through (1 + (p− 2)ν)-

constacyclic codes over the finite non-chain ring ℜ = Zp+νZp where ν2 = ν . We have derived

self-orthogonal codes over the ring Zp as Gray images of linear codes over the ring Zp +νZp.

In particular, the parameters of quantum codes over the ring Zp are obtained by decomposing

(1+(p−2)ν)-constacyclic codes into cyclic and negacyclic codes over the ring Zp.
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